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Abstract

We consider an irreducible pure jump Markov process with rates Q = (q(x, y)) on Λ ∪ {0}
with Λ countable and 0 an absorbing state. A quasi stationary distribution (qsd) is a
probability measure ν on Λ that satisfies: starting with ν, the conditional distribution at
time t, given that at time t the process has not been absorbed, is still ν. That is, ν(x) =
νPt(x)/(

∑

y∈Λ
νPt(y)), with Pt the transition probabilities for the process with rates Q.

A Fleming-Viot (fv) process is a system of N particles moving in Λ. Each particle moves
independently with rates Q until it hits the absorbing state 0; but then instantaneously
chooses one of the N − 1 particles remaining in Λ and jumps to its position. Between
absorptions each particle moves with rates Q independently.
Under the condition α :=

∑

x∈Λ
inf Q(·, x) > supQ(·, 0) := C we prove existence of qsd

for Q; uniqueness has been proven by Jacka and Roberts. When α > 0 the fv process is
ergodic for each N . Under α > C the mean normalized densities of the fv unique stationary
measure converge to the qsd of Q, as N → ∞; in this limit the variances vanish .
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1 Introduction

Let Λ be a countable set and Zt be a pure jump regular Markov process on Λ ∪ {0} with
transition rates matrix Q = (q(x, y)), transition probabilities Pt(x, y) and with absorbing state
0; that is q(0, x) = 0 for all x ∈ Λ. Assume that the exit rates are uniformly bounded above:
q̄ := supx

∑

y∈{0}∪Λ\{x} q(x, y) < ∞, that Pt(x, y) > 0 for all x, y ∈ Λ and t > 0 and that
the absorption time is almost surely finite for any initial state. The process Zt is ergodic with
a unique invariant measure δ0, the measure concentrating mass in the state 0. Let µ be a
probability on Λ. The law of the process at time t starting with µ conditioned to non absorption
until time t is given by

ϕµ
t (x) =

∑

y∈Λ µ(y)Pt(y, x)

1 − ∑

y∈Λ µ(y)Pt(y, 0)
, x ∈ Λ. (1.1)

A quasi stationary distribution (qsd) is a probability measure ν on Λ satisfying ϕν
t = ν. Since

Pt is honest and satisfies the forward Kolmogorov equations we can use an equivalent definition
of qsd, according Nair and Pollett (12). Namely, a qsd ( and only a qsd) is a left eigenvector ν
for the restriction of the matrix Q to Λ with eigenvalue −∑

y∈Λ ν(y)q(y, 0): ν must satisfy the
system

∑

y∈Λ

ν(y) [q(y, x) + q(y, 0)ν(x)] = 0, ∀x ∈ Λ. (1.2)

(recall q(x, x) = −∑

y∈Λ∪{0}\{x} q(x, y).)

The Yaglom limit for the measure µ is defined by

lim
t→∞

ϕµ
t (y) , y ∈ Λ (1.3)

if the limit exists and it is a probability on Λ.

When Λ is finite, Darroch and Seneta (1967) prove that there exists a unique qsd ν for Q and
that the Yaglom limit equals ν for any initial distribution µ. When Λ is infinite the situation
is more complex. Neither existence nor uniqueness of qsd are guaranteed. An example is
the asymmetric random walk, Λ = N, p = q(x, x + 1) = 1 − q(x, x − 1), for x ≥ 1. In this
case there are infinitely many qsd when p < 1/2 and none when p ≥ 1/2 (see Cavender (2)
and Ferrari, Martinez and Picco (6) for birth and death more general examples). For Λ = N

under the condition limx→∞ P(R < t|Z0 = x) = 0, where R is the absorption time of Zt,
Ferrari, Kesten, Mart́ınez and Picco (5) prove that the existence of qsd is equivalent to the
existence of a positive exponential moment for R, i.e. EeθR < ∞ for some θ > 0. When
the Yaglom limit exists, it is known to be a qsd, but existence of the limit is not known in
general for infinite state space. Phil Pollett maintains an updated bibliography on qsd in the
site http://www.maths.uq.edu.au/˜pkp/papers/qsds/qsds.html.

Define the ergodicity coefficient of the chain Q by

α = α(Q) :=
∑

z∈Λ

inf
x∈Λ\{z}

q(x, z) . (1.4)
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If α(z) := infx 6=z q(x, z) > 0, then z is called Doeblin state. Define the maximal absorbing rate
of Q by

C = C(Q) := sup
x∈Λ

q(x, 0) . (1.5)

Since the chain is absorbed with probability one, C > 0. On the other hand, C ≤ q̄, the maximal
rate.

Jacka and Roberts (9) proved that if there exists a Doeblin state z ∈ Λ such that α(z) > C and
if there exists a qsd ν for Q, then ν is the unique qsd for Q and the Yaglom limit equals ν
for any initial measure µ; their proof also works under the weaker assumption α > C. We show
that α > C is a sufficient condition for the existence of a qsd for Q.

Theorem 1.1. If α > C then there exists a unique qsd ν for Q and the Yaglom limit converges
to ν for any initial measure µ.

The condition α > C is complementary to the condition limx→∞ P(R > t|Z0 = x) = 1, under
which (5) show existence of qsd. On the other hand, α > 0 implies that R has a positive
exponential moment.

The Fleming-Viot process (fv). Let N be a positive integer and consider a system of N particles
evolving on Λ. The particles move independently, each of them governed by the transition rates
Q until absorption. Since there cannot be two simultaneous jumps, at most one particle is
absorbed at any given time. When a particle is absorbed to 0, it goes instantaneously to a state
in Λ chosen with the empirical distribution of the particles remaining in Λ. In other words,
it chooses one of the other particles uniformly and jumps to its position. Between absorption
times the particles move independently governed by Q. This process has been introduced by
Fleming and Viot (7) and studied by Burdzy, Holyst and March (1), Grigorescu and Kang (8)
and Löbus (11) in a Brownian motion setting. The original process introduced by Fleming Viot
is a model for a population with constant number of individuals which also encodes the positions
of particles. When individuals die randomly independently of their position, the scaling limit is
a fractal (“measure valued diffusion”). In the case studied in (1) and here the particles die only
on some region of the state space (the boundary of a domain in R

d in (1) and the absorbing
state here); in both cases the scaling limit is a deterministic measure. We agree with Burdzy
that the two models are sufficiently similar to be called Fleming-Viot.

The generator of the fv process acts on functions f : Λ(1,...,N) → R as follows

LNf(ξ) =

N
∑

i=1

∑

y∈Λ\{ξ(i)}

[

q(ξ(i), y) + q(ξ(i), 0)
η(ξ, y)

N − 1

]

(f(ξi,y) − f(ξ)), (1.6)

where ξi,y(j) = y for j = i and ξi,y(j) = ξ(j) otherwise and

η(ξ, y) :=
N

∑

i=1

1{ξ(i) = y}. (1.7)

We call ξt the process in Λ(1,...,N) with generator (1.6) and ηt = η(ξt, ·) the corresponding
unlabeled process on {0, 1, . . . }Λ; ηt(x) counts the number of ξ particles in state x at time t. For
µ a measure on Λ, we denote ξN,µ

t the process starting with independent identically µ-distributed
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random variables (ξN,µ
0 (i), i = 1, . . . , N); the corresponding variables ηN,µ

0 (x) have multinomial
law with parameters N and (µ(x), x ∈ Λ). The profile of the fv process at time t converges as
N → ∞ to the conditioned evolution of the chain Zt:

Theorem 1.2. Let µ be a probability measure on Λ. Assume that (ξN,µ
0 (i), i = 1, . . . ,N) are

i.i.d. with law µ. Then, for t > 0 and x ∈ Λ,

lim
N→∞

E

(ηN,µ
t (x)

N
− ϕµ

t (x)
)2

= 0 . (1.8)

Since the functions are bounded (by 1), this is equivalent to convergence in probability. The
convergence in probability has been proven for Brownian motions in a compact domain in (1).
Extensions of this result and the process induced in the boundary have been studied in (8) and
(11).

When Λ is finite, the fv process is an irreducible pure-jump Markov process on a finite state
space. Hence it is ergodic (that is, there exists a unique stationary measure for the process and
starting from any measure, the process converges to the stationary measure). When Λ is infinite,
general conditions for ergodicity are still not established. We prove the following result

Theorem 1.3. If α > 0, then for each N the fv process with N particles is ergodic.

Assume α > 0. Let ηN be a random configuration distributed with the unique invariant measure
for the fv process withN particles. Our next result says that the empirical profile of the invariant
measure for the fv process converges in L2 to the unique qsd for Q.

Theorem 1.4. Assume α > C. Then there exists a probability measure ν on Λ such that for
all x ∈ Λ,

lim
N→∞

E

(ηN (x)

N
− ν(x)

)2
= 0 . (1.9)

Furthermore ν is the unique qsd for Q.

Sketch of proofs The existence part of Theorem 1.1 is a corollary of Theorem 1.4. The rest
is a consequence of Jacka and Roberts’ theorem (stated later as Theorem 5.1).

Theorem 1.3 is proven by constructing a stationary version of the process “from the past” as in
perfect simulation. We do it in Section 2.

Theorems 1.2 and 1.4 are both based on the asymptotic independence of the ξ particles, as
N → ∞. Lemma 5.1 later shows that ϕt is the unique solution of the Kolmogorov forward
equations

d

dt
ϕµ

t (x) =
∑

y∈Λ

ϕµ
t (y)[q(y, x) + q(y, 0)ϕµ

t (x)], x ∈ Λ . (1.10)

From a generator computation, taking f(ξ) = η(ξ, x) in (1.6),

d

dt
E

(ηN,µ
t (x)

N

)

=
ELNηN,µ

N
=

∑

y∈Λ

E

(ηN,µ
t (y)

N

(

q(y, x) + q(y, 0)
ηN,µ

t (x)

N − 1

))

. (1.11)
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If solutions of (1.11) converge along subsequences as N → ∞, then the limits equal the unique
solution of (1.10). In fact, we prove in Proposition 3.1 that for x, y ∈ Λ,

E

(

ηN,µ
t (y) ηN,µ

t (x) − EηN,µ
t (y) EηN,µ

t (x)
)

= O(N) . (1.12)

This argument shows the convergence of the means EηN,µ
t (x)/N to ϕµ

t (x). Since the variances
((1.12), with x = y) divided by N2 go to zero, the L2 convergence follows.

The stationary case is proven analogously. If ηN is distributed with the invariant measure for
the fv process, from (1.11),

0 =
∑

y∈Λ

E

(ηN (y)

N

(

q(y, x) + q(y, 0)
ηN (x)

N − 1

))

. (1.13)

Under the hypothesis α > C we show a result for ηN analogous to (1.12) to conclude that
solutions of (1.13) converge to the unique solution of (1.2).

To show that the limits are probability measures it is necessary to show that the families of
measures ( 1

N
EηN,µ

t , N ∈ N) and ( 1
N

EηN , N ∈ N) are tight; we do it in Section 4.

Comments One interesting point of the Fleming-Viot approach is that it permits to show the
existence of a qsd in the α > C case, a new result as far as we know.

Compared with the results for Brownian motion in a bounded region with absorbing boundary
(Burdzy, Holyst and March (1), Grigorescu and Kang (8) and Löbus (11) and other related
works), we do not have trouble with the existence of the fv process, it is immediate here.
On the other hand those works prove the convergence in probability without computing the
correlations. We prove that the fact that the correlations vanish asymptotically is sufficient to
show convergence in probability. For the moment we are able to show that the correlations
vanish for the stationary state under the hypothesis α > C.

The conditioned distribution ϕµ
t is not necessarily the same as 1

N
EηN,µ

t , the expected proportion
of particles in the fv process with N particles. This has been proven in Example 2.1 of (1)
for Λ = {1, 2} and q(1, 0) = q(1, 2) = q(2, 1) = 1. The qsd ν for this chain (the unique
solution of (1.2)) is ν(1) = (3−

√
5)/2 and ν(2) = (−1 +

√
5)/2. The unlabeled fv process with

two particles η2
t assumes values in {(1, 1), (2, 0), (0, 2)} and evolves with rates a((0, 2), (1, 1)) =

a((1, 1), (0, 2)) = a((2, 0), (1, 1)) = 2 and a((1, 1), (2, 0)) = 1. The invariant measure for η2
t gives

weight 2/5 to (1, 1) and (0, 2) and weight 1/5 to (2, 0). This implies that in equilibrium the
mean proportion of particles in states 1 and 2 are ρ2(1) = 2/5 and ρ2(2) = 3/5 respectively.
Our values for ν and ρ2 do not agree with those of (1), but the conclusion is the same: ν 6= ρ2,
which in turn implies 1

2Eη2,ν
t 6= ϕν

t = ν for sufficiently large t, as 1
2Eη2,ν

t converges to ρ2 as t
grows. More generally, for rational rates q, the equilibrium mean proportions ρN have rational
components, as they come from the solution of a linear system with rational coefficients, while
those of ν may be irrational, as ν is the solution of a nonlinear system.

To prove tightness we have classified the ξ particles in types. This already appears in Burdzy,
Holyst and March (1) to show the convergence result. Our application here is somehow simpler.
Curiously our tightness proof needs the same condition (α > C) as the vanishing correlations
proof.
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2 Construction of fv process

In this section we perform the graphic construction of the fv process ξN
t . Recall C < ∞ and

α ≥ 0. Recall α(z) = infx∈Λ\{z} q(x, z).

For each i = 1, . . . , N , we define independent stationary marked Poisson processes (PP’s) on R:

• Regeneration times. PP rate α: (ai
n)n∈Z, with marks (Ai

n)n∈Z

• Internal times. PP rate q̄ − α: (bin)n∈Z, with marks ((Bi
n(x), x ∈ Λ), n ∈ Z)

• Voter times. PP rate C: (cin)n∈Z, with marks ((Ci
n, (F i

n(x), x ∈ Λ)), n ∈ Z) .

The marks are independent of the PP’s and mutually independent. The denominations will be
transparent later. The marginal laws of the marks are:

• P(Ai
n = y) = α(y)/α, y ∈ Λ;

• P(Bi
n(x) = y) =

q(x, y) − α(y)

q̄ − α
, x ∈ Λ, y ∈ Λ \ {x};

P(Bi
n(x) = x) = 1 − ∑

y∈Λ\{x} P(Bi
n(x) = y).

• P(F i
n(x) = 1) =

q(x, 0)

C
= 1 − P(F i

n(x) = 0), x ∈ Λ.

• P(Ci
n = j) =

1

N − 1
, j 6= i.

Denote (Ω,F ,P) the space on which the marked Poisson processes have been constructed. Dis-
card the null event corresponding to two simultaneous events at any given time.

We construct the process in an arbitrary time interval [s, t]. Given the mark configuration ω ∈ Ω

we construct ξN,ξ

[s,t](= ξN,ξ

[s,t],ω) in the time interval [s, t] as a function of the Poisson times and its
respective marks and the initial configuration ξ at time s.

The relation of this notation with the one in Theorem 1.2 is the following:

ξN,µ
t = ξN,ξ

[s,s+t] (2.14)

where ξ = (ξ(1), . . . , ξ(N)) is a random vector with iid coordinates, each distributed according
to µ on Λ. That is, for any function f : ΛN → R,

Ef(ξN,µ
t ) =

∑

ξ

[
∏

i µ(ξ(i))] Ef(ξN,ξ

[s,s+t]). (2.15)

Construction of ξN,ξ

[s,t] = ξN,ξ

[s,t],ω

Since for each particle i there are three Poisson processes with rates C, α and q̄−α, the number
of events in the interval [s, t] is Poisson with mean N(C+ q̄). So the events can be ordered from
the earliest to the latest.

At time s the initial configuration is ξ. Then, proceed event by event following the order as
follows:
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The configuration does not change between Poisson events.

At each regeneration time ai
n particle i jumps to state Ai

n regardless of the current configuration.

If at the internal time bin− the state of particle i is x, then at time bin particle i jumps to state
Bi

n(x) regardless of the position of the other particles.

If at the voter time cin− the state of particle i is x and F i
n(x) = 1, then at time cin particle i

jumps to the state of particle Ci
n; if F i

n(x) = 0, then particle i does not jump.

The configuration obtained after using all events is ξN,ξ

[s,t]. The denominations are now clear. At
regeneration times a particle jumps to a new state independently of the current configuration.
At voter times a particle either jumps to the state of another particle chosen at random or
does not jump. At internal times the particle jumps are indifferent to the position of the other
particles.

Lemma 2.1. For each s ∈ R, the process (ξN,ξ

[s,t], t ≥ s) is Markov with generator (1.6) and

initial condition ξN,ξ

[s,s] = ξ.

Proof This follows from the Markov properties of the Poisson processes; the rate for particle
i to jump from x to y is the sum of three terms: (a) αα(y)

α
(the rate of a regeneration event

times the probability that the corresponding mark takes the value y), (b) (q̄ − α) q(x,y)−α(y)
q̄−α

(the maximal rate of internal events times the probability that the corresponding mark takes

the value y) and (c) C q(x,0)
C

∑

j 6=i 1{ξ(j) = y} 1
N−1 (the maximal absorption rate times the

probability the absorption rate from state x divided by the maximal absorption rate times the
empirical probability of state y for the particles different from i). The sum of these three rates
is the rate indicated by the generator (the square brackets in (1.6) with ξ(i) = x).

Generalized duality For each realization ω of the marked Poisson processes and each interval
[s, t] we construct a set Ψi

ω[s, t] ⊂ {1, . . . ,N} corresponding to the particles involved at time s

in the definition of ξN,ξ

[s,t],ω(i). We drop the label ω in the notation.

Initially Ψi[t, t] = {i} and look backwards in time for the most recent i-Poisson event, at some
time τ , in the past of t but more recent than s. If τ is a regeneration event, then we do not
need to go further in the past to know the state of the i particle, so we erase the i particle from
Ψi[τ−, t]. If τ is the voter event cin, its Ci

n mark pointing to particle j, say, then we need to
know the state of the particle i at time τ− to see which F i

n will be used to decide if the i particle
effectively takes the value of particle j or not. Hence, we need to follow backwards particles i
and j and we add the j particle to Ψi[τ−, t]. Then continue this procedure starting from each of
the particles in Ψi[τ−, t]. The process backwards finishes if Ψi[r, t] is empty for some r smaller
than s or if we have processed all marks involving i in the time interval [s, t]. More rigorously:

Construction of Ψi[s, t]

We construct Ψi[s, t] backwards in time. Changes occur at Poisson events and Ψi[s, t] is constant
between two Poisson events. The construction of Ψi[s, t] depends only on the regeneration and
voter events. It ignores the internal events.

Initially Ψi[t, t] = {i}.
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Assume Ψi[r′, t] has been constructed for all r′ ∈ [τ ′, t]. Let τ be the time of the latest Poisson
event before τ ′.

Set Ψi[r′′, t] = Ψi[τ ′, t] for all r′′ ∈ (τ, τ ′].

If τ < s stop, we have constructed Ψi[r, t] for all r ∈ [s, t]. If not, proceed as follows.

If τ is a regeneration event involving particle j (that is, τ = aj
n for some n), then set Ψi[τ, t] =

Ψi[τ ′, t] \ {j}.
If τ is a voter event whose mark points to particle j (that is, τ = cℓn for some ℓ and n and
Cℓ

n = j), then set Ψi[τ, t] = Ψi[τ ′, t] ∪ {j}.
This ends the iterative step of the construction.

For a generic Poisson marked event m let time(m) be the time it occurs and label(m) its label;
for instance time(cin) = cin, label(cin) = i. For a realization ω of the Poisson marks let ωi[s, t] be
the marks involved in the definition of Ψi[s, t], given by

ωi[s, t] =
{

m ∈ ω : (label(m), time(m)+) ∈ {(Ψi
ω[r, t], r), r ∈ [s, t]}

}

, (2.16)

the set of marked events in ω involved in the value of ξN,ξ

[s,t],ω(i) and

ξi[s, t] = (ξ(j), j ∈ Ψi
ω[s, t]), (2.17)

the initial particles involved in the value of ξN,ξ

[s,t],ω(i).

The generalized duality equation is

ξN,ξ

[s,t],ω(i) = H(ωi[s, t], ξi[s, t]). (2.18)

There is no explicit formula for H but the important point is that for any real time s, ξN,ξ

[s,t](i)

depends only on a finite number of Poisson events contained in ωi[s, t] and on the initial state
ξ(j) of the particles j ∈ Ψi

ω[s, t]. The internal marks involved in the definition of ξ depend on
the initial configuration ξ and the evolution of the process but in any case are bounded by a
Poisson random variable with mean q̄|Ψi[s, t]|.

Proof of Theorem 1.3 If the number of marks in ωi[−∞, t] is finite with probability one,
then the process

ξN
t,ω(i) = lim

s→−∞
H(ωi[s, t], ξi[s, t]), i ∈ {1, . . . ,N}, t ∈ R (2.19)

is well defined with probability one and does not depend on ξ. By construction (ξN
t , t ∈ R) is

a stationary Markov process with generator (1.6). Since the law at time t does not depend on
the initial configuration ξ, the process admits a unique invariant measure, the law of ξN

t . See
(4) for more details about this argument.

The number of points in ωi[−∞, t] is finite if and only if for some finite s < t, Ψi[s, t] = ∅.
But since there are 3N stationary finite-intensity Poisson processes, with probability one, for
almost all ω there is an interval [s(ω), s(ω) + 1] in the past of t such that there is at least one
regeneration mark for all particle k and there are no voter marks in that interval. We have used
here that the regeneration rate α > 0. This guarantees that Ψi[s(ω), t] = ∅. To conclude notice
that if Ψi[s, t] = ∅, then Ψi[s′, t] = ∅ for s′ < s.
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3 Particle correlations in the fv process

In this section we show that the particle-particle correlations in the fv process with N particles
is of the order 1/N .

Proposition 3.1. Let x, y ∈ Λ. For all t > 0

∣

∣

∣
E

(ηN,µ
t (x)ηN,µ

t (y)

N2

)

− E

(ηN,µ
t (x)

N

)

E

(ηN,µ
t (y)

N

)
∣

∣

∣
<

1

N
e2Ct . (3.20)

Assume α > C. Let ηN be distributed according to the unique invariant measure for the fv

process with N particles. Then

∣

∣

∣
E

(ηN (x)ηN (y)

N2

)

− E

(ηN (x)

N

)

E

(ηN (y)

N

)∣

∣

∣
<

1

N

α

α− C
. (3.21)

We introduce a 4-fold coupling (Ψi[s, t],Ψj [s, t], Ψ̂i[s, t], Ψ̂j [s, t]) with Ψi[s, t] = Ψ̂i[s, t] with the
property “Ψ̂j[s, t] ∩ Ψi[s, t] = ∅ implies Ψj[s, t] = Ψ̂j[s, t]” and such that the marginal process
(Ψ̂i[s, t], Ψ̂j [s, t]) have the same law as two independent processes with the same marginals as
(Ψi[s, t],Ψj [s, t]). The construction is analogous to the one in Fernández, Ferrari and Garcia
(4).

We use two independent families of marked Poisson processes each with the same law as the
Poisson family used in the graphic construction; the marked events are called red and green.
We augment the probability space and continue using P and E for the probability and the
expectation with respect to the product space generated by the red and green events. With
these marked events we construct simultaneously the processes (Ψi[s, t],Ψj [s, t], Ψ̂i[s, t], Ψ̂j [s, t])
and a new process I[s, t] as follows.

Initially set I[t, t] = 0, Ψ̂i[t, t] = Ψi[t, t] = i and Ψ̂j[t, t] = Ψj[t, t] = j

Go backwards in time as in the construction of Ψi in Section 2 proceeding event by event as
follows. Assume I[r′, t], Ψ̂i[r′, t], Ψi[r′, t], Ψ̂j[r′, t] and Ψj[r′, t] have been constructed for all
r′ ∈ [τ ′, t]. Let τ be the time of the latest Poisson event before τ ′.

If I[τ ′, t] = 1 then: (a) if the event is green, use it to update Ψ̂i[τ, t], Ψi[τ, t] and Ψj[τ, t] only;
(b) if the event is red, use it only to update Ψ̂j[τ, t].

If I[τ ′, t] = 0 then:

(a) if the event is green, then use it to update Ψ̂i[τ, t], Ψi[τ, t] and Ψj [τ, t]. Use it also to update
Ψ̂j[τ, t] only if (after the updating) Ψ̂j[τ, t] ∩ Ψ̂i[τ, t] = ∅. Otherwise do not update Ψ̂i[τ, t] and
set I[τ, t] = 1.

(b) if the event is red do not use it to update Ψ̂i[τ, t], Ψi[τ, t] and Ψj[τ, t]. Use it to update
Ψ̂j[τ, t] only if after the updating Ψ̂j [τ, t] ∩ Ψ̂i[τ, t] 6= ∅; in this case set I[τ, t] = 1. Otherwise do
not update Ψ̂i[τ, t] and keep I[τ, t] = 0.

The processes so constructed satisfy

1. I[s, t] indicates if the hated processes intersect:

I[s, t] = 1{Ψ̂j [s, t] ∩ Ψ̂i[s, t] 6= ∅}. (3.22)
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2. Ψi[s, t] and Ψj[s, t] are constructed using only the green events.

3. Ψ̂i[s, t] is also constructed using the green events, hence it coincides with Ψi[s, t].

4. Ψ̂j [s, t] is constructed with a combination of the red and green events in such a way that
it coincides with Ψj [s, t] as long as possible, it is independent of Ψ̂i[s, t] and has the same
marginal distribution of Ψj[s, t].

We use the coupling processes to estimate the covariances of ξN,µ

[s,t] . Call ωj[s, t], ωi[s, t], ω̂j[s, t]

and ω̂i[s, t] the set of marked events defined with (2.16) using Ψj[s, t], Ψi[s, t], Ψ̂j[s, t] and
Ψ̂i[s, t] respectively. Take two independent random vectors X and Y with the same distribution
as in (2.14), that is, i.i.d. coordinates with law µ. Denote the initial particles defined as in
(2.17) by Xj [s, t], Xi[s, t], X̂j [s, t] and Ŷ i[s, t] as function of Ψj[s, t], Ψi[s, t], Ψ̂j[s, t] and Ψ̂i[s, t]
respectively. Denote ωi instead of ωi[s, t], Xi instead of Xi[s, t], etc.; we have

P(ξN,µ

[s,t] (j) = x, ξN,µ

[s,t] (i) = y) − P(ξN,µ

[s,t] (j) = x)P(ξN,µ

[s,t] (i) = y)

= P(ξN,X

[s,t]
(j) = x, ξN,X

[s,t]
(i) = y) − P(ξN,X

[s,t]
(j) = x)P(ξN,Y

[s,t]
(i) = y) (3.23)

= E

(

1{H(ωj ,Xj) = x, H(ωi,Xi) = y)} − 1{H(ω̂j , X̂j) = x), H(ω̂i, Ŷ i) = y)}
)

.

If I[s, t] = 0 then Ψj[s′, t] = Ψ̂j[s′, t] and Ψi[s′, t] = Ψ̂i[s′, t] for all s′ ∈ [s, t] and the same holds
for the corresponding ω’s. Also, given I[s, t] = 0, Xj and Y i depend on disjoint sets of initial
particles. This implies that we can couple Xi and Y i in such a way that in the event I[s, t] = 0,
Xi = Y i. Hence, taking absolute values in (3.23) we get

|P(ξN,µ

[s,t] (j) = x, ξN,µ

[s,t] (i) = y) − P(ξN,µ

[s,t] (j) = x)P(ξN,µ

[s,t] (i) = y)| ≤ P(I[s, t] = 1). (3.24)

Lemma 3.1. For t ≥ 0 and different particles i, j ∈ {1, . . . ,N}

P(I[s, t] = 1) ≤ 1

N − 1

C

α−C
(1 − e2(C−α)(t−s)) . (3.25)

Proof: At time s the process I[s, t] jumps from 0 to 1 at a rate depending on Ψ̂i[s, t] and Ψ̂j[s, t]
which is bounded above by

2C

N − 1
Ψ̂i[s, t]Ψ̂j [s, t]1{I[s, t] = 0}.

Dominating the indicator function by one:

P(I[s, t] = 0 | F[s,t]) ≥ exp
{

− 2C

N − 1

∫ t

s

Ψ̂i[s′, t]Ψ̂j [s′, t]ds′
}

(3.26)

where F[s,t] is the sigma field generated by ((Ψ̂i[s′, t], Ψ̂j[s′, t]), s < s′ < t). From (3.26), using
1 − e−a ≤ a and taking expectations,

P(I[s, t] = 1) ≤ 2C

N − 1

∫ t

s

EΨ̂i[s′, t] EΨ̂j[s′, t]ds′ . (3.27)
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On the other hand, Ψ̂i[s′, t] is dominated by the position at time t − s of a random walk that
grows by one with rate C and decreases by one with rate α. Hence its expectation is bounded
above by e(t−s′)(C−α). Substituting this bound in (3.27),

P(I[s, t] = 1) ≤ 2C

N − 1

∫ t

s

e2(C−α)(t−s′)ds′ (3.28)

which gives (3.25).

Proof of Proposition 3.1 Defining

ηN,µ

[s,t] (x) =

N
∑

i=1

1{ξN,µ

[s,t] = x}

Then ηN,µ

[s,t] has the same law as ηN,µ
t−s and ηN has the same law as ηN,µ

[−∞,t]. Hence

E

(ηN,µ

[s,t](x) η
N,µ

[s,t] (y)

N2

)

=
1

N2

N
∑

i=1

N
∑

j=1

P(ξN,µ

[s,t] (i) = x, ξN,µ

[s,t] (j) = y)

EηN,µ

[s,t](x) EηN,µ

[s,t] (y)

N2
=

1

N2

N
∑

i=1

N
∑

j=1

P(ξN,µ

[s,t] (i) = x)P(ξN,µ

[s,t] (j) = y) .

Using this, (3.24) and (3.25) with s = 0 and α = 0 we get (3.20).

If α > C, ηN,η

[s,t] converges as s→ −∞ to ηN
t a configuration distributed with the unique invariant

measure, as in Theorem 1.3, see (2.19) for the corresponding statement for ξN
t . Hence the left

hand side of (3.21) is bounded above by P(I[−∞, t] = 1). Taking s = −∞ in (3.25) we get
(3.21).

4 Tightness

In this section we prove tightness for the mean densities as probability measures in Λ, indexed
by N .

Proposition 4.1. For all t > 0, x ∈ Λ, i = 1, . . . ,N and probability µ on Λ it holds

EηN,µ
t (x)

N
≤ eCt

∑

z∈Λ

µ(z)Pt(z, x). (4.1)

As a consequence the family of measures (EηN,µ
t /N, N ∈ N) is tight.

Assume α > 0 and define the probability measure µα on Λ by

µα(x) =
α(x)

α
, x ∈ Λ,
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(recall α(x) = infz∈Λ\{x} q(z, x)). Let Q̃ be the matrix on Λ ∪ {0} with entries q̃(x, y) =

q(x, y) − α(y) for x 6= y and q̃(x, x) = −∑

y 6=x q̃(x, y). Let P̃t be the corresponding semigroup

and Z̃t the corresponding process.

For z, x ∈ Λ define

Rλ(z, x) =

∫ ∞

0
λe−λtP̃t(z, x)dt. (4.2)

The matrix Rλ represents the semigroup P̃t evaluated at a random time Tλ exponentially dis-
tributed with rate λ independent of (Z̃t). Rλ(z, x) is the probability the process (Z̃t) with initial
state z be in x at time Tλ. The matrix R is substochastic:

∑

x∈ΛRλ(z, x) is just the probability

of non absorption of (Z̃t) with initial state z at the random time Tλ.

Proposition 4.2. Assume α > C and let ρN (x) be the mean proportion of particles in state x
under the unique invariant measure for the fv process with N particles. Then for x ∈ Λ,

ρN (x) ≤ α

α− C
µαR(α−C)(x) . (4.3)

As a consequence, the family of measures (ρN , N ∈ N) is tight.

Types To prove the propositions we introduce the concept of types. We say that particle i is
type 0 at time t if it has not been absorbed in the time interval [0, t]. Particles may change type
only at absorption times. If at absorption time s particle i jumps over particle j which has type
k, then at time s particle i changes its type to k + 1. Hence, at time t a particle has type k if
at its last absorbing time it jumped over a particle of type k − 1. We write

type(i, t):= type of particle i at time t.

The marginal law of ξN,µ
t (i)1{type(i, t) = 0} is the law of the process Zµ

t :

P(ξN,µ
t (i) = x, type(i, t) = 0) =

∑

z∈Λ

µ(z)Pt(z, x). (4.4)

Proof of Proposition 4.1 Since
Eη

N,µ
t (x)
N

= P(ξN,µ
t (i) = x), it suffices to show that for k ≥ 0

P(ξN,µ
t (i) = x, type(i, t) = k) ≤ (Ct)k

k!

∑

z∈Λ

µ(z)Pt(z, x) . (4.5)

We proceed by induction. By (4.4) the statement is true for k = 0. Assume (4.5) holds for some
k ≥ 0. We prove it holds for k + 1. Time is partitioned according to the last absorption time
s of the ith particle. The absorption occurs at rate bounded above by C. The particle jumps
at time s to a particle j with probability 1/(N − 1), this particle has type k and state y. Then
it must go from y to x in the time interval [s, t] without being absorbed. Using the Markov
property, we get:

P(ξN,µ
t (i) = x, type(i, t) = k + 1) (4.6)

≤
∫ t

0
C

1

N − 1

∑

j 6=i

∑

y∈Λ

P(ξN,µ
s (j) = y, type(j, s) = k)Pt−s(y, x) ds. (4.7)
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The symmetry of the particles allows to cancel the sum over j with (N − 1)−1. The recursive
hypothesis (4.5) implies that (4.7) equals

=

∫ t

0
C

(Cs)k

k!

∑

z∈Λ

µ(z)
∑

y∈Λ

Ps(z, y)Pt−s(y, x)ds =
(Ct)k+1

(k + 1)!

∑

z∈Λ

µ(z)Pt(z, x) (4.8)

by Chapman-Kolmogorov. This completes the induction step.

Proof of Proposition 4.2 If ξN is distributed according to the unique invariant measure for
the fv process then ρN (x) = P(ξN (i) = x). Since α > 0 we can construct a version of the
stationary process ξN

s such that P(ξN (i) = x) = P(ξN
s (i) = x), ∀s. We analyze the marginal law

of the particle distribution for each type, as in the proof of Proposition 4.1. Define the types as
before, but when a particle meets a regeneration mark, then the particle type is reset to 0. In
the construction, at that time the state of the particle is chosen with law µα.

Under the hypothesis α > C the process

((ξN
t (i), type(i, t)), i = 1, . . . ,N), t ∈ R)

is Markovian and can be constructed in a stationary way as ξN
t . Hence

Ak(x) := P(ξN
s (i) = x, type(i, s) = k) (4.9)

does not depend on s.

The regeneration marks follow a Poisson process of rate α and the last regeneration mark of
particle i before time s happened at time s− T i

α, where T i
α is exponential of rate α. Then,

A0(x) =

∫ ∞

0
αe−αt

∑

z∈Λ

µα(z)P̃t(z, x)dt = µαRα(x). (4.10)

Here P̃t(z, x) is interpreted as the probability that the chain goes from z to x given that there
was no regeneration marks in the time interval (s− t, s].

A reasoning similar to (4.6)-(4.7) implies

Ak(x) ≤
∫ ∞

0
e−αtC

∑

z∈Λ

Ak−1(z)P̃s(z, x) dt (4.11)

=
C

α
Ak−1Rα(x) ≤

(C

α

)k

µαR
k+1
α (x). (4.12)

We interpret Rk
λ(z, x) as the expectation of P̃τk

(z, x), where τk is a sum of k independent random
variables with exponential distribution of rate λ. Summing (4.11), and multiplying and dividing
by α(α − C),

P(ξN
s (i) = x) ≤ α

α− C

∞
∑

k=0

(C

α

)k(

1 − C

α

)

µαR
k+1
α (x) . (4.13)

The sum can be interpreted as the expectation of µαR
K
α , where K is a geometric random variable

with parameter p = 1 − (C/α). Since an independent geometric(p) number of independent
exponentials(α) is exponential(αp), we get

P(ξN
s (i) = x) ≤ α

α− C
µαRα−C(x). (4.14)
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5 Proofs of theorems

In this section we prove Theorems 1.3 and 1.4. We start deriving the forward equations for ϕµ
t

and show they have a unique solution.

Lemma 5.1. The Kolmogorov forward equations for ϕµ
t are given by

d

dt
ϕµ

t (x) =
∑

y∈Λ

ϕµ
t (y)[q(y, x) + q(y, 0)ϕµ

t (x)] . (5.1)

These equations have a unique solution in the set of probability measures on Λ.

Proof: The Kolmogorov forward equations for Pt are:

d

dt
Pt(z, x) =

∑

y∈Λ

Pt(z, y) q(y, x), z ∈ Λ, x ∈ Λ ∪ {0} . (5.2)

Write γt =
∑

z∈Λ µ(z)Pt(z, 0) and differentiate (1.1) to get

d

dt
ϕµ

t (x) =

∑

z∈Λ µ(z) d
dt
Pt(z, x)

1 − γt
+

( d
dt
γt)

1 − γt
·
∑

z∈Λ µ(z)Pt(z, x)

1 − γt

=

∑

z∈Λ µ(z)
∑

y∈Λ Pt(z, y) q(y, x)

1 − γt

+

∑

z∈Λ µ(z)
∑

y∈Λ Pt(z, y) q(y, 0)

1 − γt

·
∑

z∈Λ µ(z)Pt(z, x)

1 − γt

(5.3)

which equals (5.1).

To show uniqueness let ϕt and ψt be two solutions of (1.10) and ǫt(x) = |ϕt(x) − ψt(x)|. Then
ǫt satisfies the inequation

d

dt
ǫt(y) ≤

∑

z∈Λ

ǫt(z)q(z, y) +
∑

z∈Λ

|ϕt(z)ϕt(y) − ψt(z)ψt(y)| q(z, 0). (5.4)

Bound the modulus with ϕt(z)ǫt(y) + ǫt(z)ψt(y), sum (5.4) in y, call Et =
∑

y∈Λ ǫt(y) and use
∑

y∈Λ\{z} q(z, y) ≤ q̄ and q(z, 0) ≤ C to get

d

dt
Et ≤ (q̄ + 2C)Et . (5.5)

This implies Et ≤ E0 e
(q̄+2C)t. Since Et ≥ 0 and E0 = 0, Et = 0 for all t ≥ 0.

Proof of Theorem 1.2 We first show convergence of the means

lim
N→∞

E

(ηN,µ
t (x)

N

)

= ϕµ
t (x). (5.6)
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Sum and subtract
∑

y∈Λ q(y, 0)E(
ηN

t (y)
N

)E(
ηN

t (x)
N

) to (1.11) to get

ELN
(ηN,µ

t (x)

N

)

=
∑

y∈Λ

EηN,µ
t (y)

N

(

q(y, x) + q(y, 0)
EηN,µ

t (x)

N

)

(5.7)

+
∑

y∈Λ

q(y, 0)
[

E

(ηN,µ
t (y)

N

ηN,µ
t (x)

N − 1

)

− EηN,µ
t (y)

N

EηN,µ
t (x)

N

]

. (5.8)

By Proposition 4.1, the family (EηN,µ
t (x)/N, N ∈ N) is tight. Use ηN,µ

t (x)/N ≤ 1, q(y, x) ≤ q̄,
q(y, 0) ≤ C and (4.1) to bound the summands in (5.7) by (q̄+C)eCtµPt(y), which is summable
in y. Since ηN,µ

t (x)/N ∈ [0, 1], the absolute value of the square brackets in (5.8) is bounded by

EηN,µ
t (y)/(N − 1) which in turn is bounded by eCtµPt(y)N/(N − 1) by (4.1). Hence, for N ≥ 2,

the summands in (5.8) are bounded by 2CeCtµPt(y), which is summable in y. By dominated
convergence we can take limits in N inside the sums. Proposition 3.1 implies (5.8) converges
to zero as N goes to infinity for any subsequence. Take a subsequence of ηN,µ

t /N converging to
some limit called ρµ

t . Along this subsequence, by the above considerations,

lim
N

ELNηN,µ
t (x)

N
=

∑

y∈Λ

ρµ
t (y)[q(y, x) + q(y, 0)ρµ

t (x)] . (5.9)

(The right hand side of (5.9) is bounded by q̄ + C.) By (1.11),

EηN,µ
t (x)

N
=

EηN,µ
0 (x)

N
+

∫ t

0

ELNηN,µ
s (x)

N
ds. (5.10)

From (5.9) we conclude that any limit ρµ
t must satisfy

ρµ
t (x) = µ(x) +

∫ t

0

∑

y∈Λ

ρµ
s (y)[q(y, x) + q(y, 0)ρµ

s (x)]dt (5.11)

which implies ρµ
t must satisfy (1.10), the forward equations for ϕµ

t . Since there is a unique
solution for this equation, the limit exists and it is ϕµ

t .

Taking y = x in (3.20), the variances asymptotically vanish:

lim
N→∞

E[ηN,µ
t (x)]2 − [EηN,µ

t (x)]2

N2
= 0. (5.12)

This concludes the proof.

Uniqueness and the Yaglom limit convergence of Theorem 1.4 is a consequence of the next
theorem.

Theorem 5.1 (Jacka & Roberts). If α > C and there exists a qsd ν for Q, then ν is the unique
qsd for Q and the Yaglom limit (1.3) converges to ν for any initial distribution µ.

Jacka and Roberts (9) use the stronger hypothesis infy∈Λ q(y, x) > C for some x ∈ Λ but the
proof works under the hypothesis α > C. We include their proof for completeness.
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Proof: Assume ν is a qsd for Q. Construct a Markov process Ẑt on Λ with rates

q̂(x, y) = q(x, y) + q(x, 0)ν(y), for x 6= y . (5.13)

In words, the chain Ẑt moves with rates q until it jumps to 0; at this moment it is reset in Λ
with distribution ν. Since the balance equations for Ẑt coincide with (1.2) ν is stationary for q̂
and the corresponding transition probability function P̂t satisfies

P̂t(x, y) = Pt(x, y) + Pt(x, 0)ν(y), for x, y ∈ Λ . (5.14)

Indeed, when it jumps to 0, it attains equilibrium. Recall ϕµ
t (y) = µPt(y)/(1 − µPt(0)) with

µPt(y) =
∑

z∈Λ µ(z)Pt(z, y) for y ∈ Λ ∪ {0}. From (5.14),

ϕµ
t (y) − ν(y) =

µP̂t(y) − ν(y)

1 − µPt(0)
, for y ∈ Λ . (5.15)

The condition α > 0 implies that Ẑt is ergodic and converges exponentially fast at rate α in
total variation to its unique stationary state ν starting from any µ:

∑

y∈Λ

|µP̂t(y) − ν(y)| ≤ 2e−αt . (5.16)

Since 1 − Pt(x, 0) ≥ e−Ct for x ∈ Λ, (5.15) and (5.16) imply

∑

y∈Λ

|ϕµ
t (y) − ν(y)| ≤ 2e(C−α)t . (5.17)

This implies uniqueness of ν and convergence of the Yaglom limit to ν.

Proof of Theorem 1.4 Since α > 0, the fv process governed by Q is ergodic by Theorem 1.3.
Call ηN a random configuration chosen with the unique invariant measure. Since ELNηN (x) = 0,

summing and subtracting
∑

y∈Λ q(y, 0)
EηN (x)

N
EηN (y)

N
to (1.13) we get

0 =
∑

y∈Λ

EηN (y)

N

(

q(y, x) + q(y, 0)
EηN (x)

N

)

+
∑

y∈Λ

q(y, 0)
[

E

(ηN (y)

N

ηN (x)

N − 1

)

− E

(ηn(y)

N

)

E

(ηN (x)

N

)]

(5.18)

which holds for any N and x ∈ Λ. By Proposition 4.2, (ρN , N ∈ N) is tight and by (4.3)

dominated uniformly in N by a summable sequence. Since ηN (x)
N

∈ [0, 1], the square bracket in
(5.18) is bounded by ρN (y)N/(N − 1). Hence we can interchange limit with integral in (5.18)
and use (3.21) to show that the second term in (5.18) vanishes as N goes to infinity. Then
any limit ρ along a subsequence must satisfy the qsd equation (1.2). Since by Theorem 5.1 the

solution is unique, the limit limN
EηN

N
exists and equals the unique qsd ν. The variances vanish

by (3.21).
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