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Abstract

We prove that the theory of rough paths, which is used to define
path-wise integrals and path-wise differential equations, can be used
with continuous semi-martingales. We provide then an almost sure
theorem of type Wong-Zakai. Moreover, we show that the conditions
UT and UCV, used to prove that one can interchange limits and It6
or Stratonovich integrals, provide the same result when one uses the
rough paths theory.
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1 Introduction

The theory of rough paths allows to give a meaning to integrals like

t
2 = 20 —|—/ g(xs) dxs
0

and controlled differential equations like

t
Yt = Yo +/ f(ys) dajs
0

when x is a continuous, irregular path in a Banach space, and g and f are
differential forms and vector fields smooth enough (See |21, 19, 16|). But for
that, one needs to know the equivalent of the iterated integrals of x, that is
fogslg---gskgT dz,, ® - - - ®dz,,, and to use the topology of p-variation, which
is defined using the semi-norm

k-1 1/p
Varp,[o,mx):( sup Z|:c<ti+1>—x<ti>|p) G

partition II of [0, 77 ;=

where we use the convention that the points of the partitions I are ¢; <
tog < --- <. The real p defines how irregular the path x is, and there is no
canonical way to define the iterated integrals of = up to the order |p].

However, for a large class of stochastic processes, it is possible to define
the equivalent of the iterated integrals for the trajectories. Although the
rough path theory is completely deterministic, it has been used for a large
class of processes, including Brownian motion, some Gaussian processes in a
Banach space [18], fractional Brownian motion [5], free Brownian motion [3],
symmetric Markov process [1],...

In this article, we study the use of rough paths theory for general contin-
uous semi-martingales. Let us remark first that any one-dimensional, con-
tinuous local martingale M may be written as M; = B,, where B is a
Brownian motion and (M) the quadratic variation of M. Since almost ev-
ery trajectory of the Brownian motion is 1/p-Hélder continuous as soon as
p > 2, then it is also of finite p-variation for any p > 2. Hence, as a M-
continuous time-change, see [26], does no change the p-variation, there exists
a modification of M whose trajectories are of finite p-variation for any p > 2
(See Lemma 2). Moreover, if X is a semi-martingale, the following It6 and
Stratonovich integrals exist

t t
0,,(X) = / (X, — X,)® dX, and ©,,(X) = / (X, — X,) ® odX,.

)
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If ©(X) and ©(X) are of finite p/2-variation (See Proposition 1), then
(X,0(X)) and (X,0O(X)) are two rough paths of finite p-variations lying
above X and one may use the results from the theory of rough paths, espe-
cially the continuity of integrals and solutions of differential equations.

The main idea of the proof is to use a X continuous random time-change
¢ such that X, = X + M, + V,, remains a semi-martingale and such that
M, and V,, are Holder continuous trajectories. But, X, is then defined on
a random time interval [0,7]. Yet, the value of T depends on (M)7 and
Vary jo.71(V'), which are assumed to be controlled.

Basically, we prove two results:

o If (X™),en is a family of semi-martingales converging in distribution
to X and satisfying the conditions UT (uniformly tight) or UCV (Uni-
formly controlled variations), then (X", ©(X™)),en and (X", O(X™))nen
converge respectively in distribution to (X, 0(X)) and (X,0(X)) as
rough paths in the topology induced by the p-variation distance. The
convergence under the topology of Skorokhod is kwnon since the papers
of Mémin and Stominiski [22], and Jakubowski, Mémin and Pagés [11].
Hence, this is fully coherent with the results concerning interchanging
limits and stochastic integrals in the semi-martingales theory.

e For almost every trajectory of the continuous semi-martingale X, there
exists a family (X (n)),en of piecewise linear approximations of X such
that (X (n),0(X(n)))nen converges almost surely in the appropriate
topology to (X,0(X)). In other words, one obtains the almost sure
convergence of the ordinary integral (resp. the ordinary differential
equation)

Z(n)e = Zo + / F(X(n),) dX (),

(resp. Y(n); =Yy —i—/o g(Y(n)s)dX(n)s)

to the Stratonovich integral (resp. the stochastic differential equation)
Zi=Zo+ [y F(X,) 0dX, (resp. Y; = Yo + [i g(V3) 0 dX,).

A similar convergence result is also given for Itd’s integrals and It6’s SDEs.

The particular case of the Brownian motion was already known (See |20,
1],...) and was developed initially in [27]. In this Ph.D. thesis, this method
can be used for martingales with a-Holder continuous trajectories for o <
1/2. Thus, these almost-sure Wong-Zakai results are not surprising. Here,
we extend this result to a general continuous semi-martingales, and our proof
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includes recent techniques in the theory of rough path, that leads to some
simplification of results.

Besides, these proofs show the role played by Hdélder continuous paths
among paths of finite p-variation, and that it is not a big deal to use Holder
continuous path instead of path of finite p-variation using a time-change.
Moreover, this time-change gives us information on the way to get some
uniform control for a family of paths, since we are reduced in controlling the
length of the image of the time interval on which the path is initially defined.
Then, the conditions UT and UCV appear naturally in this context.

Recent results show that the enhanced Brownian motion, that is a mul-
tiplicative functional lying above a Brownian motion, could be manipulated
as the Brownian motion regarding many of its properties: support theorem,
large deviation result, ... See [20, 7, 8.

Hence, one could think that this technique of using a time-change could
be applied to generalize almost immediately to continuous semi-martingales
some results given for the Brownian motion, as long as only the martingale
property of the Brownian motion is involved in their proofs.

2 Rough paths

We refer the reader to [21, 19] or [16] for a detailed insight on the theory of
rough paths and the objects we introduce now.

Let N be a fixed integer. Throughout all this article, we consider semi-
martingales with values in R", and we denote by | - | the norm |z| =
supp_,y |2¥| for x = (z', ... 2").

For a continuous function x from [0, 7] to RY, we denote by Var, i.7)(x)
its p-variation defined by (1).

Denote by V?([0,T]; RY) the Banach space of continuous functions of
finite p-variation with the norm Var, jo.71(-) + || - ||sc. Note that V*([0, T]; R")
is not separable.

Set At ={0<s<t<T}.

For a continuous function z from A* to RY, denote also by Var, ()
its p-variation, that is

j—1 1/p
Vary, 0.7)(z) = < sup Z |x(ti,ti+1)\p> )
=1

partition {t;};—1,... ; of [0,T]

ceey

If x(s,t) = y(t) — y(s) for some continuous function y, then Var, o r(x) =
Vary, 0.11(y)-
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We equip RY @ RY with a norm || - ||gygry such that ||z @ y||gvery <
2| X |y| for any z,y € RV,

We denote by MV?([0, T]; RY) the space of functions (xo, 2} ,, 22,) (s)ea+
such that

x;t = 1, — x, for a continuous function z from [0, 7] to RY, (2a)
2% is continuous from A* to RY @ RV, (2b)
Var, o.71(z') < 400, (2¢)
Vary s o,r1(2%) < +o0, (2d)
w2y = a2 4 a2 ol oxy) fordj e {1,...,N} (2e)

forall 0 < s < u <t <T. Sometimes, it could be useful to use tensor
product notations instead of indexes. This means that x = (x;,t,xit) is
seen as X,; = 1 +x,, + 27, € R®@RY @ (RY)®? (Here, the starting point
xo of z is not taken into account). Accordingly, (2e) could be rewritten as
x?,t =5, + xi,t + léu ® x’ll,t,t'

When there is no ambiguity, we identify (o, z!) with x, that is a function
on AT and a starting point with a function on [0, T]. Thus, (z¢,z', 2?) is also
denoted by (z,z?). The elements of MVP ([0, T]; RY) are called multiplicative
functionals.

The topology we used on MVP([0, T]; RY) is the one induced by the norm

(o, 2, 22) || = || + J (2!, 2%)se| + Vary, o (') + Varyom (2?).
s,t)e

We end this section by a useful Lemma, that allows to estimate the dis-
tance in MVP([0,T]; RY) between two rough paths by using the pointwise
distance of the increments between dyadic points of the difference of these
paths.

Lemma 1 (See for example [9, 1, 18]). Let p > 2 and v > p/2 — 1.
Let (X', X?) and (Y1,Y?) be multiplicative functionals in MVP([0,T]; RY).
Then for any partition 0 < s; < ... < s < T of [0,T], there exists a
constant C' depending only on p and v such that, for t7 = JjT /2"

k— 2n—1

/2 Z Z 1 1/2
_ p Y _ P
Z 81751+1 Sz 51+1’ < C( n ’th tn ntn+1‘ )
=1 n>1
2" —1 1/2
><§:m§j(|xtntn P 1Y )
n>1
2" —1
2 2 p
+ n’ X — )
E E | £y ”t;?+1|
n>1
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3 The conditions UT and UCV
for semi-martingales

Let X be a continuous semi-martingale with respect to a filtration F. =
(Fi)e>0 with values in RY which is defined on a probability space (2, F,P).
The filtration F. may be assumed to satisfy the usual conditions. There
exists a unique decomposition of X as the sum of a local martingale M and
a process V' of locally of finite variation, both F.-adapted. The decomposition
X = Xo+ M +V is called the canonical decomposition of X.

Consider a sequence (X™),cn of continuous F"-semi-martingales on prob-
ability spaces (2", F",P™). To simplify the notation, denote P" by P when
there is no ambiguity.

In all this section, we consider the convergence of semi-martingales in the
space of continuous functions with the uniform norm. The convergence in
p-variation is considered in the next sections.

The following definitions and results are taken from [22] and the review
article [13].

Definition 1 (Condition UT, Uniformly Tight). Let $™ be the class
of F"-predictable, simple processes bounded by 1 on (Q", F™,P"). The se-
quence (X™),en is said to satisfy the condition UT if for each ¢ > 0 and for
any € > 0, there exists C' large enough such that

sup sup P[|H - X]'| > C] <e. (UT)
neN HeHn

Theorem 1. Assume that (X™),en satisfies the condition UT.

(i) The sequence (X™)nen is tight and any cluster point X of the sequence
(X™)nen i a semi-martingale with respect to the smallest filtration FX which
s right continuous it generates.

(ii) Let (H™)nen be a sequence of F-progressively measurable cadlag pro-
cesses such that (H™, X™),en converges to (H, X) in the Skorohod topology,
then X is a semi-martingale with respect to the filtration generated by (H, X),
and, when all the stochastic integrals are defined, (H", X™, H" - X™),en con-
verges to (H, X, H - X).

(iii) The sequence (X", (X™))nen converges to (X, (X)).

From now, consider a time 7" > 0 and restrict only to processes on [0, 7.

Definition 2 (Condition UCV, Uniformly Controlled Variations).
The sequence (X"),cn of semi-martingales with canonical decompositions
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X" = X+ M"™+ V" is said to satisfy the condition UCV on [0,T] if

((Mn>T)n€N is tlght, (3)
(Varl,[oyT](V”))neN is tight. (4)

Remark 1. This definition is slightly different from the one in [13], but it is
easily seen that both definitions are equivalent.

Theorem 2. (i) Assume that the sequence (X™),en converges weakly to X.
Then (X™)nen satisfies the condition UT if and only if it satisfies the condi-
tion UCV.

(ii) Let (M™)nen be a sequence of local martingales converging in distribu-
tion to M. Then M is a local martingale and (M™),en satisfies the conditions
UT and UCV. In particular, ((M™)7)nen i tight.

(iii) Let (X™)nen be a sequence of continuous semi-martingales converging
in distribution to X and satisfying the equivalent conditions UT or UCYV.
Assume that X" = XJ + M"™ + V" is the canonical decomposition of X™.
Then there exists a filtration F. such that X is a F.-semi-martingale and
there exists a local F.-martingale M and a term locally of finite variation V'
F.-adapted such that (X", M™, V™) en converges in distribution to (X, M, V).

Counter-example 1. Of course, any sequence of semi-martingale does not
necessarily satisfy the conditions UT and UCV. Let V be a smooth function
from R to R which is one-periodic, and set

1 t
X; =Bt - [ bz ds (5)
0

where B is a Brownian motion and b = VV. Then, it is well known that
X¢ is equal in distribution to ¢X.,., where X; = B, + f(f b(X;)ds, and that
X°¢ converges in distribution to o3, where o is a constant matrix which is
not in general the identity matrix, and 3 is a Brownian motion (This is the
homogenization problem: See for example [2]). Hence (X¢).-( cannot satisfy
the conditions UT and UCV, since it contradicts Theorem 1-(iii) (See also
[15] and [17]).

In facts, it is easy to construct family of semi-martingales that does
not satisfy the conditions UT and UCV. For that, one has consider semi-
martingales where the term of finite-variation becomes a martingale when
one passes to the limit. The example above comes from an homogenization
problem and appears in a completely natural situation.
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4 Semi-martingales and p-variation

For any one-dimensional, continuous local martingale M on [0, 7], there ex-
ists a one-dimensional Brownian motion B such that M; = B, for all
t € [0,7]. Let p > 2 be fixed. Using the scaling property of the Brownian
motion, for any 7" > 0,

E [Var,pn(B)] < G, (6)

with C,, = E[ Var, o.1)(B) ]. It follows that for any continuous local martingale
M with values in RY and any C' > 0, if B? is such that BéMm = M},

P [ Var, o (M) > C| =P [.supN Var, o iy (BY) > C

1
N (7)
-+ Z]P [Varp7[07<Mi>T](BZ) > C; <M1>T > K}

C - ;
S%KI/M;P [(Mi)r>K].

Remark that if V' is of finite variations, then for N = 1 and for all
s<t<u,

t p u p u p
m-wum—wps(/ \dw) +(/ \dW) S(/ W) -
s t s

Clearly,
Varp7[07T] V S Varlﬁ[o,T}(V). (8)

The next lemma follows immediately from (7) and (8).
Lemma 2. Let X be a F.-semi-martingale with decomposition X = Xo+ M+
V. Then X 1is almost surely of finite p-variation as soon as p > 2. Moreover,

if (X™)nen 18 a sequence of semi-martingales satisfying the conditions UCV,
then for any € > 0 there exists C large enough such that

P [ Var,or(X") > C] <e. (9)

This implies that if (X™)nen converges in distribution in C([0, T];RY) to X
(which is then a semi-martingale), then (X™),en converges in VP([0, T]; RY)
to X for any p > 2.
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For a semi-martingale X, define @Z]t(X ) by
.. t . . .
O(x) = [ (X - X)ax;

and O(X) = (OL)(X);0<s<t<T,i,j€{l,...,N}).
Define also

t
B0 = [ (X - XD)od;

iy 1 o o
= 0.3(X) + 5 (X', X7) = (X', X)) .
Clearly, (X, ©0(X)) and (X, ©(X)) satisfy (2a), (2b) and (2e). We have
seen in Lemma 2 that they also satisfy (2c). To prove that they belong to
MVP([0, T]; RY), it remains to prove that ©(X) and ©(X) satisfy (2d).

Proposition 1. Let X be a F.-semi-martingale. Then ©(X) and O(X)
are almost surely of finite p/2-variation for all p > 2. Consequently, both
(X,0(X)) and (X,0(X)) belong to MVP([0, T);RY) for all p > 2.

Furthermore, if (X™)nen converges in distribution to X in C([0,T];RY)
and satisfies the conditions UCV or UT, then (X", 0(X™))nen and (X", O(X™))nen
converge respectively to (X,0(X)) and (X,0(X)) in MVP([0,T];RY).

Proof. Let us decompose the semi-martingale X as X = X, + M + V.
Besides, let V't and V'~ be the increasing, continuous functions such that
V = VT —V~. We consider now the process (M, V", V=) in R3* and denote
by Var,s4(M,V*, V™) its p-variation. Associate to the semi-martingale X
the function ¢ defined by

©(t) = inf { s > O] Vary, 0, (M, VE VTP > t} )

The process ¢ — Var,o,(X) is continuous and F.-adapted. Assume that
©(t) = ¢(s) for some s < t. Then for y = M or y = V*, Var,;4(y) = 0
since Var, o4 (y)? + Var, s4(y)? < Var, p4(y)?. Consequently, y is constant
on [s, t], and thus that X, M and V are constant on the intervals [¢(t—), ¢(t)]
for all t € [0,T].

Let F? = (F/ )0 be the filtration defined by F;" = F,«). Because M
and V are constant on the intervals [p(t—),¢(t)], M, = (Myw )ecpo,n is a
local F#-martingale. Moreover, (V,«)):cjo,r] is locally of finite variation (See
Propositions V.1.4 and V.1.5 in [26]).

Let us set 7 = Var,, (o) (M,V*, V)P, Then

Varp,[O,W(f)} (M, V*, V™) = Var,on(M, VY, V") (10)
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and

n—1 2/p
Vary .o, ©(X) = ( sup Y Ottt (X)) 2) :
to<:--<ty partition of [0,7] ;=0

According to Propositions V.1.4 and V.1.5 in [26],

w(t) t
/@ . (X7 — X)) dX] = / (Xi = Xi) dX0
fori,j € {1,...,N }. Thus, O,;(X,) = Oys) ) (X) and
Vary, 2,01 ©(X) = Var, » ;7 O(X,). (11)
Assume that the semi-martingale X satisfies

E[T9?] = E [Var, (M, VT, V7)¥?] < +oo (12)

for some g > p > 2.
The Burkholder-Davis-Gundy inequality may be applied: There exists
some constant C] such that

oy K&
B (|00 Xi) v
w(s)
o
<CE / [ X7 — Xoo” (M),
©(s)
Ch i i Ch j j
< 7E sup |Xr o Xt,o(s)|q + 7E [‘<MJ><P(t) - <Mj>80(5)|q/2] :
relp(s),p(t)]

Applying the other side of the Burkholder-Davis-Gundy inequality, there
exists some constant Cs such that

E [[(M)o0) = (M) ()|?] < CoE

sup |MZ—MZ(S)|‘1 :
r€lp(s),p(8)]

Hence, it follows that for some constant C' > 0,

q/2

et) A ,
E / (X7 = Xg) dM]| | < CE [Varg o) o) (M, V5, V)]
%)

(s)
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Still using the inequality ab < (a* + b*)/2 for any a,b > 0,

o) ‘ 142
E / (X5 _X:o(s))d‘/rid
w(s)
1 , , 1 o(t) Nk
<;E sup | X; — Xgg|' | +5E / v
2| refp(s) )] 2 o(5)

For any continuous function y and all 0 < s <,

sup ’yr - ys|q < Varq,[s,t} (y)q (13)

re(s,t]

Moreover, let us remark that Var, s (X) < 377V Var, [, o(M,V*+, V™).
Besides, for any continuous, increasing function y of finite variation,

t q
( / dys) < Var, 1 (y)". (14)

Applying (14) to V* and V'~ and using (13) to M and X, one gets that
for some constant C' depending only on ¢,

E |65, 500 (X)I72 | < CE [Varg oo o0 (M, VF, V)]
Since Var, jo.,(s) (M, V*F,V7)P = s forall s > 0 and
Vary j0,6(4)" + Vary (o1 (y)"” < Vary o.4(y)”
for all 0 < s <t and any continuous function y of finite p-variation,
Vary fo(o.¢) (M, V5 V)P < |t — . (15)

As Varg s 4(y) < Var,s4(y) and a? + b7 < (a + b)? for any ¢ > 1 and all
a,b > 0, it follows from (15) that

Varg jp(s),po) (M, V5, V)T < |t — s,

It follows that

/2
< K|t — s|¥?

() , ) ,
/ (Xi— Xi,,)dX]
©
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for some constant K that depends only on ¢. It follows that

on 1 q/2

ZE

which is finite from (12). From (11) and Lemma 1 with Y = 0, there exists
some constant ¢, ,r such that

(k+1)/2")

(X! — X' )dX!

n(l—q/p) [ Ta/
! By < on(=a/nE[T4/?)

o(Tk/27)

I [vartI/Z[OvT] @(X>Q/2} =E [Varq/2 [0,T] @(Xw)q/Q
< CpgrE[T7].

Now, to consider the general case, fix K and let 7 = ¢(K). Then 7
is a stopping time and for a F.-adapted process Y, set Y7 = Y..,.. The
continuous process X7 is a F.-semi-martingales with canonical decomposition
X" =Xg+ M™+ V7. Remark that 7 > T is equivalent to 7' < K. Hence, it
follows from (7) that for any L > 0,

P [Varq/27[07T] @( ) ]
<P [Vargsor©X")>C|+P[r<T]

1 ~
SC/QE[\/&TQ/Q OT]@( )q/2}+P|:T>Ki|

_Cq”TKq/p+CKP\F+ P[(M%)y > LY?]+P [ Vary on(V, V") > LV7].
Ca/2 (0,71

Now, remark that Vti =
[24]). Hence, Varl,[o,t](Vi

(V; & Vary jo1(V)) (See for example Section 1.6 in
< Var17[07t}(V). ThUS,

1
2
)
P [ Vary oy (VT V7) > LY?] <P [Vary op (V) > L7 ].
For any ¢ > 0, choosing first L, then K and C| it follows that
P [ Varg oo ©(X) > C] <e. (16)

Hence, ©(X) is of finite ¢/2-variation almost surely.

Now, let (X"),en be a sequence of semi-martingales satisfying the condi-
tion UCV. In (16), when € > 0 is fixed, the choice of C' is uniform in n, since
with (16), if L is large enough such that

N

supZIP’ [(M"™)p > Ll/p} + supP [ Vary o (V") > Ll/p} < 2g,

neN i—1 neN
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then there exists C' large enough such that
supIP’ [Val'q/QV[o’T] @(Xn) > C] < 3e. (17)
neN

If (X™),en converges in distribution to X, it follows from the condition UT
that ©y.(X") converges in distribution to ©y.(X) in C([0,T]; RY). On the
other hand, it follows from (9) and (17) that (X", O(X™)),en is tight in
MV?P([0,T]; RY), thanks to Corollary 6.1 in [16]. Thus, (X", ©(X")) con-
verges to (X,0(X)) in MV?([0,T]; RY).

Concerning ©(M), note that (M:, M7), = (M’ M),y for all t > 0.
Thus, if (M) = J((M?, Mf>t — (M, M7),), then

Var, o 01 7 (M) = Var, , o7y =4(M,).
Besides, one knows that
1 f—\’l/’l — 1/2
E[|Z5(M,)|7?] < E[IZ5 (M) ] + B [|E2(M,)]7] .

Thus, one has only to act as previously. O

1/2

Counter-example 2 (Counter-example 1 (continuation)). In the case of (X*).~¢

defined by (5), (X¢,O(X?)).¢ converges in p-variation to (o3, O, (0 3) +
c(t — s))o<s<t<T, Where c¢ is an antisymmetric matrix (See [15, 17]). This im-

plies that the limit of the stochastic integral [, f(X5)odX¢ isnot [, f(ofs)o0

dg,, but
/ flopBs)o odfs + / (Sj} gf) (0fs)ds
j i

5 An almost sure Wong-Zakai theorem

Let X be a F-semi-martingale with values in RY. We prove a result of type
Wong-Zakai with respect piecewise-linear approximation of X converging to
X in p-variation, together with their Lévy area.

We have seen in the previous section that (X, 0(X)) is a multiplicative
functional in MV?([0, T|; RY) for any p > 2. From now, we set

X!, =X, - X, and X2, = ©,,(X).

Notation and hypothesis. Let p > 2 and K be a positive random variable. Let
¢ be a compatible random time-change (that is ¢ is the right-continuous in-
verse of a non-decreasing, continuous, F.-adapted function and X is constant
on the intervals [go(t—), ©(t)]: see [26] for example) such that

| Moy — Moo | + VS (D) V;Es)‘p Vo = Vool < Klt — . (18)

Let us denote by gp‘l the right-continuous inverse of .
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Remark 2. We have seen in the proof of Proposition 1 how to construct a
random time change such that (18) is satisfied with K = 1.

The properties of ¢ and the inequality (18) imply that
Varp,[oﬂ (X) = Varn[O’Wl(T)] X({,(.) < Kl/pgo_l(T)l/p

and .
Xo(s)olt) = / (Xop(r) — Xop(s)) ® 0d X ()

For any n € N, let 0 < s7 < s§ < ... < %, < T be a partition of [0, 7.
For any n € N and any k =1,2,...,2", we set AfX = X» — Xn  and

t— st
X(n)=Xg  +—ELARX for t € [s}_y, s}]. (19)
k— Sk-1

5.1 A Wong-Zakai theorem for the Stratonovich SDEs

The path X(n) is the piecewise linear approximation of X that coincides
with X at the points s;. We could then construct a geometric rough path
(X (n)t, X(n)?) from X (n) by setting

X(n)y, = X(n): — X(n),

and X(n)?, = / (X(n), — X(n)s) ®dX(n),.

Let 0 <s <t <T,and k and ¢ such that sj;_; < s <s) <) <t <sp,

7 t

X(n)?, = / (X (), — X (n)) ®dX (n), + / (X(0), — X(n)y) ©dX (),

n
S¢

+Z ( —l—X( )sn _X(n)s> ® (X(n)sn,, — X(n)s»).

Jj=

With this expression, it is easily seen that X (n )st converges in probability

to the Stratonovich integral X7, = fs (X, — X,) ® odX, for any s < ¢ (See
for example |26, exercise 2.18, p. 136]).

The following proposition was already known for semi-martingales, but for
the convergence in probability with respect to the uniform norm: See [23].
Yet, combining the next proposition and the usual Wong-Zakai result for
semi-martingales implies that the integral defined by the rough-path theory
agrees with the Stratonovich integral.
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Besides, it is important here that the approximation is piecewise linear,
since it is known that other approximations could lead to different integrals:
See for example [14, Chapter 5.7|, [10, Section VI-7|, |23, 4] and more specif-
ically [17] regarding the rough paths theory.

Proposition 2. Let p, K and ¢ as above. Let X (n) be the piecewise lin-
ear approzimation of X along the partition (¢~ (¢(T)k/2"))k=o. .2n. Then,
the geometric multiplicative functional (X (n)', X (n)?),en converges almost
surely in MVP([0, T];RY) to (X', X?) as n — oo, and (X', X?) is a geo-
metric multiplicative functional.

Remark 3. If for all 3 > 0, X is a semi-martingale satisfying for some Cs > 0
the condition

E[|1X: — X,|°] < Calt — s|#/2, for any 0 < s,t < T,

then one knows from the Kolmogorov lemma, that there exists a a-Holder
continuous version of X for any a < 1/2. Moreover, there exists a random
variable K such that | X,(w) — X,(w)|"/* < K(w)|t — s|. Thus, Proposition 2
may be applied with the time change ¢(t) = ¢.

In particular, this proposition is true for the Brownian motion with p(t) =
t. Hence, we recover a result from [27].

Remark 4. The partition (o~ (p(T)k/2"))k=0... 2n is a random partition un-
less the semi-martingale X has Hoélder continuous paths. We have to note
that ¢! is not necessarily continuous, but the discontinuities of ¢ corre-
sponds to the intervals on which X is constant, and are not taken into account
in the integrals.

Remark 5. If the partition is deterministic, but no longer related to dyadics,
then computations similar to the ones used in the proof of Proposition 2
prove that the convergence in probability of (X (n)!, X (n)?),en to (X1, X?)
holds in p-variation.

Hypothesis 1. (i) The function g = (g1,...,9n) is CH{RY , R™)Y with a
deriwative which is also a-Hélder continuous with o > p — 2.

(i) The function f = (f1,..., fn) is C2(R™, R™)N with a second-order deriva-
tive which is also a-Holder continuous with o > p — 2.

Corollary 1. Under the hypotheses of Proposition 2 on X and Hypothesis 1
on g and f, then the ordinary integral Z(n) and the solution of the ordinary
differential equation Y (n) defined by

Z(n) ==z +/0 g(X(n)s)dX(n)s and Y(n); =y +/0 fY(n)s)dX(n)s
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converge respectively almost surely in p-variation to

t t
Zt:z+/ 9(Xs) o dX; andY}:y—l—/ f(Y,) o dX,,
0 0

where the integrals are understood as Stratonovich integrals.

Proof. Denote by & (resp. J) the map that gives the rough path obtained
by integrating the differential form g = 3>~ | gi(z)da" (resp. the vector field
f) against a rough path. Let also X(n) be the canonical rough path con-
structed above X (n). Let us set Z(n) = R(X(n)) and Y(n) = J(X(n)).
From the continuity of & and J from MV?([0, T];RY) to MV?([0,T]; R™),
(Z(n))nen and (Y (n))nen converge almost surely respectively to the multi-
plicative functionals Z = K(X) and Y = J(X), that are also geometric. But
Y(n)y —y = Y(n)y, and Z(n); —y = Z(n),. Besides, by the Wong-Zakai
theorem (See for example [23]), one knows that (Y(n)),eny and (Z(n))nen
converge in probability to Y and Z. It is now clear that Y; = y + Y, and
Zy=z+1Z, for any t € [0,T7]. O

First part of the proof of Proposition 2. Since X is continuous, it is clear
that (X (n)),en converges to X almost surely in the space of continuous
functions with the uniform norm.

Let 2 < g <p. Let I = {w;|0<wu; <---<up <T} be a partition of
[0, T]. We introduce two sets of index (with the convention that s = uy =0
and upy1 = 85, =7T): For j =0,...,2", we set

II; = {z‘uz € s}, s7.4] },
ey = {i‘ﬂj,jl s.b.ou; < 8T < st < uip }.

For each j, we remark that (with the convention that a sum over the
empty set is 0),

|Ui+1 - Ui|q
Z |X<n)ui+1 — X(n)y|" < Z n |XS}LH o XS?|q’

- st — 37.1|‘1
i€ll;, i#maxIl; iclly, i#maxIl; '~ I+ J
But
E q q n n|q
‘ui+1 - uz’ S |umaxHj - uminHj| S ‘S]’Jrl - 3]'
Z’EH]', i;émaxl'{j
Thus,
2" —1 2" —1

Z Z |X(n)ui+1 - X(”)m

jZO iEH]-, i;émaxHj

1<) X — Xan|? < Varg(X)%,
=0
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For i in I, since |X(n); — Xo| < [Xgn | — Xon| and |X(n), — X
[ Xsn,, — Xir| for any s € [s], s7,4],

(X (n)u, — X(n)

tal <

7 <397 X (n)y, — Xen |+ 37 H X — Xon |
J J J
+ 397 Xy, — X (n)yy |2
J
<3 H X — Xgn |74 377 X — Xgn |7
j—1 J J j’
+ 37X — X |2
J

Ui+1

;’L’+1
Hence,
D 1X (), — X () |7 < 377 Varg o 7 (X)7.
1€ egt
Let us remark that

k—1
Z ’X(n>ui+1 - X(n)uz ! = Z ’X<n)uz‘+1 - X(n)uz !
=0 i€jest
2" —1
+) > X, — X (0), |7 < (3971 4 1) Vary o 1(X)“.

§=0 i€Tl;, s.t. i#maxTl;
So, one deduce that

Varg o 7)(X(n)) < (377" + 1)/ Varg jo,7(X). (20)
Finally, let us remark that for any p > ¢,

Varp,[oﬂ (X - X(n)>p
<2071 sup [ Xy — X (n)of"? (Var oz (X)? + Varg oz (X (n))1)

t€[0,T

Thus, one obtains the almost sure convergence of (X (n)),ey to X in p-
variation. 4

Let K, be fixed, and let T be the F¥-stopping time such that

M.V Vo — (M, VE V)P
sup (M, VE VT )o@y — (M, VE VT )l ZKO}.

0<s<t<r t—s

Tozinf{r>0

Let also T be a fixed real number. Let us set Y, =X ~, which is a
w(INTOAT
F¥-semi-martingale.
Let Y(n) denotes the piecewise linear approximation of Y along the
dyadics at level n, i.e., X and X(n) are replaced by Y and Y'(n) in (19),

.....

From now, we use the notation ¢} = fk:/Q” for k=0,1,...,2"
The proof relies on the following lemma.
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Lemma 3. For alln € N and j,¢ € {0,...,2" } such that { > j, we have
Y(”)??,t}j = }/tfl,tg + [Q%L,tg]av

where [07,]* denotes the anti-symmetric part (i.e., [A]* = (A — A") for a
d x d-matriz A) of
t 2"
o, = / oY @AY, with 61Y = (Y, = Yie lpn e (w).
5 k=1
Proof. We set s =17 and t = t};. Then, a direct computation shows that

k
1
Y(n)2, = > ((Yt;;_l —Y)® ALY + A ® Agy) .

(=j+1
As the random variable Ytzil —Y,is ]—"@(tg_l)-measurable,

n
tl

Vi, ~Yoeap = [ (1,

n £—1
tﬁfl

p tz
:/ (yu—yg)eadyu—/ 1Y @ dY,.
t

n n
-1 t£71

On the other hand, the Itd6 formula implies that

S|

+ _(<Y>tg - <Y>t;11),

1
CATY @AY =
5 ® 8y . 5

f
/ 5Y © dY,
t

where [A]® = 1(A + A") denotes by symmetric part of a matrix A. Since
t
1
V2= [ Yoedvs 5 () - ).)

the result is now clear. O

Final part of the proof of Proposition 2. Using the Holder continuity of Y
and (20), one get easily that for any ¢ > p and any m € N,

YA+ Y (), |7 < e KG|t — s[7,
where ¢, is a constant depending only on ¢. Besides, as Y(m),; = Y;, if

s=Ti/2m, t =Tj/2™ for any i,j € {0,...,2™ },

0 if m >n,

Vit it cqu/ng/pZ*"Q/p if m < n.

D/t}‘t" - Y(m)%ﬂ,t" |7 < {
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We decompose Y as Y = Y+ N+ W, where N is a F¥-martingale and W
a term of finite variation.
Lemma 1 asserts that one can evaluate the p/2-variation of Y2 —Y (m)? if

one knows Y2 ;» —Y(m)Z .. , that is the difference between Y2 and Y (m)?
t] 7t]+1 t] ’t1+1

only at the dyadic points of [0, f]
If m > n, for any j = 0,...,2", there exists j' and j” in {0,...,2™

n _ 4m n __ 4m : 2 _ 2
such such t7 = 7} and t},, = t7,. With Lemma 3, Y;;_z,t?H Y(?”n)t;li?+1

I~

— 0% m |*. We focus on 07. For m > n,
jlv j/l )

q/2

£
E [|9;1} wﬂ‘q/z} < 91-Ig / 5"V @ dN,
37 t

n

q/2

t? 1
421 / Ty @ dw,
t

n

We follow the arguments of the proof of Proposition 1. Using the both sides of
the Burkholder-Davies-Gundy inequality and the Cauchy-Schwarz inequality,
there exists a constant C, depending only on ¢ such that

i a/2

i1
E / 0, Y ® dN,
tn

- 1/2 1/2
<C/E| sup |6V E| sup [N, — Npl|? :
teftr tr ] teftr tn, ] !
Using the very definition of 7 and Y,
KT
sup |07V [P < —
L]
and that y
~\ 4/P
KT
E| sup |N;—Nu|?| <C (:1 .
teentn, ) J 2

From (18), Var, [ (W) < 2°7! Var, [, (W, W™)? < 271 Kj|t — s| and then

qa/2 ~ a/p
< (g1 Lol
- om/29n/2 ’
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If m < n, a direct computation shows that if [t”,¢", ] C [¢t7*,t%,], then

Jjor i+l
(tn _ tn)?
J+1 J

| 22m (Kof)Q/p
(=R

2 —

] J+1

—Yir|? <

Choose ¢ > ¢’ > p. It follows that there exists a constant C' depending only
on p, q and ¢’ such that

2n—1 -
KoT)%/ , :
2 = D) gy n(d'—a)
Z?’”ZIY M, |17 < CT g 27070 sup 12070,
n>m

As q/p > 1, if we choose ¢’ so that ¢ — ¢ < q/p — 1, then there exists a
constant C' depending only on ¢, ¢, p and + such that

2n—1
5t 3 ¥l 7 < ORYP T

n>m

withd=1—¢ +q—q/p <0.
On the other hand, we have seen in the proof of Proposition 1 that

2n71

Z E [|yt% n |q/2} < Ooni—a/p)Ta/p.
— Jj i+l -

Hence, using all these estimates and Lemma 1, one gets for m large
enough,

E [Var,»(Y? — Y (m)?)%?]
nY Yo 1/2
a/ppq/p | 9ms I ne
< OK T (2 T Z (m+n)q/2p + Z 2nq/p> ?
n>m

where the constant C' depends only on p, ¢ and 7.
The Bienaymé-Tchebitchev inequality implies that for all o,,, > 0 and any
60>0

P | Var

c’ mt+1
7 2 _ 2 — mo
g/200)(Y" =Y (m)7) 2 am} <o (2 + Sz T Sm>

with €' = CKZ*T9/? and S,, = S o 172079/ Clearly, S, < [ 47 exp(—(t) dt
for ¢ = p(1 — ) In2. Hence, we deduce easily that S,, < m=3/3 for m large
enough. Setting

Q= m2(2m5 + m'y+12—mq/2p + m—3/3)’
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we remark that «,, —— 0 and that
m—0oQ

ZIP’ [Varq/l[o,ﬂ(YQ —Y(m)?) > ap, | < +oo.

m>1
The Borel-Cantelli Lemma implies that

Var, 0.7 (Y? = Y(m)?) —— 0

qa/2, m— 00
P-almost surely. Now, for a given trajectory, let us choose K, and Ty large
enough such that ¢(7") < T and Ty > T Since

Y(m)g,t = X(m) )p(t) and YSQ,t = XZ(

2
o(s $)p(t)’

we deduce that

Var [o,:F](YQ — Y (m)?) = Varys o7 (X* — X(m)?).

q/2,

Besides, since

sup \X(m)it - Xf,t‘ < Varg)s jo,1] (X(m)2 - X2>q/27

0<s<t<T

one obtains the uniform convergence of X (m)?, to X2, with respect to (s, 1)
such that 0 < s <t <T. OJ

5.2 A Wong-Zakai theorem for the I1t6 SDEs

The difference between an It6 integral and a Stratonovich integral depends
of the cross-variation of the process that is integrated.

Let us recall that we have denoted the family of cross-variations of X
by Z. For t € [0,T], we set j"(t) =sup{i € {0,...,2"}| s? <t} and

t— sj”(t)

1

2 Sjn(t)+1 — Sjn(t) (ij”<t>+1 o XSj"(t)) ® (ij"(t)+1 - ijnm)

1 3" ()

+5 2 Ky =X )@ (X — X ).
i=1

We set =(n)s: = Z(n); — Z(n)s. We consider now the (non-geometric) mul-

tiplicative functional (X (n)', X(n)? + Z(n)).

Proposition 3. Let p, K and ¢ as above. Let X (n) be the piecewise linear
approzimation of X along the partition (¢~ (o(T)k/2"))1=o,. 2n. Then, the

multiplicative functional (X (n), X(n)? + Z(n)) converges almost surely in
MVP([0, T]; RY) to (X1, X2+ =) as n — oc.
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Proof. Clearly, we have only to prove that (Z(n)),en converges in ¢/2-variation
to =. The proof is similar to the one of Proposition 2. One has to work with
Y instead of X. Let us define Z(n)¥ and Z¥ by a substitution of X to Y in
the definition of =Z(n) and =Z. We use the same notations as in the proof of
Proposition 2 for K, f, ... We assume in a first time that m > n. Then,
for i € {0,...,2"} and for j < k in {0,...,2™} such that ¢7* = ¢} and
tm = T27",

— Y =Y = Y =Y
k
= 1(Y — Yn)®2 — 2, (Y, — Yim) ®@ dY,.
- 2 25 7 =t t:l o tm
i=j7+1 i= ]+1 i

And if n > m, for i € {0,...,2" },

= = 22m (K T)2/p
S e (I ) e ey
Besides, we have already seen that

E [ =Y ’q/2] Ko N
Tt - 9ona/p

We have already used these estimates in the proof of Proposition 2, and the
proof of Proposition 3 is similar to the one of Proposition 2. O

Finally, let us remark that the relation between the It6 and the Stratonovich
integrals and SDEs together with Corollary 1 allows to deduce that &(( X!, X2+
Z)) and J((X*', X2 —I— Z)) are multiplicative functionals lying above the It
mtegral z 4+ fo s)dX; and the solution Y to the Ité’s SDE Y, = y +

fo Y,) d X, Where ﬁ and J have been defined in the proof of Corollary 1.
The proof of the following corollary is now clear.

Corollary 2. Under the hypotheses of Proposition 2 and Hypothesis 1 on g
and f, the ordinary integral

Z(n)t:z+/0 g(X(n),)dX (n +Z/ gi; ) A= (n),

and the solution of the ordinary differential equation defined by

Voo=u+ [ 10V axo +22/fkafz 7)) A= (n),

7=114k=1

converge almost surely to Z and Y defined above.
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