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Abstract. We describe a representation of the Bolthausen-Sznitman coalescent in terms of the
cutting of random recursive trees. Using this representation, we prove results concerning the final
collision of the coalescent restricted to [n]: we show that the distribution of the number of blocks
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blocks. We also consider the discrete-time Markov chain giving the number of blocks after each
collision of the coalescent restricted to [n]; we show that the transition probabilities of the time-
reversal of this Markov chain have limits as n → ∞. These results can be interpreted as describing
a “post-gelation” phase of the Bolthausen-Sznitman coalescent, in which a giant cluster containing
almost all of the mass has already formed and the remaining small blocks are being absorbed.
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1 Introduction

The Bolthausen-Sznitman coalescent, (Π(t), t ≥ 0), is a Markov process which takes its
values in the set of partitions of N. It is most easily defined via its restriction

(

Π[n](t), t ≥ 0
)

to the set [n] := {1, 2, . . . , n}, for n ≥ 1. Denote by #Π[n](t) the number of blocks of Π[n](t).
Then

(

Π[n](t), t ≥ 0
)

is a continuous-time Markov chain whose transition rates are as follows:

if #Π[n](t) = b, then any k of the blocks present coalesce at rate

λb,k =
(k − 2)!(b− k)!

(b− 1)!
, 2 ≤ k ≤ b ≤ n. (1.1)

It is usual to start the coalescent from the partition into singletons,

Π(0) =
(

{1}, {2}, {3}, . . .
)

,

and in this case we say that the coalescent is standard.

The Bolthausen-Sznitman coalescent was first introduced in [5], in the context of the
Sherrington-Kirkpatrick model for spin glasses. In [21], Pitman demonstrated a great num-
ber of its properties. He introduced the class of coalescents with multiple collisions (also
known as Λ-coalescents), gave a construction of them based on Poisson random measures
and studied the Bolthausen-Sznitman coalescent as a member of this class. Bertoin and
Le Gall [4] give an alternative derivation in terms of the genealogy of a continuous-state
branching process. Marchal [15] gives a construction via regenerative sets.

In this paper, we describe a new representation for the Bolthausen-Sznitman coalescent in
terms of the cutting of random recursive trees.

We then use this representation to prove results about the last collision of the coalescent
restricted to [n], as n → ∞. We obtain scaling laws for the sizes of the blocks involved in
the final collision; essentially, this collision involves one large block and one or more smaller
blocks, whose combined size behaves like nU , where U has the uniform distribution on [0, 1].
We also show that the distribution of the number of blocks involved in the final collision
converges as n → ∞ (for example, the probability that exactly two blocks are involved
converges to log 2).

More generally, we can also consider the discrete-time Markov chain giving the number of
blocks after each collision of the coalescent restricted to [n]. We show that the transition
probabilities of the time-reversal of this Markov chain have limits as n → ∞, which we
make explicit. (We observe in passing that the form of these limiting probabilities yields
certain infinite product expansions of powers of e, which appear to be new).

These results can be interpreted as describing a “post-gelation” phase of the Bolthausen-
Sznitman coalescent, in which a giant cluster containing almost all of the mass has already
formed and the very small left-over blocks are being absorbed. We also note that the tree
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representation has an intrinsic asymmetry which contrasts strongly with the exchangeability
properties of the coalescent itself (for example, the root of the tree always represents the
block containing 1). This makes it possible to read off properties concerning a tagged
particle in the coalescent process directly from the tree representation.

2 Random recursive trees

2.1 The representation

A tree on n vertices labelled 1, 2, . . . , n is called a recursive tree if the vertex labelled 1 is
the root and, for all 2 ≤ k ≤ n, the sequence of vertex labels in the path from the root to
k is increasing (Stanley [26] calls this an unoriented increasing tree). See Figure 1 for an
example of a recursive tree. Call a random recursive tree a tree chosen uniformly at random
from the (n− 1)! possible recursive trees on n vertices. A random recursive tree can also be
constructed as follows. The vertex 1 is distinguished as the root. We imagine the vertices
arriving one by one. For k ≥ 2, vertex k attaches itself to a vertex chosen uniformly at
random from 1, 2, . . . , k − 1. For a detailed survey of results on recursive trees, see Smythe
and Mahmoud [24].

5

2

1

63

9487

10

Figure 1: A recursive tree on [10].

We can represent an infinite tree by the infinite sequence of integers {pi}i≥2, where pi is the
parent of node i. (The condition for this to be a recursive tree is 1 ≤ pi < i for i ≥ 2.)

For the purposes of this article, it will be convenient also to define a random recursive tree
on a label set {l1, l2, . . . , lb} where l1, l2, . . . , lb are the blocks of a partition of [n] for some n,
listed in increasing order of least elements. (That is, we require that l1 < l2 < . . . < lb where
“<” is the total order induced by the least elements of the blocks.) The tree is constructed
in the obvious way: l1 labels the root and lk is attached to a vertex chosen uniformly at
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random from those labelled l1, l2, . . . , lk−1. Call the weight of a label the number of integers
it contains and let Ln be the set of partitions of [n].

Meir and Moon [17] define a cutting procedure which they apply to random recursive trees.
They take a random recursive tree on [n] and pick an edge e uniformly at random from the
n− 1 present. This edge is deleted along with the entire subtree below it. These operations
are then repeated until the root is isolated. The idea of cutting combinatorial trees in this
way appears to have been introduced in Meir and Moon [16] and remains a current research
topic. Interest has tended to focus on the number of cuts required to isolate the root in
different types of trees. Recent references include Janson [11, 12], Fill, Kapur and Panholzer
[9] and Panholzer [18, 19]. In particular, [19] treats the case of random recursive trees; the
author’s presentation of this work at the MathInfo 2004 conference in Vienna stimulated
the present work. A variant of the cutting procedure will be the basis of our representation
of the Bolthausen-Sznitman coalescent. Suppose that instead of throwing the subtree below
e away, we add its labels to those of the vertex above e. We repeat this procedure until
only the root remains, labelled by [n]. See Figure 2 for an example.

Proposition 2.1. Suppose T is a random recursive tree on L = {l1, l2, . . . , lb} ∈ Ln. Pick
an edge at random, cut it and add the labels below the cut to the label above. Then the
resulting tree is a random recursive tree on the new label-set.

Proof. (Essentially due to Meir and Moon [17].) The resulting tree is clearly recursive
because its labels still increase along all paths away from the root. So we need to show
that it is chosen uniformly from the set of all recursive trees with the same label-set. Put
another way, we will show that each of the (b− 1)!(b− 1) recursive trees on the label-set L
with a single marked edge corresponds to a tree constructed as follows: for some 2 ≤ k ≤ b,
pick k of the labels, say li1 , li2 , . . . , lik (taken to be in increasing order), make a recursive
tree on L \ {li2 , . . . , lik}, make another recursive tree on {li2 , . . . , lik} and then join them
together with an edge between the vertices labelled li1 and li2 .

There are
(

b
k

)

ways of picking the k labels li1 , . . . , lik . There are (k− 2)! ways of arranging
the k − 1 largest into a recursive tree rooted at li2 . There are (b − k)! ways of arranging
the b− k+1 other labels into a recursive tree. Clearly each of the trees constructed in this
way is distinct and also a recursive tree. The number which can be constructed is

b
∑

k=2

(

b
k

)

(k − 2)!(b− k)! = b!
b
∑

k=2

1

k(k − 1)
= (b− 1)!(b− 1).

Hence, the claimed correspondence holds.

Proposition 2.2. Start with a random recursive tree on [n] and associate an independent
exponential random variable with mean 1 to each edge. This exponential time is the time at
which the edge is deleted, at which point the labels in the subtree below it are instantaneously
added to the label of the vertex above the edge. Then the set of labels forms a partition of [n]
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(2,7,10)

(8)(5)

(6)

(5)

(2)

(1)

(6)

(9)(4)(8)(7)

(10)

(3) (2,7,10)

(1)

(6)(3)

(9)(4)(8)(5)

(1,3,4,6,9)

(2,5,7,10)

(8)

(1,2,3,4,5,6,7,8,9,10)

(1,3,4,6,9)

(2,7,10)

(8)(5)

(1,3,4,9)

Figure 2: The cutting procedure for a random recursive tree on [10], with the cuts indicated.
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which evolves according to the dynamics of the Bolthausen-Sznitman coalescent restricted
to [n].

Proof. We need to show that the rate of coalescence of any set of k of the labels is λb,k
whenever there are b vertices in the tree, for λb,k defined as at (1.1). The total rate of
events when there are b vertices is b− 1. The probability that the next event will coalesce a
particular k-set is worked out in the same way as in the proof of Proposition 2.1. Suppose
we start with label-set L = {l1, l2, . . . , lb} and we want the probability that the next event
is the coalescence of {li1 , . . . , lik}. There are (k − 2)! ways of making a recursive tree on
{li2 , . . . , lik}; there are (b − k)! ways of making a recursive tree on the remaining labels.
There are (b − 1)!(b − 1) recursive trees on a label-set of size b with a single marked edge
and so the probability that we coalesce {li1 , . . . , lik} is

(k − 2)!(b− k)!

(b− 1)!(b− 1)
.

Hence, the rate at which we coalesce any k-set is

(k − 2)!(b− k)!

(b− 1)!
.

The evolution is Markovian because, by Proposition 2.1, the resulting tree is another random
recursive tree, this time on b− k + 1 labels.

Because of the recursive way in which the original tree is built, the representations are
consistent for different n: if Π[n](t) is the partition given by the tree representation on [n]
at time t then for all t ≥ 0 and all n ∈ N,

Π[n+1](t)|[n] = Π[n](t).

Thus we are able to define (Π(t), t ≥ 0), the Bolthausen-Sznitman coalescent on the whole of
N, by means of the cutting procedure applied to an infinite random recursive tree (indexed
by N).

2.2 Random recursive trees, the Chinese restaurant process and random

permutations

There is a well-known correspondence between random recursive trees and uniform random
permutations. We find it most convenient to demonstrate this connection via the Chinese
restaurant process of Dubins and Pitman (see Chapter 3 of Pitman [22]), which we now
introduce.

For 0 ≤ α < 1 and θ > −α, the Chinese restaurant process with parameters α and θ
(referred to hereafter as the (α, θ)-Chinese restaurant process) is constructed as follows.

723



Person 1 enters a Chinese restaurant and sits at the first table. Person 2 sits either at
the same table or at a new one; in general, each subsequent person (numbered successively
3, 4, . . . , n) sits either at one of the occupied tables or at a new one. Suppose that people
1, 2, . . . ,m have sat at k tables where table i has mi customers (and

∑k
i=1 mi = m). Then

person m+ 1 starts a new table with probability

θ + αk

m+ θ

and sits at table i with probability
mi − α

m+ θ
,

for 1 ≤ i ≤ k. Once all n customers have arrived, the tables constitute the blocks of a
partition of [n] which are consistent for different n. Letting n → ∞, these blocks have
asymptotic frequencies, where the asymptotic frequency of a block B ⊆ N is defined to be

lim
n→∞

|B ∩ [n]|
n

.

The existence of this limit for blocks generated by the Chinese restaurant process is guar-
anteed by Kingman’s theory of exchangeable random partitions [13, 14]. Moreover, if
(F1, F2, . . .) is the vector of asymptotic frequencies for a (α, θ)-Chinese restaurant process
in the order of the tables then (F1, F2, . . .) has the Griffiths-Engen-McCloskey GEM(α, θ)
distribution. If this vector is put into decreasing order of size then it has the Poisson-
Dirichlet PD(α, θ) distribution. (See Pitman [22] or Arratia, Barbour and Tavaré [1] for
more details.)

For α = 0 and θ > 0, there is a simpler construction. Person 1 sits at table 1. For m ≥ 1,
person m+1 starts a new table with probability θ/(θ+m) and sits to the left of each of the
m existing customers with probability 1/(θ +m). In this case, the blocks created contain
more information than is needed to just give a partition of [n]. In fact, they are the cycles
of a permutation of [n], written in standard cycle notation (i.e. the permutation maps i
to the customer seated to the left of i). The special case θ = 1 gives a uniform random
permutation of [n] (that is, a permutation chosen uniformly at random from all the possible
permutations of [n]). Moreover, the permutations are consistent for different n and, when
n→∞, we obtain a uniform random permutation of N.

We can find a (0, 1)-Chinese restaurant process in the construction of the random recursive
tree on [n+ 1]. For this purpose, it is easier to imagine the random recursive tree labelled
by the set {0, 1, . . . , n} rather than {1, 2, . . . , n+1}. The root (labelled 0) is fixed and does
not appear in the permutation. Vertices attached to the root correspond to individuals who
start a new table. Thus, individual 1 necessarily starts a new table. If vertex k arrives
and attaches to a vertex other than the root (say j) then individual k sits directly to the
left of individual j. As vertex k is equally likely to attach to each of the vertices labelled
0, 1, . . . , k − 1, individual k is equally likely to sit to the left of any of the individuals
1, 2, . . . , k − 1 or to form a new table.
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Thus, a random recursive tree on [n+ 1] corresponds to a random permutation of [n].

Just to give some interpretation to the cutting procedure in the Chinese restaurant, we
embellish the usual model as follows. Each customer present in the restaurant has friends
arrive at rate 1 and there is also a rate 1 stream of customers who know no-one in the
restaurant at their time of arrival. Customers who arrive and have a friend present always
sit to the left of that friend. Friendless customers sit at new tables. Stop the process
when there have been n arrivals. A meal in the restaurant costs one euro. At rate 1,
each customer decides to leave and go home. Whenever he leaves, any of his friends who
arrived after him want to leave (and their friends, and so on). (If the person who decided to
depart was k then it is the subtree rooted at k in the random recursive tree which departs.)
Anyone leaving gives the money for their meal to the person to whose left k sat down on
entering the restaurant, so that he can pay for them when he leaves. If k was, in fact, the
first person to have sat at that table then he collects all the money for the whole table
(plus, of course, the price of his own meal), takes it to the cashier and departs. Note that
at any time t, the amount of money in the cash register is the same as the weight of the
label at the root in the random recursive tree (i.e. the size of the block containing 1 in
the Bolthausen-Sznitman coalescent). In this paper, we will answer questions such as: how
much does the last customer to leave pay the cashier?

2.3 Using the construction

The construction of Subsection 2.1 gives an oddly asymmetrical way of looking at the
Bolthausen-Sznitman coalescent. Rather than the usual exchangeable partitions approach
here, because the blocks are automatically ordered according to their least elements, we
have a size-biased view (smaller numbers are more likely to be the smallest number in their
blocks). Moreover, a particular realisation of a random recursive tree corresponds to a
particular conditioning of the coalescent (e.g. if 2 and 5 are both children of 1 then we are
conditioning 2 and 5 only to be in the same block when they have both coalesced with 1).
Some facts are very easy to read off from the tree and we will describe here some examples.

In Subsection 2.4 of [21], Pitman discusses the size of the block containing 1 at time t.
In terms of the random recursive tree, in order to find the size of the block containing
1 at time t, it suffices to know only the sizes of the descendencies of all the children of
the root, plus the times at which the edges from the root to those children are severed.
By the connection with the Chinese restaurant process, it is clear that in the limit as
n → ∞ the vector of asymptotic frequencies of the descendencies of the children of the
root has the GEM(0, 1) distribution (i.e. the PD(0, 1) distribution with the blocks in size-
biased rather than decreasing order). Moreover, by construction, the times at which these
descendencies are added to the root are independent and identically distributed standard
exponential random variables. Thus, we have here given a very straightforward proof of
Pitman’s Corollary 16, reproduced below:
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Theorem 2.3 (Pitman). Let f̃1(t) be the frequency of the block containing 1 at time t in
a standard Bolthausen-Sznitman coalescent. Then

(i) the process (f̃1(t), t ≥ 0) is Markovian, with the same distribution as the process (γ(1−
e−t)/γ(1), t ≥ 0) where (γ(s), s ≥ 0) is a gamma process, with stationary independent
increments and P (γ(s) ∈ dx) = Γ(s)−1xs−1e−xdx, x > 0.

(ii) The distribution of f̃1(t) is Beta(1− e−t, e−t), and the process (− log(1− f̃1(t)), t ≥ 0)
has non-stationary independent increments.

(iii) Let J1 ≥ J2 ≥ . . . be the ranked magnitudes of jumps of the process (f̃1(t), t ≥ 0), and
let Ti be the time when the jump of magnitude Ji occurs. Then the distribution of the
sequence (J1, J2, . . .) is PD(0, 1), and this sequence is independent of the Ti, which are
independent with standard exponential distribution.

((i), (ii) and (iii) are equivalent by properties of the Dirichlet random measure; (iii) is
immediate from the random recursive tree approach.)

In Bolthausen and Sznitman [5] and Pitman [21], it is shown that the marginal distribution
of the asymptotic frequencies of the blocks of the coalescent (ranked in decreasing order),
at fixed time t > 0, is PD(e−t, 0). Jason Schweinsberg has observed that the recursive tree
provides a simple way of proving this fact. We work via the Chinese restaurant process.
Let E1, E2, . . . be independent and identically distributed standard exponential random
variables. Fix a time t and imagine constructing the random recursive tree in such a way
that the vertex i arrives with the edge above it marked if Ei < t and unmarked otherwise,
for all i ≥ 2. (These marks are the cuts, but we will find it convenient here not to collapse
the tree at the cuts but rather just to keep track of where they are.) Then vertex i has the
smallest label in its block if there are no marks in the path from the root to i. Otherwise,
i is in the same block as the closest vertex to i in the path from the root to i which has
no cuts above it. Suppose now that vertices 1, 2, . . . , n have arrived (possibly with marks)
in the construction of the random recursive tree. Suppose also that they form k blocks
(after cutting) of sizes n1, . . . , nk (where

∑k
i=1 ni = n). Then vertex n + 1 has n possible

places to attach. It creates a new block if (i) it attaches to the smallest element of one
of the k blocks and (ii) it doesn’t have a mark. This happens with probability ke−t/n. It
adds to the ith block (of size ni) if it attaches to one of the ni− 1 non-smallest elements of
the block or if it attaches to the smallest element and arrives with a mark. This happens
with probability (ni−e−t)/n. But these are exactly the probabilities in the (e−t, 0)-Chinese
restaurant process and so we can conclude that the full asymptotic frequencies in decreasing
order must have PD(e−t, 0) distribution.

726



2.4 Translating results for trees into results for the coalescent

As mentioned above, Panholzer [19] has studied the number of cuts necessary to isolate
the root in a random recursive tree on [n]. In the context of the Bolthausen-Sznitman
coalescent, this corresponds to the number of collision events that take place until there is
just a single block. Let Jn be this number of collisions.

Theorem 2.4 (Panholzer). Jn has moments and centred moments as follows: for k ∈ N,
as n→∞,

E
[

Jkn

]

=
nk

logk n
+

(

Hk + k +
k
∑

l=1

Ψ(l)

)

nk

logk+1 n
+O

(

nk

logk+2 n

)

and

E
[

|Jn − E [Jn] |k
]

=

(

(−1)k +
k−1
∑

l=0

(

k − 1
l

)

(−1)k−l−1Ψ(l + 1)

)

nk

logk+1 n
+O

(

nk

logk+2 n

)

where Hn =
∑n

i=1
1
i and Ψ(x) = d

dx log Γ(x). Thus,

log n

n
Jn

p→ 1,

as n→∞.

Panholzer notes that it is not possible to obtain a limiting distribution of a centred, scaled
version of Jn by the method of moments.

3 The last collision of the Bolthausen-Sznitman coalescent

3.1 Main results

Let Mn be the sum of the sizes (or masses) of the blocks not containing the integer 1 in
the last collision of the Bolthausen-Sznitman coalescent restricted to [n], and let Bn be the
number of blocks involved in the final collision. For example, in Figure 2 we have n = 10,
Mn = 5 and Bn = 3.

Theorem 3.1. As n→∞,
(

logMn

log n
,Bn

)

d→ (U, 1 + Y (UE)), (3.1)

where (Y (t))t≥0 is a standard Yule process, U is uniform on [0, 1], E is standard exponential
and (Y (t))t≥0, U and E are independent.
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The proof of this theorem is quite long and so we defer it to Section 3.4. Theorem 3.1 tells
us that the final collision of the coalescent restricted to [n] is between a very large block
containing almost all of the mass and a collection of very small blocks whose total mass is
roughly nU . We can make the distribution of the number of the small blocks in the last
collision explicit as follows.

Proposition 3.2. For m ≥ 1,

P (Y (UE) = m) =
1

m

m
∑

k=1

(

m
k

)

(−1)k+1 log(k + 1).

This distribution has infinite mean.

Proof. Let qm(t) = P (Y (t) = m) for m ≥ 1. It is easily shown (for example, from the
forward equations) that

qm(t) = (1− e−t)m−1 − (1− e−t)m

and so, by Proposition 3.15 (see Section 3.5), we have

qm(t) =

{

e−t if m = 1
∑m

k=2

(

m−2
k−2

)

(−1)k(e−(k−1)t − e−kt) if m ≥ 2.

Thus,

P (Y (UE) = m) = E [qm(UE)]

=

{

E
[

e−UE
]

if m = 1
∑m

k=2

(

m−2
k−2

)

(−1)k(E
[

e−(k−1)UE
]

− E
[

e−kUE
]

) if m ≥ 2.

For any θ > 0,

E
[

e−θUE
]

=

∫ 1

0

∫ ∞

0
e−θxue−xdxdu =

1

θ
log(θ + 1)

and so
P (Y (UE) = 1) = log 2

and, for m ≥ 2,

P (Y (UE) = m) =
m
∑

k=2

(

m− 2
k − 2

)

(−1)k
(

1

k − 1
log k − 1

k
log(k + 1)

)

=
1

m

m
∑

k=1

(

m
k

)

(−1)k+1 log(k + 1).

Finally, as E [Y (t)] = et,

E [Y (UE)] =

∫ 1

0

∫ ∞

0
euxe−xdxdu =

∫ 1

0

1

1− u
du =∞.
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For example, putting m = 1 gives P (Bn = 2) → log 2 as n → ∞. The joint convergence
given in Theorem 3.1 makes it possible to condition on the value of Y (UE) to obtain results
such as

Corollary 3.3. Conditional on the event {Bn = 2},

logMn

log n

d→ V,

where V has density 1
(1+v) log 2 on [0, 1].

Remarks. (a) We have already mentioned the connection between random recursive trees
and uniform random permutations. In a permutation, Mn represents the length of a
uniformly-chosen cycle. In fact, considerably stronger results hold on the distribution of the
cycle lengths. Let Kn(t) be the number of cycles of length less than or equal to nt. Then
the functional central limit theorem of DeLaurentis and Pittel [6] states that

(

Kn(t)− t logn√
log n

, 0 ≤ t ≤ 1

)

(3.2)

(a random element of D[0, 1]) converges weakly to Brownian motion on [0, 1]. (This theo-
rem was extended by Hansen [10] to the case of a permutation with distribution given by
the Ewens sampling formula i.e. a permutation generated by the (0, θ)-Chinese restaurant
process. An alternative proof of her more general theorem, which is more in the style of
this paper, was given by Donnelly, Kurtz and Tavaré [7]. See also Feng and Hoppe [8] for
a path-level large deviations principle for the Ewens sampling formula.)
(b) Take any rooted tree T , random or deterministic. Suppose that each edge e has a
random variable λe attached to it, where the values λe are independent and identically
distributed with a continuous distribution. Say that λe is a record if it is the largest value
in the path from the root to e. Janson [11] shows that the distribution of the number of
records in T is the same as that of the number of random cuts required to isolate the root.
To see this, each time cut the edge with the largest λe amongst those remaining. Then by
symmetry, we always cut a uniformly-chosen edge, and so we get the cutting procedure.
Moreover, λe is a record if and only if its edge is cut; thus, there must be the same number
of records as of cut edges. In the records setting, Bn has the distribution of the size of the
maximal subtree of a random recursive tree on [n] containing the smallest record λ∗ and
only edges e with λe < λ∗.

Proposition 3.4. If An is the time to absorption for the Bolthausen-Sznitman coalescent
on [n], so that

An = inf{t ≥ 0 : #Π[n](t) = 1},
then

An − log log n
d→ − logE,

where E has a standard exponential distribution.
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Proof. This is a corollary of Lemma 3.8 in Section 3.4 (to connect the notation, we have
An = E∗).

This proposition is straightforward, but it nicely illustrates the idea that the Bolthausen-
Sznitman coalescent on N “only just fails” to come down from infinity (see Pitman [21] and
Schweinsberg [23]).

3.2 The coalescent in reversed time

We can regard Theorem 3.1 as a statement about the first event in a time-reversed ver-
sion of the Bolthausen-Sznitman coalescent. More precisely, let X = (X0, X1, . . .) be the
discrete-time Markov chain describing the evolution of the number of blocks in the coales-
cent restricted to [n], so that Xi is the number of blocks after i collisions, for i ≥ 0. (We
can do this because the Bolthausen-Sznitman coalescent is homogeneous, in the sense that
the sizes of the blocks do not influence the dynamics of the process.) X has transition
probabilities

pb,b−k+1 =
b

(b− 1)

1

k(k − 1)
, 2 ≤ k ≤ b, (3.3)

and is clearly decreasing. Started from X0 = n, for any finite n, the chain hits 1 almost
surely. Let X̂ be the time-reversal of X, where X̂ starts from 1. We show that the reversed-
time transition probabilities

p̂l,m := lim
n→∞

P (X enters l from m|X0 = n and X hits l)

= lim
n→∞

P
(

X̂ jumps from l to m|X̂0 = 1 and X̂ hits l and n
)

exist and can be made explicit.

Theorem 3.5. We have

p̂l,m =















































1

m− 1

m−1
∑

k=1

(

m− 1

k

)

(−1)k+1 log(k + 1) if m > l = 1

m

(l − 1)(m− l)(m− l + 1)

m−1
∑

j=1

(

m− 1

j

)

(−1)j+1 log(j + 1)

l−1
∑

k=1

(

l − 1

k

)

(−1)k+1 log(k + 1)

if m > l ≥ 2.

(3.4)

The l = 1 case of this theorem is a direct consequence of Theorem 3.1 and Proposition 3.2.
In principle, one could extend the probabilistic proof that we give of this case to study
individual cases of higher l; however, we have not been able to find such a proof for the
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general case, and so the self-contained proof given in Section 3.5 is via the analysis of certain
recurrence formulae.

Remark. We note that p̂1,2 6= p̂2,3 and so the time-reversal of the Bolthausen-Sznitman
coalescent is not self-similar in the sense of Bertoin [3]. See Pitman [21], Basdevant [2] and
Marchal [15] for results on time-reversing the Bolthausen-Sznitman coalescent to obtain a
fragmentation process.

3.3 Number theoretic results

Before proceeding to the proofs of Theorems 3.1 and 3.5, we observe in passing that Theo-
rem 3.5 entails various infinite product expansions of powers of e, which seem not to have
been previously known.

Theorem 3.6. For integers r ≥ 1,

e1/r =
∞
∏

n=r

(

n
∏

k=1

(k + 1)(
n
k )(−1)k+1

)1/(n−r+1)

.

For example, the r = 1 case put more clearly reads

e =

(

2

1

)1/1( 22

1 · 3

)1/2(
23 · 4
1 · 33

)1/3(
24 · 44

1 · 36 · 5

)1/4

· · ·

and the r = 2 case reads

e1/2 =

(

22

1 · 3

)1/1(
23 · 4
1 · 33

)1/2(
24 · 44

1 · 36 · 5

)1/3(
25 · 410 · 6
1 · 310 · 55

)1/4

· · · .

The r = 1 case of this theorem was first proved by Guillera and Sondow (cited in Son-
dow [25]) and bears a certain resemblance to Pippenger’s product [20] for e.

Proof. Consider first the r = 1 case. In Theorem 3.5, we find the distribution (p̂1,n+1, n ≥ 1).
Summing over n, we obtain

∞
∑

n=1

1

n

n
∑

k=1

(

n
k

)

(−1)k+1 log(k + 1) = 1.

Exponentiating both sides, we have

e =
∞
∏

n=1

(

n
∏

k=1

(k + 1)(
n
k )(−1)k+1

)1/n

,
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which is Guillera and Sondow’s product.

We now proceed by induction on r. Assume the result up to r − 1. We have

∞
∑

m=r+1

p̂r,m = 1

and so, from (3.4),

∞
∑

m=r+1

m

(r − 1)(m− r)(m− r + 1)

∑m−1
j=1

(

m−1
j

)

(−1)j+1 log(j + 1)
∑r−1

k=1

(

r−1
k

)

(−1)k+1 log(k + 1)
= 1.

Hence,

(r − 1)
r−1
∑

k=1

(

r − 1
k

)

(−1)k+1 log(k + 1)

=
∞
∑

m=r+1

(

r

m− r
− r − 1

m− r + 1

)m−1
∑

j=1

(

m− 1
j

)

(−1)j+1 log(j + 1)

= r
∞
∑

n=r

1

n− r + 1

n
∑

j=1

(

n
j

)

(−1)j+1 log(j + 1)

− (r − 1)
∞
∑

n=r

1

n− r + 2

n
∑

j=1

(

n
j

)

(−1)j+1 log(j + 1).

Shifting the last term to the left-hand side and using the induction hypothesis, we obtain

1 = r
∞
∑

n=r

1

n− r + 1

n
∑

j=1

(

n
j

)

(−1)j+1 log(j + 1)

and taking the exponential of both sides gives the result.

3.4 Proof of Theorem 3.1

It is convenient to think of the formation of the random recursive tree as occurring in
continuous time, according to a linear birth process with immigration. (This is the approach
used by Donnelly, Kurtz and Tavaré [7] when dealing with random permutations.) More
specifically, we imagine that the root is present at time 0 and that it has a special rôle.
Children of the root “immigrate” at rate 1 and each immigrant initiates a family which
evolves as a standard Yule process. Let Ri be the time of the ith immigration and let P (t)
be the number of immigrations up to time t (this is just a standard Poisson process). Let
Yi(t) be the size of the the ith family at time Ri + t and let

Tn = inf







t ≥ 0 :

P (t)
∑

i=1

Yi(t−Ri) = n− 1







,
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the time at which the total population present (including the root) reaches n. (Of course,

1 +
∑P (t)

i=1 Yi(t − Ri) is itself just a standard Yule process, but in what follows we find it
helpful to distinguish the root.) Finally, let Cn = P (Tn), the number of immigrations up
to (and including) time Tn. Note that P and Y1, Y2, . . . are independent.

The theorem concerns what happens when we cut the tree so much that all of the children
of the root become severed. We will think of the cutting as occurring in continuous time
(although subsequent to the formation of the tree). To this end, we associate an independent
standard exponential lifetime to each individual, which gives the time at which the edge
above it is cut.

For each i ≥ 1 we define a family of processes, {(Y thinned(u)
i (s), s ≥ 0), u ≥ 0}, in the

following way. The tree representing the ith Yule process at time s has size Yi(s). From
this tree, we remove all the edges whose cutting time is less than or equal to u (and all the

subtrees below such edges). Let Y
thinned(u)
i (s) be the size of the tree that remains. Note

that for any u, the process (Y
thinned(u)
i (s), s ≥ 0) has the distribution of (Y (e−us), s ≥ 0)

where Y is a standard Yule process.

For 1 ≤ i ≤ Cn, let Ei be the exponential lifetime associated with the ith child of the root.
The last child to be cut is severed at time

E∗ = max
1≤i≤Cn

Ei

and is the C∗th child, where
C∗ = argmax

1≤i≤Cn

Ei.

E∗ is the time at which the root is isolated, and is therefore the time of the last event in the
coalescent process. Let R∗ = RC∗

, the time at which the C∗th child arrived in the formation
of the tree.

In this framework, we have that

Mn = YC∗
(Tn −R∗),

the total family size (in the unthinned tree) of individual C∗ (which is the last child of the
root to be cut). Similarly,

Bn − 1 = Y
thinned(E∗)
C∗

(Tn −R∗),

the number of nodes still remaining in the (thinned) family of C∗ at the moment when it is
cut.

Let t−n = logn− (log n)1/2 and t+n = log n+ (log n)1/2. Let

E−∗ = max
1≤i≤P (t−n )

Ei,

C−∗ = argmax
1≤i≤P (t−n )

Ei
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and

R−∗ = RC−

∗

.

For completeness, if P (t−n ) = 0 (which becomes very unlikely as n grows) then let E−∗ = 0,
C−∗ = 0, and set R−∗ equal to a uniform random variable on [0, t−n ].

Now define

Gn =
{

Tn ∈ (t−n , t
+
n ), C∗ = C−∗ and Y

thinned(E−

∗
)

C−

∗

(t−n −R−∗ ) = Y
thinned(E−

∗
)

C−

∗

(t+n −R−∗ )
}

.

On the “good set” Gn, we have E∗ = E−∗ and R∗ = R−∗ almost surely. Also, R−∗ ∼ U[0, t−n ]
and is independent of E−∗ and of the Yule processes Yi for i ≥ 1. We will prove the following
three lemmas:

Lemma 3.7. As n→∞,

log YC−

∗

(t−n −R−∗ )

t−n −R−∗

d→ 1,

log YC−

∗

(t+n −R−∗ )

t+n −R−∗

d→ 1,

and

t+n −R−∗
t−n −R−∗

d→ 1.

Lemma 3.8. For any n,

t−n e
−E−

∗
d
= E ∧ t−n ,

where E is a standard exponential random variable.

Lemma 3.9. As n→∞, P (Gn)→ 1.

To show how the lemmas give the theorem, we proceed as follows. On Gn, we have

log YC−

∗

(t−n −R−∗ )

log n
≤ logMn

log n
≤

log YC−

∗

(t+n −R−∗ )

logn
(3.5)

and

Bn − 1 = Y
thinned(E−

∗
)

C−

∗

(t−n −R−∗ ). (3.6)

So to show that (logMn/ log n,Bn)
d→ (U, 1 + Y (UE)), it is enough to show that

(

log YC−

∗

(t−n −R−∗ )

logn
,
log YC−

∗

(t+n −R−∗ )

log n
, Y

thinned(E−

∗
)

C−

∗

(t−n −R−∗ )

)

d→ (U,U, Y (UE)) . (3.7)
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We can write (t−n −R−∗ )/t
−
n = U and t−n e

−E−

∗ = E ∧ t−n , where U ∼ U [0, 1] and E ∼ Exp(1),
and U , E and Y1, Y2, . . . are independent.

Using Lemma 3.7 and the fact that t−n / logn→ 1, we can rewrite the left-hand side of (3.7)
as

(

AnU,BnU, Y
thinned(E−

∗
)

C−

∗

(t−nU)
)

,

where An
d→ 1 and Bn

d→ 1 as n→∞. Thus, using Slutsky’s Lemma, it is enough to show
that

(

U,U, Y
thinned(E−

∗
)

C−

∗

(t−nU)
)

d→ (U,U, Y (UE)) . (3.8)

Recall that we can replace the process (Y
thinned(E−

∗
)

C−

∗

(s), s ≥ 0) by (Y (e−E
−

∗ s), s ≥ 0), and

that t−n e
−E−

∗ = E ∧ t−n . Then the left-hand side of (3.8) becomes
(

U,U, Y
(

U(E ∧ t−n )
))

.

Since t−n →∞, this indeed converges in distribution to (U,U, Y (UE)), as desired.

It remains to prove the three lemmas.

Proof of Lemma 3.7. For a standard Yule process Y ,

P (Y (t) = m) = (1− e−t)m−1 − (1− e−t)m

and so, for any 0 < ε < 1,

P
(

log Y (t)

t
∈ (1− ε, 1 + ε]

)

= (1− e−t)be
(1−ε)tc − (1− e−t)be

(1+ε)tc,

which converges to 1 as t→∞. Thus,

log Y (t)

t

d→ 1,

as t→∞. Hence, if Vn is a sequence of random variables such that Vn
d→∞ as n→∞ (in

the sense that P (Vn > x)→ 1 as n→∞, for all x), then also

log Y (Vn)

Vn

d→ 1,

as n→∞.

The first two parts of the lemma follow, since R−∗ ∼ U [0, t−n ], and so t−n −R−∗ and t+n −R−∗
both converge to infinity in distribution.

The last part is immediate from the facts that R−∗ ∼ U [0, t−n ] and that t−n /t
+
n → 1. ¤

Proof of Lemma 3.8. Think of P now as a marked Poisson process: points arrive at rate
1 and the ith point carries the mark Ei, where the Ei are independent and identically
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distributed with standard exponential distribution. So, for s > 0, points with mark greater
than or equal to s arrive as a Poisson process of rate e−s. The quantity E−∗ is the largest
mark out of all those points arriving in the interval [0, t−n ]. So

P
(

E−∗ < s
)

= P
(

no mark ≥ s arrives in [0, t−n ]
)

= exp(−t−n e−s).

So for x < t−n , we have

P
(

t−n e
−E−

∗ > x
)

= P
(

E−∗ < − log

(

x

t−n

))

= e−x.

Also, E−∗ ≥ 0 with probability 1, so t−n e
−E−

∗ ≤ t−n with probability 1. Thus, indeed, t−n e
−E−

∗

has the distribution of E ∧ t−n , as required. ¤

Proof of Lemma 3.9. The time, Tn, of the (n−1)th birth in a standard Yule process satisfies

Tn
d
= Ẽ1 +

1

2
Ẽ2 + · · ·+

1

n− 1
Ẽn−1,

where Ẽ1, Ẽ2, . . . , Ẽn−1 are independent and identically distributed standard exponential
random variables. Hence, E [Tn] = logn + O(1) and var (Tn) = O(1), so Chebyshev’s
inequality gives

P
(

Tn ∈ (t−n , t
+
n )
)

→ 1, (3.9)

as n→∞.

Suppose now that Tn ∈ (t−n , t
+
n ) but that C∗ 6= C−∗ . This implies the event that, out of

all the children of the root arriving in [0, t+n ], the one with the largest exponential lifetime
arrived in [t−n , t

+
n ]. The probability of this event is simply the ratio (t+n − t−n )/t

+
n , which

converges to 0 as n→∞. Thus, we have

P
(

C∗ 6= C−∗ , Tn ∈ (t−n , t
+
n )
)

→ 0, (3.10)

as n→∞.

Finally, we need to show that

P
(

Y
thinned(E−

∗
)

C−

∗

(t−n −R−∗ ) = Y
thinned(E−

∗
)

C−

∗

(t+n −R−∗ )
)

→ 1. (3.11)

As observed earlier, we can replace the process Y
thinned(u)

C−

∗

(s) by Y (e−us) and so we need to

show that
P
(

Y (e−E
−

∗ (t−n −R−∗ )) = Y (e−E
−

∗ (t+n −R−∗ ))
)

→ 1.

As before, we can put t−n −R−∗ = t−nU and e−E
−

∗ = (E ∧ t−n )/t−n to rewrite this as

P
(

Y
(

U(E ∧ t−n )
)

= Y
(

U(E ∧ t−n ) t
+
n−R

−

∗

t−n−R
−

∗

))

→ 1.
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Now P (E > t−n )→ 0 and
(

t+n −R−∗
)

/
(

t−n −R−∗
) d→ 1 as n→∞ (by Lemma 3.7), so it will

be enough to show that

P (a jump of Y occurs in the interval (UE, (1 + ε)UE))→ 0,

as ε ↓ 0. This is easily seen to be true (for example, by integrating over U and E), since
E [Y (t)] is continuous in t.

Putting (3.9), (3.10) and (3.11) together, we have that P (Gn)→ 1 as n→∞, as required. ¤

3.5 Proof of Theorem 3.5

The self-contained proof of Theorem 3.5 which we give here mostly consists of the analysis
of certain recurrence formulas via generating functions (see Wilf [28] for an excellent intro-
duction to this method). We will start by proving the l = 1 case and will then see that this
enables us to prove the rest of the theorem. Let

x(m)
n = P (X enters 1 from m|X0 = n)

for m ≥ 2 (we do not need to condition on X entering 1 ever as this occurs almost surely).
Then,

x(m)
m = pm,1 =

1

(m− 1)2
(3.12)

and, by the Markov property, for n ≥ m+ 1,

x(m)
n =

n−m+1
∑

k=2

pn,n−k+1 x
(m)
n−k+1 =

n

n− 1

n−m+1
∑

k=2

x
(m)
n−k+1

k(k − 1)
. (3.13)

We can re-phrase the l = 1 case of Theorem 3.5 as

Theorem 3.10. Let m ≥ 2. If (x
(m)
n , n ≥ m) satisfies (3.12) and (3.13) then

lim
n→∞

x(m)
n =

1

m− 1

m−1
∑

k=1

(

m− 1
k

)

(−1)k+1 log(k + 1).

The generating function of the sequence (x
(m)
n , n ≥ m) we will use is defined as

f(m)(t) =

∞
∑

n=1

x
(m)
n+m−1t

n+m−2, (3.14)

for t ∈ [0, 1).

The key to proving Theorem 3.10 is the following result on the convergence of power series.
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Proposition 3.11. Suppose that f(t) =
∑∞

n=1 fnt
n is a power series with positive real

coefficients such that

|fn − fn−1| ≤
C

n− 1
(3.15)

for some constant C ∈ (0,∞) and all n ≥ 2. Suppose that

(1− t)f(t)→ f∗ (3.16)

as t→ 1−. Then limn→∞ fn = f∗.

Proof. We have (1 − t)f(t) =
∑∞

n=1(fn − fn−1)t
n, where we take f0 = 0 for convenience.

Then by Littlewood’s Tauberian theorem (see, for example, Theorem 1.1 of Chapter 2 in
van de Lune [27])

f∗ =
∞
∑

n=1

(fn − fn−1).

This sum telescopes and so we have limn→∞ fn = f∗, as required.

In view of Proposition 3.11, we would like to prove a condition like (3.15) for the sequence

(x
(m)
n , n ≥ m). It turns out to be easier to prove this for a more general situation. Let the

sequence (xn, n ≥ m) be defined as follows for fixed m ≥ 2: for some xm ∈ (0, 1],

xn =

n−m+1
∑

k=2

an,k
bn

xn−k+1, n ≥ m+ 1, (3.17)

where the non-negative coefficients (an,k)2≤k≤n satisfy

an,k = n−k+1
n+1 an+1,k +

k+1
n+1an+1,k+1, 2 ≤ k ≤ n (3.18)

and
bn = an,2 + an,3 + · · ·+ an,n, n ≥ 2. (3.19)

Conditions (3.18) and (3.19) are exactly those satisfied by the rates in a general Λ-coalescent
and (3.17) is the recurrence that arises for its reversed-time transition probabilities. In
Pitman’s notation of [21], an,k = ( nk )λn,k and bn =

∑n
k=2 (

n
k )λn,k, where λn,k =

∫ 1
0 xk−2(1−

x)n−kΛ(dx) and Λ is any finite measure. In the Bolthausen-Sznitman case, an,k = n
k(k−1)

and bn = n− 1.

Lemma 3.12. For n ≥ 3, bn = bn−1 +
2
nan,2.

Proof. We have

bn−1 = an−1,2 + an−1,3 + · · ·+ an−1,n−1

=
(

n−2
n an,2 +

3
nan,3

)

+
(

n−3
n an,3 +

4
nan,4

)

+ · · ·+
(

2
nan,n−2 +

n−1
n an,n−1

)

+
(

1
nan,n−1 + an,n

)

by (3.18)

= − 2
nan,2 + an,2 + an,3 + · · ·+ an,n

= bn − 2
nan,2.
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Lemma 3.13. For n ≥ m+ 2,

xn−1 − xn =
1

bn

{

n−m
∑

k=2

n−k
n an,k(xn−k − xn−k+1)− m−1

n an,n−m+1xm

}

. (3.20)

Proof. We have

bnxn = an,2xn−1 + an,3xn−2 + · · ·+ an,n−m+1xm

and

bn−1xn−1 = an−1,2xn−2 + an−1,3xn−3 + · · ·+ an−1,n−mxm

=
(

n−2
n an,2 +

3
nan,3

)

xn−2 +
(

n−3
n an,3 +

4
nan,4

)

xn−3

+ · · ·+
(

m
n an,n−m + n−m+1

n an,n−m+1

)

xm

= bnxn − an,2xn−1 − an,3xn−2 − · · · − an,n−m+1xm

+
(

n−2
n an,2 +

3
nan,3

)

xn−2 + · · ·+
(

m
n an,n−m + n−m+1

n an,n−m+1

)

xm

= bnxn − 2
nan,2xn−1 +

n−2
n an,2(xn−2 − xn−1) +

n−3
n an,3(xn−3 − xn−2)

+ · · ·+ m
n an,n−m(xm − xm+1)− m−1

n an,n−m+1xm.

Hence,

(

bn−1 +
2
nan,2

)

xn−1

= bnxn + n−2
n an,2(xn−2 − xn−1) + · · ·+ m

n an,n−m(xm − xm+1)− m−1
n an,n−m+1xm

and so, by Lemma 3.12,

xn−1 − xn =
1

bn

{

n−2
n an,2(xn−2 − xn−1) + · · ·+ m

n an,n−m(xm − xm+1)− m−1
n an,n−m+1xm

}

which gives (3.20).

Lemma 3.14. For n ≥ m+ 1, we have

|xn−1 − xn| ≤
m

n− 1
. (3.21)

Proof. We proceed by induction. For n = m+ 1, by (3.17) we have

xm − xm+1 = xm

(

1− am+1,2

bm+1

)

≤ 1.
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Now suppose that (3.21) holds up to n− 1. From (3.20) and this induction hypothesis we
have

|xn−1 − xn| ≤
1

bn

{

n−m
∑

k=2

n−k
n an,k

m
n−k + m−1

n an,n−m+1

}

=
1

bn

{

m
n (an,2 + · · ·+ an,n−m) +

m−1
n an,n−m+1

}

≤ 1

bn

m

n

n
∑

k=2

an,k

≤ m

n− 1
.

Hence result.

Thus, we know that for the sequences (x
(m)
n , n ≥ m) associated with the Bolthausen-

Sznitman coalescent,

|x(m)
n−1 − x(m)

n | ≤ m

n− 1

for all n ≥ m+ 1.

As a final preparation for the proof of Theorem 3.10, we mention a simple identity.

Proposition 3.15. For m ≥ 2,

(1− e−r)m−1 − (1− e−r)m =
m
∑

k=2

(

m− 2
k − 2

)

(−1)k(e−(k−1)r − e−kr). (3.22)

Proof. By induction on m.

We are now ready to prove Theorem 3.10.

Proof of Theorem 3.10. Recall that for m ≥ 2 and t ∈ [0, 1),

f(m)(t) =
∞
∑

n=1

x
(m)
n+m−1t

n+m−2.

Then

f ′(m)(t) =
∞
∑

n=1

(n+m− 2)x
(m)
n+m−1t

n+m−3.

From (3.13), we have

(n− 1)x(m)
n = n

n−m+1
∑

k=2

x
(m)
n−k+1

k(k − 1)
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and so

tf ′(m)(t) =
∞
∑

n=1

(n+m− 2)x
(m)
n+m−1t

n+m−2

=
(m− 1)tm−1

(m− 1)2
+

∞
∑

n=2

(n+m− 1)tn+m−2
n
∑

k=2

x
(m)
n+m−k

k(k − 1)

=
tm−1

m− 1
+

∞
∑

n=2

n
∑

k=2

(n+m− k − 1)x
(m)
n+m−kt

n+m−k−1 · tk−1

k(k − 1)

+
∞
∑

n=2

n
∑

k=2

x
(m)
n+m−kt

n+m−k−1 · t
k−1

k − 1
. (3.23)

Now,

∞
∑

k=1

tk

k(k + 1)
=

1

t
((1− t) log(1− t) + t)

and

∞
∑

k=1

tk

k
= − log(1− t)

and so (3.23) becomes

tf ′(m)(t) =
tm−1

m− 1
+ ((1− t) log(1− t) + t) f ′(m)(t)− f(m)(t) log(1− t).

Re-arranging and integrating gives

(1− t)f(m)(t) = −
1

m− 1

∫ t

0

um−1

log(1− u)
du

=
1

m− 1

∫ − log(1−t)

0

(1− e−r)m−1 − (1− e−r)m

r
dr,

where we have changed variable with u = 1− e−r. By Proposition 3.15, we have

(1− t)f(m)(t) =
1

m− 1

m
∑

k=2

(

m− 2
k − 2

)

(−1)k
∫ − log(1−t)

0

(e−(k−1)r − e−kr)

r
dr.

Letting t→ 1−, the integral on the right-hand side becomes Frullani’s integral and so

lim
t→1−

(1− t)f(m)(t) =
1

m− 1

m
∑

k=2

(

m− 2
k − 2

)

(−1)k log
(

k

k − 1

)

=
1

m− 1

m−1
∑

k=1

(

m− 1
k

)

(−1)k+1 log(k + 1). (3.24)
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Thus, by Proposition 3.11, we have

p̂1,m = lim
n→∞

x(m)
n =

1

m− 1

m−1
∑

k=1

(

m− 1
k

)

(−1)k+1 log(k + 1).

¤

It remains only to show how the rest of Theorem 3.5 follows from Theorem 3.10. We first
note that

P (X enters l from m|X0 = n and X hits l) =
P (X enters l from m|X0 = n)

P (X hits l|X0 = n)
.

Let
y(l,m)
n = P (X enters l from m|X0 = n)

and
y(l)
n = P (X hits l|X0 = n) .

Then

y(l,m)
m =

m

(m− 1)

1

(m− l + 1)(m− l)

and the Markov property gives us that

y(l,m)
n =

n

n− 1

n−m+1
∑

k=2

y
(l,m)
n−k+1

k(k − 1)
, n ≥ m+ 1.

Thus, using (3.12) and (3.13), y
(l,m)
n = m(m−1)

(m−l+1)(m−l)x
(m)
n and so by Theorem 3.10,

lim
n→∞

y(l,m)
n =

m

(m− l + 1)(m− l)

m−1
∑

k=1

(

m− 1
k

)

(−1)k+1 log(k + 1).

Likewise, y
(l)
l = 1 and for n ≥ l + 1,

y(l)
n =

n

n− 1

n−l+1
∑

k=2

y
(l)
n−k+1

k(k − 1)
.

Thus, y
(l)
n = (l − 1)2x

(l)
n and so

lim
n→∞

y(l)
n = (l − 1)

l−1
∑

k=1

(

l − 1
k

)

(−1)k+1 log(k + 1).

Hence, finally,

p̂l,m = lim
n→∞

y
(l,m)
n

y
(l)
n

=
m

(l − 1)(m− l)(m− l + 1)

∑m−1
j=1

(

m−1
j

)

(−1)j+1 log(j + 1)
∑l−1

k=1

(

l−1
k

)

(−1)k+1 log(k + 1)
.
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It is clear from our argument that p̂l,m must be non-negative for all m > l ≥ 1. However,
by Fatou’s lemma, we know only that

∞
∑

m=l+1

p̂l,m ≤ 1.

We would like to show that (p̂l,m,m ≥ l+1) is really a distribution (i.e. that this inequality
is in fact an equality). The only thing that can go wrong is if mass “escapes to infinity”.
To show that this does not happen, we firstly make clear the probability space on which
we are working. For each state n, sample dn independently from the distribution (pn,k, 1 ≤
k ≤ n − 1). Then for any n, the path of X started with X0 = n is n, dn, ddn , . . .. Thus,
we have coupled the paths of the Markov chain X started from all different possible states.
Now for fixed l ≥ 1 consider the events

En := {X enters l from n} = {dn = l},

for n ≥ l+1. We have P (En) = pn,l =
n

(n−1)
1

(n−l+1)(n−l) . As
∑∞

n=l+1
n

(n−1)
1

(n−l+1)(n−l) <∞,

by the Borel-Cantelli Lemma, P (En i.o.) = 0. Hence, we must have

∞
∑

m=l+1

p̂l,m = 1.

Remark. It does not appear that the methods of this section can be extended to a more gen-
eral Λ-coalescent, despite the encouraging fact that Lemma 3.14 holds for all Λ-coalescents.
The generating function methods used rely crucially on special structure of the Bolthausen-
Sznitman case, in particular the fact that pn,n−k+1 decomposes neatly into two simple
factors, one involving only n and the other involving only k.
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Mat. Stat. (Theor. Probability and Math. Statist.), 51:1–29, 1994.

[25] J. Sondow. A faster product for π and a new integral for ln π
2 . To appear in Amer.

Math. Monthly ; available at http://arxiv.org/abs/math.NT/0401406, 2004.

[26] Richard P. Stanley. Enumerative Combinatorics. Vol. 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997.
With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.

[27] J. van de Lune. An Introduction to Tauberian Theory: From Tauber to Wiener, vol-
ume 12 of CWI Syllabi. Stichting Mathematisch Centrum Centrum voor Wiskunde en
Informatica, Amsterdam, 1986.

[28] Herbert S. Wilf. generatingfunctionology. Academic Press Inc., Boston, MA, second
edition, 1994.

745


