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1 Introduction

Let X̂t be reflecting Brownian motion on K = [0, 1]. It is well known that X̂ has generator
L̂ = 1

2∆, and Dirichlet form given by

E(f, f) =
1
2

∫
[0,1]

|∇f(x)|2dx on L2([0, 1], dx).

The transition density p̂t(x, y) of X satisfies the heat equation ∂p̂t/∂t = L̂p̂t, and for x ∈ [0, 1]
the short time asymptotics of p̂t(x, x) are given by

p̂t(x, x) ∼ (2πt)−1/2, t → 0.

Now let µ be a measure on K, with closed support K, and consider the Dirichlet form E(f, f)
on L2(K,µ). In probabilistic terms the associated process X can be obtained by a time change
of X̂ . Set At =

∫
K La

t µ(da), where (La
t ) are the (jointly continuous) local times of X̂, and

let τt = inf{s : As > t} be the right-continuous inverse of A. Then (see [9], Theorem 6.2.1),
Xt = X̂τt . If dµ/dx = a(x), where a is strictly positive and continuous, then X has a generator

Lf(x) =
1
2
a(x)−1∆f(x),

and the transition density pt(x, y) of X satisfies

pt(x, x) ∼ (2a(x)πt)−1/2, t → 0.

In this paper we wish to study the short time asymptotics of pt(x, x) in the case when µ is
singular with respect to Lebesgue measure, but still has closed support equal to K. For the
moment we will just discuss the case K = [0, 1], but our results do hold for more general self-
similar sets. We will assume that the measure µ is “multi-fractal” or self-similar. For [0, 1]
examples of measures of this kind are the de Rham p-measures µ = µ(p), where 0 < p < 1. µ(p)

is characterized by the property that, for any n ≥ 1 and 0 ≤ k ≤ 2n − 1,

µ(p)([k2−n, k2−n + 2−(n+1)]) = pµ(p)([k2−n, (k + 1)2−n]).

(This is the measure under which the coefficients xi in the dyadic expansion of x are independent
identically distributed random variables with mean 1 − p.)

Define
ds(x) = 2 lim

t→0

log pt(x, x)
− log t

,

for those x ∈ [0, 1] for which this limit exists.

Theorem 1.1 Let pt(x, y) be the transition density of the process X associated with E on
L2([0, 1], µ(p)), where 1

2 ≤ p < 1. For 0 ≤ θ ≤ 1 let

a(θ) = θ log
1
p

+ (1 − θ) log
1

1 − p
.
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1) If x is a dyadic rational then ds(x)/2 = a(1)/(log 2 + a(1)) = log(1/p)/ log(2/p).
2) µ(θ) almost everywhere ds(x)/2 = a(θ)/(log 2 + a(θ)).
3) There exist points x at which

lim inf
t→0

log pt(x, x)
− log t

< lim sup
t→0

log pt(x, x)
− log t

.

In fact our methods handle more general compact self-similar sets K, and include the following:

1) P.c.f. fractals with a ‘regular harmonic structure’ – see [16].
2) The unit cube [0, 1]d for d ≥ 2.
3) P.c.f. fractals with a harmonic structure which is not regular.
4) Sierpinski carpets in dimensions d ≥ 2 – see [5].

The unit interval is a special case of 1), and we can treat 2) as a special case of 4). In cases
1) and 3) the underlying diffusion is that given by the harmonic structure, while for 2) it is
standard Brownian motion on the unit cube, with normal reflection on the boundary. For 4) it
is the diffusion constructed in [2]. We restrict ourselves to self-similar (Bernoulli) measures µ
for which the topological support is the whole of K. In case 1) this is the only condition on µ,
but in the other cases a further condition (see (2.2)) is needed to ensure that µ does not charge
sets of capacity zero.
The main results of this paper are Theorem 3.5 and Corollary 3.6, which give upper and lower
bounds on the transition density pt(x, x). Specializing to the case K = [0, 1] we obtain Theorem
1.1.
The essential idea of this paper is to decompose K into regions D

(n)
i such that the process X

takes a time O(e−n) to cross each of these sets. The self-similarity of K means that these sets
are all the same ‘shape’, but in general different ‘sizes’. We therefore expect that, for most
x ∈ D

(n)
i , one should have

pt(x, x) ' µ(D(n)
i )−1. (1.1)

This estimate turns out to be correct whenever, on one hand, t is small enough so that P x(Xt ∈
D

(n)
i ) > c > 0, and on the other hand t is large enough so that pt(x, ·) has diffused over a

significant proportion of D
(n)
i . We will see that when x is suitably far from the boundary of

D
(n)
i then (with a few added constants) (1.1) holds.

We can, however, have adjacent regions D
(n)
i , D

(n)
j , with very different measures. For example,

in the case of [0, 1] with µ(p) the appropriate sets will be [12 − 2−n1 , 1
2 ], [12 , 1

2 + 2−n2 ], where
ni ' n/(log(2/pi)) and p1 = 1− p, p2 = p. Since pt(x, x) is continuous, (1.1) clearly cannot hold
close to 1

2 .
In this paper we do not tackle the problem, which seems in general quite hard, of identifying
how pt(x, x) behaves in these boundary zones. We are, however, able to show that the sets of
bad points (where our upper and lower bounds differ significantly) is small, and this enables us
to make the kind of estimates given in Theorem 1.1.
If we set

Jγ = {x ∈ K : ds(x) exists and equals to γ}
then we have a multi-fractal decomposition of K into {Jγ}γ and K \∪γJγ . A forthcoming paper,
[12], studies the Hausdorff dimensions of these sets.
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2 Dirichlet forms on some self-similar sets with multi-fractal

measure

2.1 Self-similar sets

In this section we describe the spaces we consider, and give the properties of the Dirichlet forms
on them that we will need. We begin with the definition of a self-similar space: see [1], [18] for
more details and examples.

Notation.
1) Let S = {1, 2, · · · , N}. The one-sided shift space Σ is defined by Σ = SN .
2) For w ∈ Σ, we denote the i-th element in the sequence by wi and write w = w1w2w3 · · ·.
3) If w ∈ Sn, we define |w| = n.
4) Let σ : Σ → Σ be the left shift map, i.e. σw = w2w3 · · · if w = w1w2 · · ·. Define σ̃s : Σ → Σ
by σ̃sw = sw for s ∈ S.

Definition 2.1 Let K be a compact metrizable space and for each s ∈ S, Fs : K → K be a
continuous injection. Then, L = (K,S, {Fs}s∈S) is said to be a self-similar structure on K if
there exists a continuous surjection π : Σ → K such that π ◦ σ̃s = Fs ◦ π for every s ∈ S.

For w ∈ Sn, we denote Fw = Fw1 ◦Fw2 ◦ · · · ◦Fwn and Kw = Fw(K). In particular, Ks = Fs(K)
for s ∈ S. We remark that the unit interval is a simple example of a self-similar structure: take
N = 2 so that Σ = {1, 2}N and let

π(w) =
∞∑
i=1

(wi − 1)2−i.

Definition 2.2 Let L = (K,S, {Fs}s∈S) be a self-similar structure on K. Then the critical set
of L is defined by

C(L) = π−1(∪s,t∈S,s 6=t(Ks ∩ Kt))

and the post critical set of L is defined by

P (L) = ∪n≥1σ
n(C(L)).

See [1], Section 5, for the computation of C(L) and P for some simple examples. In the case of
the unit interval, with the self-similar structure given above, we have P (L) = {0, 1}.
For m ≥ 0, let

P (m) = ∪w∈SmwP, Vm = π(P (m)), V∗ = ∪m≥0Vm and
◦

Vm= Vm − V0.

We call V0 the boundary of K. A Bernoulli (probability) measure on K is a measure µ on K
such that µ(Fi(K)) = µi > 0, where

∑N
i=1 µi = 1. For u ∈ L1(K,µ) we write ū =

∫
K udµ.

In this paper, we will consider connected self-similar sets (K,S, {Fs}s∈S), with a local regular
Dirichlet forms (E ,F) on L2(K,µ) which satisfy the following assumption.
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Assumption 2.3 (a) (E ,F) is a closed local regular Dirichlet form on L2(K,µ) so that for each
f ∈ F , f ◦ Fi ∈ F for all i ∈ S. Further, (E ,F) satisfies, for some ρi > 0, i ∈ S, the following
self-similarity property:

E(f, g) =
N∑

i=1

ρiE(f ◦ Fi, g ◦ Fi) ∀f, g ∈ F . (2.1)

(b) µ is a Bernoulli measure on K with

0 < µi < ρi, ∀i ∈ S. (2.2)

(c) There exists c2.1 > 0 such that

E(f, f) ≥ c2.1

∫
K
|f − f̄ |2dµ ∀f ∈ F . (2.3)

(d) The semigroup (Pt)t≥0 associated with E on L2(K,µ) has a jointly continuous density pt(x, y),
t > 0, x, y ∈ K. (This is the transition density of the associated diffusion process X with respect
to µ.)

In the remainder of this section we will discuss the existence of Dirichlet forms satisfying this as-
sumption for the two classes of spaces treated in this paper: p.c.f self-similar sets, and Sierpinski
carpets.

First we give some more notation. Set ti = ρi/µi, for 1 ≤ i ≤ N . We remark that ρi can be
interpreted as the conductance associated with Fi(K) and that t−1

i is the time scaling factor for
the diffusion process on Fi(K). Let Λn be defined by

Λn = {w = w1 · · ·wk ∈ ∪i≥0S
i : tw1 · · · twk−1

≤ en < tw1 · · · twk
},

with Λ0 = ∅. We write tw = Πk
i=1twi , ρw = Πk

i=1ρwi etc. for w = w1 · · ·wk. Throughout the
paper, we denote

t∗ = max
i

ti, t∗ = min
i

ti, µ∗ = max
i

µi, µ∗ = min
i

µi.

From (2.1) we have
E(f, f) =

∑
w∈Λn

ρwE(f ◦ Fw, f ◦ Fw) ∀f ∈ F .

We call a set of the form Fw(K), an m-complex if w ∈ Sm and a Λl-complex if w ∈ Λl. For
A ⊂ K and m ≥ 0, let

Dm(A) = {C : C is a m-complex such that A ∩ C 6= ∅ },

and let D1
m(A) = Dm(Dm(A)). We define DΛl

(x) and D1
Λl

(x) analogously. Set ∂DΛl
(x) =

cl(K \DΛl
(x))∩DΛl

(x). For x ∈ K − V∗ let Λr(x) be the length of the word of the Λr-complex
to which x belongs: note that DΛr(x)(x) = DΛr(x).
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Figure 1: The Sierpinski gasket

2.2 P.c.f. self-similar sets and their Dirichlet forms

We call the self-similar set (K,S, {Fs}s∈S) a p.c.f fractal set if the post critical set P (L) is a
finite set – p.c.f. here stands for ‘post critically finite’. This condition implies that K is finitely
ramified.
These sets were introduced by Kigami ([16]). In [16], [18], [20] it is shown that, provided a
‘non-degenerate harmonic structure’ exists, then a closed regular local Dirichlet form satisfying
(2.1) exists, with the property that E(f, f) = 0, f ∈ F , implies that f is constant. (For work
on the existence of non-degenerate harmonic structures see [25], [23].) In [16] the additional
hypothesis of ‘regularity’ of the harmonic structure was imposed: in our context this means that
the conductivities ρi satisfy

ρi > 1, ∀i ∈ S. (2.4)

We now summarise how the remainder of Assumption 2.3 is proved in this case. Because the
resolvent operator is compact (see [18], [20]) and Ptf = f if and only if f is constant, there is a
spectral gap so that (2.3) holds.
Let Lµ be the self-adjoint operator on L2(K,µ) associated with the Dirichlet form (E ,F), and
let {λn}n be the eigenvalues of −Lµ and {ϕn}n be the normalized eigenfunctions. In [18], it is
proved that ϕn is continuous and

‖ϕn‖∞ ≤ λκ
n n ≥ 1,

where κ depends only on the Dirichlet form and K. Thus, by Mercer’s theorem,

pt(x, y) =
∑
n

e−λntϕn(x)ϕn(y),

and the right hand side converges uniformly. This proves joint continuity of the transition
density, and completes the verification of Assumption 2.3.

Let nµ(x) = #{λ : λ is an eigenvalue of −Lµ ≤ x.}. In [19], [18] it is proved that, if de
s(µ) > 0

is the unique positive number satisfying
N∑

i=1

(µi/ρi)d
e
s(µ)/2 = 1, (2.5)

6



then
0 < lim inf

x→∞ nµ(x)/xde
s(µ)/2 ≤ lim sup

x→∞
nµ(x)/xde

s(µ)/2 < ∞.

In the case when (2.4) and (2.5) holds, let ν be the Bernoulli measure satisfying

νi = ρ−σ
i ∀i ∈ S, (2.6)

where σ is the unique constant which satisfies
∑N

i=1 ρ−σ
i = 1. Then maxµ de

s(µ)/2 (where µ is
taken to be a Bernoulli measure on K) is attained only at ν, and the maximum value is σ/(σ+1).
For this special case, (i.e. µ = ν) detailed estimates on pt(x, y) are obtained in [13]. We remark
that if (2.4) holds then (2.2) is satisfied for any Bernoulli measure µ (with µi > 0), and that
de

s(µ) < 2. In general, however, it is possible to have de
s(µ) > 2.

2.3 Sierpinski carpets and their Dirichlet forms

Let H0 = [0, 1]d, and let l ∈ N, l ≥ 2 be fixed. Set Q = {Πd
i=1[(ki − 1)/l, ki/l] : 1 ≤ ki ≤ l, ki ∈

N (1 ≤ i ≤ d)}, let l ≤ N ≤ ld and let Fi, 1 ≤ i ≤ N be orientation preserving affine maps of H0

onto some element of Q. (We assume that the sets Fi(H0) are distinct.) Set H1 = ∪i∈SFi(H0).
Then, there exists a unique non-empty compact set K ⊂ H0 such that K = ∪i∈SFi(K) and
(K,S, {Fs}s∈S) is a self-similar structure. K is called a Sierpinski carpet if the following hold:
(SC1) (Symmetry) H1 is preserved by all the isometries of the unit cube H0.
(SC2) (Connected) H1 is connected.
(SC3) (Non-diagonality) Let B be a cube in H0 which is the union of 2d distinct elements of
Q. Then if (H1 ∩ B)o is non-empty, it is connected.
(SC4) (Borders included) H1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 = · · · = xd = 0}.

Here (see [5]) (SC1) and (SC2) are essential, while (SC3) and (SC4) are included for technical
convenience. The main difference from p.c.f. self-similar sets is that Sierpinski carpets
are infinitely ramified: the critical set C(L) in Definition 2.2 is infinite, and K cannot be
disconnected by removing a finite number of points. In fact, for the classical Sierpinski carpet
in R

d with l = 3 and N = 3d − 1 we have V0 = ∂[0, 1]d. Write df = df (K) = log N/ log l for
the Hausdorff dimension of K. Note that the d-dimensional unit cube [0, 1]d, d ≥ 2, can be
included as an example of a Sierpinski carpet by taking N = ld.

We write ν for the Bernoulli measure with weights νi = 1/N : ν is a multiple of the Hausdorff
measure on K. In [2], [21], [5], [14] a non-degenerate Dirichlet form E ′ on L2(K, ν) is constructed
on these spaces, with the property that E ′ is invariant under local isometries of K – and in
particular E ′ is the same on each k-complex. The uniqueness of E ′ is an open problem – see [5].
If E ′ were unique then (2.1) would follow immediately. However, without requiring uniqueness,
in [21] (see also Remark 5.11 of [5] and [17]) a compactness argument is used to construct a
Dirichlet form E with the same invariances as E ′ and in addition satisfying (2.1) in the case
when, for a constant ρK depending on K,

ρi = ρK , 1 ≤ ∀i ≤ N.

Let tK = ti = NρK , and let X̂ = (X̂t, t ≥ 0) be the diffusion associated with E and L2(K, ν).
We define dw = log tK/ log l, the walk dimension of K, and ds = 2 log N/ log tK , the spectral
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Figure 2: The Sierpinski carpet

dimension of K. When K = [0, 1]d, X̂ is just reflecting Brownian motion on [0, 1]d, tK = l2

and ρK = l2−d. As X̂ satisfies the same local isotropy condition as the processes studied in [2],
[5], the techniques of those papers apply to X̂ and lead to the same estimates for the Green’s
function and transition density of the process.

Let µ be a Bernoulli measure satisfying (2.2). We now verify Assumption 2.3. For functions
f, g, write f � g if there exists c1, c2 > 0 such that c1g(x) ≤ f(x) ≤ c2g(x) for all x. We have
the following estimate of the 1-order Green’s kernel for the process X̂. The proof follows from
the estimates and methods of [1], [4], [5].

Proposition 2.4 There exists a Green’s kernel ĝ1(x, y) which is continuous on K×K \{x 6= y}
(and on K × K when ds < 2), and satisfies the following:

Ex[
∫ ∞

0
e−tf(X̂t)dt] =

∫
K

ĝ1(x, y)f(y)dν ∀f ∈ B(K),

ĝ1(x, y) �



c2.2|x − y|dw−df if ds > 2,
−c2.3 log |x − y| + c2.4 if ds = 2,
c2.5 if ds < 2.

We now wish to consider E on the space L2(K,µ), and to do this we use an argument due to
Osada [24].

For an open set B ⊂ K, define the capacity of B by

Cap(B) = inf{Ê1(u, u) : u ∈ F , u ≥ 1 on B},

where for β ≥ 0, Êβ(u, u) = E(u, u) + β‖u‖2
L2(K,ν). The capacity of any set F ⊂ K is defined as

the infimum of the capacity of open sets which contain F . We say that µ charges no set of zero
capacity if the following holds:

µ(A) = 0 for all A ∈ B(K) such that Cap(A) = 0.

Lemma 2.5 Under the condition (2.2), µ charges no sets of zero capacity.
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Proof. If ds < 2 then points have strictly positive capacity, and the result is immediate. We
prove the result for ds > 2: the proof for ds = 2 is similar. It is well-known that for each
compact set M ⊂ K,

Cap(M) = sup{m(M) : m is a positive Radon measure, Supp[m] ⊂ M,

Ĝ1m(x) ≡
∫

M
ĝ1(x, y)m(dy) ≤ 1, ∀x ∈ K}. (2.7)

Using Proposition 2.4,∫
M

ĝ1(x, y)µ(dy) ≤
∫

K
ĝ1(x, y)µ(dy)

≤
∞∑

n=0

∫
l−n−1≤|x−y|max<l−n

ĝ1(x, y)µ(dy)

≤ c1

∑
n

ln(df−dw)µ(l−n−1 ≤ |x − y|max < l−n)

≤ c2

∑
n

ln(df−dw)(µ∗)n ≡ c3 < ∞,

because of the assumption (2.2) (note that l(df−dw) = N/tK = ρ−1
K ). Here |y|max = maxi |yi|

for y = (y1, · · · , yd) ∈ R
d. Thus, setting µM (·) ≡ µ(· ∩ M), we have G1µM ≤ c3. Using (2.7),

Cap(M) ≥ µ(M)/c3 for each compact set M , thus for each Borel set, which completes the
proof. �

As µ is a Radon measure which charges no set of zero capacity, it is a smooth measure in the
sense of [9] (p. 80). Thus, it is a Revuz measure for some positive continuous additive functional
A (see section 5.1 of [9]) and we can time change by the inverse of A – see section 6.2 of [9].
Let S denote the quasi support of µ (see p. 168 of [9]) for the Dirichlet form on L2(K, ν). Note
that S ⊂ K and µ(K \ S) = 0. For a set A, denote σA = inf{t > 0 : X̂t ∈ A}. Define

F̃ = {φ ∈ L2(K,µ) : φ = u µ − a.e. for some u ∈ Fe},
Ẽ(φ, φ) = E(HSu,HSu), φ ∈ F̃ , φ = u µ − a.e., u ∈ Fe,

where HSu(x) = Exu(X̂σS ) for x ∈ K and Fe is the extended Dirichlet space associated with
(E ,F) (p. 35 of [9]). By Theorem 5.1.5 and Theorem 6.2.1 of [9], (Ẽ , F̃) is a closed regular
Dirichlet form on L2(K,µ). The next proposition shows that E = Ẽ , so that the Dirichet form
is not affected by the time change.

Proposition 2.6 Assume (2.2). Then

P x(σS = 0) = 1 ∀x ∈ K. (2.8)

Proof. If ds < 2, then S = K and (2.8) is clear. We now prove (2.8) for ds > 2: a similar proof
works for ds = 2. Let An(x) = {y ∈ K : l−n−1 ≤ |x − y|max < l−n}, and Sn(x) = S ∩ An(x).
Note that as µi > 0 for all i ∈ S, µ(Sn(x)) 6= 0 for n ≥ 0. To prove (2.8) it is enough to prove
that ∞∑

n=1

ln(df−dw) Cap(Sn(x0)) = ∞ ∀x0 ∈ K. (2.9)
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If K = [0, 1]d this is just the classical Wiener test (see [15] or [22]); the result used here follows,
using Proposition 2.4, by exactly the same arguments.

Using Kelvin’s principle (see Section 2.2 of [9]), we have for each compact set M ⊂ K,

{Cap(M)}−1 = inf
∫

M×M
ĝ1(x, y)m(dx)m(dy), (2.10)

where the infimum is taken over the positive Radon measures m with m(M) = 1. Now, take
an arbitrary compact set M ⊂ Sn(x0) such that µ(M) ≥ µ(Sn(x0))/2. Then µ(M ∩ Ak(x)) ≤
µ(Sn(x0) ∩ Ak(x)) ≤ c1µ(Sn(x0))(µ∗)k−n ≤ 2c1µ(M)(µ∗)k−n for k ≥ n. So, using Proposition
2.4 as before, we have

µ(M)−2

∫
M×M

ĝ1(x, y)µ(dx)µ(dy) ≤ µ(M)−2

∫
M

µ(dx)
∫

M
c2|x − y|dw−df

max µ(dy)

≤ c3µ(M)−2

∫
M

µ(dx)
∞∑

k=n

lk(df−dw)µ(M ∩ Ak(x))

≤ c4µ(M)−2

∫
M

µ(dx)
∞∑

k=n

lk(df−dw)µ(M)(µ∗)k−n

= c4l
n(df−dw)

∞∑
j=0

lj(df−dw)(µ∗)j ≤ c5l
n(df−dw).

Here we used the fact that ldf−dwµ∗ = ρ−1
K µ∗ < 1 (due to assumption (2.2)) in the last inequality.

Taking m(·) = µ(· ∩M)/µ(M) in (2.10), we have Cap(M) ≥ c−1
5 l−n(df−dw). As this holds for all

compact sets M ⊂ Sn(x0) with µ(M) ≥ µ(Sn(x0))/2, we have Cap(Sn(x0)) ≥ c−1
5 l−n(df−dw),

which proves (2.9). �

We thus obtain a closed local regular Dirichlet form (E , F̃) on L2(K,µ) with the property (2.1):
write X for the associated diffusion.

We next show that (2.3) holds. If ds < 2 then this is easy to verify directly. We omit the
argument for ds = 2: it follows by similar arguments to those for ds > 2.

For A ⊂ K write TA = inf{t ≥ 0 : Xt ∈ A}. Let x ∈ K − V∗, and σn = TDn(x)c . Let g(x, y)
be the (0th order) Green’s function for X̂ killed on hitting Dn(x)c. From [5] we have that
g(x, y) ≤ c|x − y|dw−df . As the 0th-order Green’s function is not affected by the time change,
by a calculation similar to that in Lemma 2.5

Exσn =
∫

Dn(x)
g(x, y)µ(dy) ≤ c1

∫
Dn(x)

|x − y|dw−df dµ

≤ c2

∞∑
k=n

lk(df−dw)(µ∗)k ≤ c3(t∗)−n ≤ c3e
−c4n. (2.11)

Define Uλf(x) = Ex[
∫ ∞
0 e−λtf(Xt)dt] for λ > 0. Using (2.11), the argument of [5] Proposition

6.14 goes through (with some modification) to prove that there exists β > 0 such that

|Uλf(x) − Uλf(y)| ≤ c1(2 + λ−1)|x − y|β‖f‖∞ ∀x, y ∈ K. (2.12)
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Then, by Ascoli-Arzelà’s theorem, X has a compact resolvent. It is clear that Ptf = f if and
only if f is constant. Thus there is a spectral gap, and (2.3) holds.
Finally, we prove the joint continuity of the transition density. As Pt is a self-adjoint compact
operator on L2(K,µ), there exist ϕ̃i that form a complete orthonormal system in L2(K,µ) with

pt(x, y) =
∞∑
i=1

e−λitϕ̃i(x)ϕ̃i(y), for µ2-a.e. (x, y).

Further, the convergence is absolute and takes place in L∞(K × K) (see [5] Proposition 6.15).
As Ptϕ̃i = e−λiϕ̃i a.e., we have Uλϕ̃i = (λ + λi)−1ϕ̃i a.e.. Defining ϕi = (λ + λi)Uλϕ̃i, we have
ϕi = ϕ̃i a.e. and by (2.12), ϕi is continuous. On the other hand, by a routine argument from
(2.3) plus hitting time estimates in Proposition 4.3 which will be proved later, we have

pt(x, x) ≤ c1t
−γ1 ∀x ∈ K, 0 < t < 1, (2.13)

for some γ1 > 0 depending only on the Dirichlet form and µ (the detailed argument will be
given for the killed process on DΛm(x) in Proposition 5.1). Note that this upper bound is not
sharp, but it is enough to deduce the continuity of pt(x, y). By this estimate, we see that
‖Pt‖2→∞ ≤ c1t

−γ1/2. Thus,

‖Ptϕi‖∞ = e−λit‖ϕi‖∞ ≤ c1t
−γ1/2 ∀i.

Taking t = 1/λi, ‖ϕi‖∞ ≤ c2λ
−γ1/2
i . Thus we can take a version of transition density as

pt(x, y) =
∑
n

e−λntϕn(x)ϕn(y),

and the convergence is uniform. This proves joint continuity of the density.
We thus obtain a Dirichlet form on L2(K,µ) which satisfies Assumption 2.3.

3 Main Theorems

In the following, we identify Sn and the set of all n-complexes. For x, y ∈ K, we say Π =
{x, x1, · · · , xl, y} is an m-walk of length |Π| = l + 1 if x1, · · · , xl ∈ Sm, x ∈ Fx1(K), y ∈ Fxl

(K)
and Fxi , Fxi+1 are adjacent m-complexes for 1 ≤ i ≤ l − 1. For simplicity, we will assume the
following in the p.c.f. self-similar set case.

Assumption 3.1 Let L = (K,S, {Fs}s∈S) be a p.c.f. self-similar set. For each x, y ∈ V0 with
x 6= y and for each m ≥ 0,

min{|Π| : Π is a m-walk from x to y} ≥ 2m.

We remark that if the self-similar structure L is changed to Ll = (K,Sl, {Fw}w∈Sl), then for
sufficiently large l, Ll satisfies Assumption 3.1. For x ∈ K\V∗, let nr,j(x) be the shortest number
of steps by a (Λr(x) + j)-walk from x to ∂DΛr(x). Further, for x ∈ K \ V∗, define

pr(x) = min{k : x /∈ DΛr(x)+k(∂DΛr (x))}.
Since ∩kDk(A) = A if A ⊂ K is closed, we have pr(x) < ∞ for x ∈ K \ V∗. Note that
pn−1(x) ≤ pn(x) + C for some C > 0, independent of n and x.
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Lemma 3.2 There exist c3.1 > 0 such that the following holds for all r, j ≥ 0 and x ∈ K \ V∗.

e(j−pr(x))+/2 ≤ 2(j−pr(x))+ ≤ nr,j(x) ≤ c3.1e
([log t∗]+1)j/2, (3.1)

where for x ∈ R , x+ = max(x, 0).

Proof. Using Assumption 3.1 in the p.c.f. case, and the fact that l ≥ 2 in the carpet case, we
have nr,j(x) ≥ 2(j−pr(x))+ . Since e < 4 the first inequality is immediate.

Noting that if r ≥ n log t∗ then Λr(x) > n for all x ∈ K − V∗, the third inequality can be
obtained by an easy modification of the proof of Lemma 3.3 in [13]. �

Now let µ̂ be any Bernoulli measure on K so that µ̂(V0) = 0, µ̂(Fi(K)) = µ̂i for all i where
µ̂i ≥ 0 satisfies

∑
i µ̂i = 1. We emphasise that we continue to consider the density of X with

respect to µ: the role of µ̂ will be to select subsets of K with different limiting behaviour of
pt(x, x).

As in [11], Lemma 6, we have

Proposition 3.3 There exists α > 0 and g : K → [0,∞) such that for µ̂-a.e. x ∈ K,

(rj)−αej/2 ≤ nr,j(x) ≤ c3.1e
([log t∗]+1)j/2 ∀r ≥ 0,∀j ≥ g(x).

Proof. First note that if x 6∈ Dk(V0) then any j-walk from x to V0 requires at least 2j−k steps.
Also, there exists θ < 1 such that µ̂(Dk(V0)) ≤ c0θ

k for k ≥ 1.

Since each Λn complex is a scaled copy of K it follows that for 2 ≤ k ≤ j,

µ̂({x : nr,j(x) ≤ 2j−k}) ≤ c0θ
k.

So, if α0 = log 2/ log(1/ρ),

µ̂({x : 2−jnr,j(x) ≤ λ) ≤ c1λ
1/α0 for 0 < λ < 1.

So

µ̂({x : 2−jnr,j(x) ≤ λr−α0−1 for some r ≥ 0}) ≤
∞∑

r=0

µ̂(2−jnr,j(x) ≤ λr−α0−1)

≤
∑

r

c1(λr−α0−1)1/α0 ≤ c2λ
1/α0 .

Taking λ = j−α0−1 and applying Borel-Cantelli it follows that, µ̂-a.e., nr,j(x) ≥ (rj)−α0−12j for
all sufficiently large j. Putting α = α0 + 1, the first inequality follows. The second inequality is
the same as in (3.1). �

We now state our main theorems.
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Theorem 3.4 There exists c3.2, · · · , c3.8 > 0 such that the following holds.
1) (Lower estimate) For each x ∈ K \ V∗ and t ≤ c3.2e

−n′
(n′ = n + c3.3pn(x)),

c3.4{µ(DΛn(x))}−1 ≤ pt(x, x).

2) (Upper estimate) For each x ∈ K \ V∗ and for each t which satisfies c3.5e
−n′′ ≤ t ≤

c3.6e
−m′−c3.7 log n′

(n′ = n + c3.3pn(x), n′′ = n′ + c3.7 log n′) for some m ≤ n,

pt(x, x) ≤ c3.8{ min
w∈Λ

n′′
Fw(K)⊂DΛm

(x)

µw}−1.

We note that in general n′ is not monotone increasing w.r.t. n. As we do not have a good
comparison between pt(x, x) and pt/2(x, x), we need an extra log n′ in the time interval for the
upper estimate. See the proof, which will be given in Section 5, for details.

Remark. For the p.c.f. fractals, we can also obtain the following estimate by the similar (but
simpler) argument to the proof of Theorem 3.4.
There exist c3.9, c3.10, c3.11 > 0 such that for each x ∈ K and for each e−(n+1) ≤ t ≤ e−n,

c3.9{µ(D1
Λn−c3.10

(x))}−1 ≤ pt(x, x) ≤ c3.11{ min
w∈Λn

Fw(K)⊂D1
Λn

(x)

µw}−1. (3.2)

Note that (3.2) always gives some estimate of the kernel for each fixed t whereas Theorem 3.4
does not (unless t is small enough). On the other hand, when t is in the interval where Theorem
3.4 gives the estimate, it is much sharper than that of (3.2).

Concerning the lower bound for the p.c.f. fractals, (3.2) with c3.10 = 0, which is sharper than
(3.2), is proved in Section 5 of [18]. For the p.c.f. fractals with a ‘regular harmonic structure’,
sharper upper estimate of pt(x, x) is given in appendix of [12].

We cannot obtain (3.2) for the carpet cases as D1
Λn

(x) could have a very ‘bad shape’ in general.
When the sizes of two adjacent Λn-complexes in D1

Λn
(x) are very different, particles could escape

from D1
Λn

(x) much faster than e−n.

Using Proposition 3.3, we have the following almost sure result.

Theorem 3.5 Let µ̂ be a Bernoulli measure on K with weights µ̂i satisfying the hypotheses of
Proposition 3.3. There exist c3.12, c3.13, c3.14 > 0 and h : K → [0, 1] such that
1) h(x) > 0 µ̂ − a.e.,
2) For t < h(x), if e−(n+1) ≤ t ≤ e−n, then

c3.13(log
1
t
)−c3.12µ(DΛn(x))−1 ≤ pt(x, x) ≤ c3.14(log

1
t
)c3.12µ(DΛn(x))−1. (3.3)

The proof is essentially the same as that of Theorem 3.4: we will remark on the necessary
modifications in the last part of Section 5.

Now, let

ds(µ̂)/2 =
∑

i µ̂i log(1/µi)∑
i µ̂i log(ρi/µi)

. (3.4)
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Corollary 3.6 The following holds for µ̂-a.e. x ∈ K:

− lim
t→0

log pt(x, x)
log t

= ds(µ̂)/2.

Proof. For x ∈ K − V∗ let x1x2 . . . be the word in Σ associated with x. Let Mk(x) =
log(tx1 . . . txn). Since, under µ̂, xi are independent identically distributed random variables,
using the strong law of large numbers Mk/k → ∑

i µ̂i log ti for µ̂ − a.e. x ∈ K.

Now if Λn(x) = k then Mk(x) > n ≥ Mk(x) − log t∗, and therefore for µ̂-a.e. x ∈ K

lim
n→∞

Λn(x)
n

=
(

lim
k→∞

Mk(x)
k

)−1

=
1∑

i µ̂i log(ρi/µi)
. (3.5)

Finally, by Theorem 3.5, we have, µ̂-a.e.,

lim
t→0

log pt(x, x)
log t

= lim
n→∞

1
n

Λn(x)∑
i=1

log µxi = lim
n

Λn(x)
n

· lim
n

1
n

n∑
i=1

log µxi ,

and using (3.5) and the law of large numbers completes the proof. �

Remarks. 1) The formula for the µ̂-a.e. spectral dimension (3.4) has the same form as that for
the (stationary) homogeneous random Sierpinski gasket studied in [7]. However, in that case,
{µ̂i}i corresponds to the frequency that each random pattern appears.
2) The condition (2.2) implies that 0 < ds(µ̂) < ∞. Also, for the p.c.f. case with regular
harmonic structure (2.4), we have ds(µ̂)/2 < 1, as one expects. If µ̂ is given by (2.6), then
ds(µ̂) = σ/(σ + 1) and so is independent of µ̂; this has already been proved in [13].

Note that while ds(µ)/2 ≥ de
s(µ)/2 (recall (2.5)), these two numbers are in general not equal.

This lack of correspondence between the asymptotic growth of the eigenvalues and transition
density emphasises the lack of uniformity in the behaviour of pt(x, x).
3) Let σ(µ̂) = (

∑
i µ̂i log(1/µi))/(

∑
i µ̂i log ρi) when

∑
i µ̂i log ρi 6= 0. We can then write

ds(µ̂)/2 =
σ(µ̂)

σ(µ̂) + 1
,

with the convention that σ(µ̂) = ∞, ds(µ̂)/2 = 1 when
∑

i µ̂i log ρi = 0. Since 0 < ds(µ̂) < ∞,
σ(µ̂) /∈ [−1, 0] – this can also be proved directly from (2.2). As ds(µ̂)/2 is increasing w.r.t. σ(µ̂),
one can calculate the region of ds(µ̂)/2 as µ̂ varies.

The case of [0, 1] with µ1 = p > 1/2, µ2 = q < 1/2, p + q = 1, and ρi = 2 was discussed in
the introduction; some properties of this diffusion process were studied in [10]. For this case,
log2(1/p) < σ(µ̂) < log2(1/q) and by Proposition 4.7 in [10] (plus an easy Tauberian argument),
the corresponding value for dyadic rational points is log2(1/p), the infimum of the interval.
Using the continuity of pt(x, x) and Corollary 3.6 one can show there exist points for which σ
takes the maximum value log2(1/q).
4) In the carpet case the sign of σ(µ̂) is the same as that of (ρK − 1), and so, for example, if
ρK < 1 then ds(µ̂) > 2 for any µ̂.
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5) If mini log ρi/ log(1/µi) 6= maxi log ρi/ log(1/µi), using Corollary 3.6 and the continuity of
pt(x, y), one can prove by an elementary argument that there are (uncountably many) x such
that limt→0 log pt(x, x)/ log t does not exist.
6) Theorem 1.1 now follows from remarks 3) and 5).
7) Using the methods of [6] and [18], together with the (worse) lower bound in (5.2), which will
be used for the proof of Theorem 3.4, and a chaining argument we have

pt(x, y) > 0 ∀t > 0,∀x, y ∈ K.

4 Hitting time estimates

In this section, we will prove some hitting time estimates for the process which will be needed
for the transition density estimates.

We first give some notation. For each x ∈ K and m ≥ 0, we fix a m-complex which contains x
and denote it as D∗

m(x). Note that D∗
m(x) = Dm(x) if x ∈ K \ V∗. For x ∈ K and m ≥ 0, let

D1,∗
m (x) = {C : C is a m-complex which intersects D∗

m(x).}

Let Λ∗
r(x) be the length of the word of D∗

Λr
(x), and define D1,∗

Λr(x)+l(x) to be the union of
(Λ∗

r(x)+ l)-complexes which intersect D∗
Λr(x)+l(x). In the following, we will treat the case where

x0 ∈ K, r,m ≥ 0 satisfy
D1,∗

Λr(x0)+m(x0) ⊂ D∗
Λr

(x0). (4.1)

Note that when (4.1) holds for the carpet case, all (Λ∗
r(x0) + m)-complexes are same size, so

that D1,∗
Λr(x0)+m(x0) is a cube (or square when d = 2).

We will consider the process on D1,∗
Λr(x0)+m(x0) whose Dirichlet form is the same as that of {Xt}

but whose measure µ̃ satisfies µ̃(Kwv1···vn) = µw(µ∗)mµvm+1 · · ·µvn for each (Λ∗
r(x0)+n)-complex

Kwv1···vn ⊂ Kw = D∗
Λr

(x0) and all n ≥ m. Let X̃t be the process associated with E and L2(K, µ̃)
killed on ∂D1,∗

Λr(x0)+m(x0). As before, we define TA = inf{t ≥ 0 : Xt ∈ A} for A ⊂ K, and write

TA(X̃) for the analogous hitting time for X̃ . We then have the following.

Lemma 4.1 Let x0 ∈ K, r,m ≥ 0 satisfy (4.1).
1) There exist 0 < c4.1 < c4.2 (independent of x0, r,m) which satisfy the following,

c4.1e
−(r+m log t∗) ≤ Ex0(T∂D1,∗

Λr(x0)+m
(x0)(X̃)),

Ex(T∂D1,∗
Λr(x0)+m

(x0)(X̃)) ≤ c4.2e
−(r+m log t∗) ∀x ∈ D1,∗

Λr(x0)+m(x0).

2) There exist 0 < c4.3, 0 < c4.4 < 1 (independent of x0, r,m) such that for all 0 < t < 1,

P x0(T∂D1,∗
Λr(x0)+m

(x0)(X̃) ≤ t) ≤ c4.3e
r+m log t∗t + c4.4.
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Proof. For the p.c.f. case, 1) can be proved by a simple modification of Lemma 3.5 in [13] (one
can also prove it using Green’s density killed at ∂D1,∗

Λr(x0)+m(x0)). For the carpet case, 1) is
proved in the same way as Proposition 5.5 in [5].

2) now follows directly from 1), as in Lemma 3.6 of [13], or Lemma 3.16 of [1]. �

Note that X̃t is a time change of Xt, so that the trajectory of {X̃t} is the same as that of {Xt},
but that X̃t moves faster than Xt. Therefore, we have

P x0(T
∂D1,∗

Λr(x0)+m
(x0)

(X̃) ≤ t) ≥ P x0(T
∂D1,∗

Λr(x0)+m
(x0)

(X) ≤ t).

Thus, we have from Lemma 4.1 2) that

P x0(T∂D1,∗
Λr(x)+m

(x)(X) ≤ t) ≤ c4.3e
r+m log t∗t + c4.4, (4.2)

for each 0 < t < 1 and for each x0 ∈ K, r,m ≥ 0 which satisfies (4.1).

Now, for a process X on K and for n ≥ 0, we define a sequence of hitting times as follows,

σn
0 (X) = 0,

σn
1 (X) = inf{t ≥ 0 : Xt ∈ ∂D1,∗

n (X0)},
σn

k+1(X) = inf{t ≥ σn
k (X) : Xt ∈ ∂D1,∗

n (Xσn
k
)}, ∀k ≥ 1,

W n
k = σn

k (X) − σn
k−1(X), ∀k ≥ 1.

We have the following estimate of the crossing time distribution.

Lemma 4.2 There exist c4.5, c4.6, c4.7 > 0 such that for all 0 ≤ r,

P x(T∂DΛr (x) ≤ c4.7t) ≤ c4.5 exp{−c4.6nr,k(x)} 0 < ∀t < 1,∀x ∈ K \ V∗, (4.3)

where k = k(r, z, t) = inf{j : nr,j(z)

er+j log t∗ ≤ t}.

Remark. Note that, from (3.1), k < ∞ for each r, t, z.

Proof. As the result is clear when k = 0, we consider the case k ≥ 1. First, for each n ≥ r ≥ 0,
set

ξr,n = sup{i : σn
i ≤ T∂DΛr (x)}.

By the structure of K, there exists c1 > 0 such that

c1nr,m ≤ ξr,Λr(x)+m ∀r,m ≥ 0.

We also note that for each r,m ≥ 0 and k ≤ ξr,Λr(x)+m − 1, {WΛr(x)+m
k }k behave like

{T
D1,∗

Λr(x)+m
(X

σ
Λr(x)+m
k−1

)
}k so that

P (WΛr(x)+m
k ≤ t|WΛr(x)+m

j , 1 ≤ j ≤ k − 1) ≤ c4.3e
r+m log t∗t + c4.4 (4.4)
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holds for k ≤ ξr,Λr(x)+m − 1 by (4.2) ((4.1) clearly holds in these cases). Using these facts, we
have for each x ∈ K \ V∗,

P x(T∂DΛr (x) ≤ c4.7t) ≤ P x(
c1nr,k−1(x)∑

i=1

W
Λr(x)+k−1
i ≤ c4.7t) (4.5)

≤ exp
(
c2(nr,k−1(x)er+(k−1) log t∗c4.7t)

1
2 − c3nr,k−1(x)

)
= exp(−c4nr,k−1(x)) ≤ exp(−c5nr,k(x)),

where we use Lemma 1.1 of [2] and (4.4) in the second inequality, and in the last equality we
choose c4.7 so that c

1/2
4.7 < c3/c2 (c4 = c3 − c2c

1/2
4.7 ). We thus obtain the result. �

Let β ≡ log t∗. For each c > 0, set

kc = kc(n, x, t) = inf{j :
nn,j(x)
en+βj

≤ ct/c4.7}.

Then, by Lemma 4.2, we have for each 0 < t < 1 and x ∈ K \ V∗,

P x(T∂DΛn (x) ≤ ct) ≤ c4.5 exp{−c4.6nn,kc(x)}. (4.6)

We now have the following exponential decay of the distribution of hitting times.

Proposition 4.3 There exist c4.8, γ > 0 such that for each x ∈ K \ V∗, 0 < s < 1 and for each
t ≤ e−n′

(n′ = n + βpn(x)),

P x(T∂DΛn (x) ≤ st) ≤ c4.5 exp(−c4.8s
−γ).

Proof. First, take a = min{1, β}/2 > 0 and take m̄ ∈ Z such that

e−(β−a)(m̄+1) ≤ s/c4.7 < e−(β−a)m̄. (4.7)

Then, using (3.1),

nn,j

en+βj
≥ ea(j−pn(x))−n−βj >

s

c4.7
e−βpn(x)−n ≥ st/c4.7 (4.8)

for all j ≤ m̄ + pn(x), t ≤ e−n−βpn(x) so that

ks(n, x, t) − 1 ≥ m̄ + pn(x). (4.9)

Thus, ks − 1 − pn(x) ≥ m̄. Now, from (3.1) and (4.9), we have

nn,ks(z) ≥ nn,ks−1(z) ≥ e
1
2
(ks−1−pn(x)) ≥ e

1
2
m̄

so that the right hand side of (4.6) is less than c4.5 exp(−c4.6e
1
2
m̄). By (4.7), e

1
2
m̄ ≥ c1s

−γ where
γ = (2(β − a))−1 and the proof is completed. �
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5 Transition density estimates

5.1 Lower bound

In this subsection, we will obtain the lower bound of the transition density.
Proof of Theorem 3.4 1). Set c3.3 = β and let s > 0 satisfy c4.5 exp{−c4.8s

−γ} ≤ 1/2.
Then, by Proposition 4.3, we have

P x(T∂DΛn (x) ≤ st) ≤ 1/2 ∀x ∈ K \ V∗, ∀t ≤ e−n′
.

Thus, P x(Xst ∈ DΛn(x)) ≥ 1/2. Now, using Cauchy-Schwarz,

(1/2)2 ≤ P x(Xst ∈ DΛn(x))2 =
(∫

DΛn (x)
pst(x, y)µ(dy)

)2
(5.1)

≤ µ(DΛn(x))
∫

DΛn (x)
pst(x, y)2µ(dy)

≤ µ(DΛn(x))p2st(x, x).

Hence we deduce that p2st(x, x) ≥ c1{µ(DΛn(x))}−1. �

In Lemma 5.1 of [13], one of the author proves similar results, but the proof is incomplete as it
could be carried out only when k > 0 where k, which appears in the proof, is defined similarly
to ours. The proof can be completed following the argument of ours, using Proposition 4.3.

By a similar argument, it is easy to prove the weaker estimate

c1{µ(D1
[n/ log t∗](x))}−1 ≤ pt(x, x) ∀x ∈ K \ V∗, ∀t ≤ c2e

−n.

Since µ(D1
[n/ log t∗](x)) ≤ c3(µ∗)c4n, we have

pt(x, x) ≥ c5t
−γ2 ∀x ∈ K \ V∗, 0 < ∀t < 1, (5.2)

where γ2 = c4 log(1/µ∗). This uniform (worse) lower estimate will be used later.

5.2 Upper bounds

In this subsection, we will obtain the upper bound of the transition density. For the purpose, we
will first obtain the upper estimate of the kernel with Dirichlet boundary condition. For each
x ∈ K and n ≥ 0, let p

DΛn (x)
t (x, y) be the transition density of the process killed at ∂DΛn(x).

Proposition 5.1 There exists c5.1, c5.2 > 0 such that for each x ∈ K, c5.1e
−n ≤ t and m ≤ n,

p
DΛm (x)
t (x, x) ≤ c5.2{ min

w∈Λn
Fw(K)⊂DΛm

(x)

µw}−1.

Proof. For w ∈ Λm write fw = f ◦ Fw and define

f̄w =
∫

K
fw(x)µ(dx) = µ−1

w

∫
Fw(K)

f(x)µ(dx).
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Note that for v ∈ F , v̄ =
∫

vdµ =
∑

w∈Λm
v̄wµw. In the following, we fix x,m and denote

B = DΛm(x). Let u0 ∈ D(L) with u0 ≥ 0,Supp u0 ⊂ B and ‖u0‖1 = 1. Set ut(x) = (PB
t u0)(x)

and g(t) = ‖ut‖2
2. We remark that g is continuous and decreasing. As the semigroup is symmetric

and Markov,

‖ut‖1 =
∫

PB
t u0dµ =

∫
u0P

B
t 1dµ ≤ ‖u0‖1 = 1.

For each l ≥ 0,

d

dt
g(t) = 2(Lut, ut)

= −2E(ut, ut)

= −2
∑

w∈Λm+l
Fw(K)⊂B

ρwE(ut ◦ Fw, ut ◦ Fw)

≤ −2c1

∑
w

ρw

∫
(ut,w − ūt,w)2dµ (by (2.3))

= −2c1

∑
w

ρwµ−1
w

∫
Fw(K)

(ut)2dµ + 2c1

∑
w

ρw(µ−1
w

∫
Fw(K)

utdµ)2

≤ −2c1e
m+l‖ut‖2

2 + 2c1e
m+l+1C l

B

∑
w

(
∫

Fw(K)
utdµ)2

≤ −2c1e
m+lg(t) + 2c1e

m+l+1C l
B(

∑
w

∫
Fw(K)

utdµ)2

≤ −2c1e
m+l(g(t) − eC l

B),

where C l
B ≡ max

w∈Λm+l
Fw(K)⊂B

µ−1
w . Therefore

− d

dt
log (g(t) − eC l

B) ≥ c2e
m+l, if g(t) > eC l

B . (5.3)

Note that C l
B ≤ C l+1

B and C l
B → ∞ as l → ∞. Let sl = inf{t ≥ 0 : g(t) ≤ eC l

B} for l ∈ N. Thus
(5.3) holds for 0 < t < sl. Note that sl → 0 as l → ∞. Integrating (5.3) from sl+2 to sl+1 we
obtain

c2e
m+l(sl+1 − sl+2) ≤ − log (g(sl+1) − eC l

B) + log (g(sl+2) − eC l
B)

= log (C l+2
B − C l

B)/(C l+1
B − C l

B) ≤ c3.

Thus sl+1 − sl+2 ≤ c4e
−(m+l), and iterating this we have

sl ≤ c4

∞∑
k=l−1

e−(m+k) ≤ c5e
−(m+l).

This implies that g(c5/e
m+l) ≤ g(sl) = eC l

B . Taking l = n − m, it follows that if t/c5 ≥ e−n,
then

g(t) ≤ c7{ min
w∈Λn

Fw(K)⊂B

µw}−1.
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Using the fact that ‖Pt‖1→∞ ≤ ‖Pt‖2
1→2, we deduce the result. �

Proof of Theorem 3.4 2). The main step in the proof is to compare the transition densities
of X killed at ∂DΛm(x) with those of the unkilled process. Write X̄ for X killed at ∂DΛm(x),
and let τ = T∂DΛm (x). First, by Proposition 4.3,

P x(τ ≤ st̄) ≤ c4.5 exp{−c4.8s
−γ},

for t̄ ≤ e−m′
. Set t = st̄. We first assume e−n′ ≤ t̄ ≤ e−m′

for some m ≤ n and later determine the
right value of s (right interval for t) where the comparison of Dirichlet and Neumann boundaries
holds. For k ≥ n define Bk = DΛk

(x) ⊂ DΛn(x). Then∫
Bk

∫
Bk

pt(z, y)µ(dz)µ(dy) =
∫

Bk

P z(Xt ∈ Bk)µ(dz)

=
∫

Bk

P z(X̄t ∈ Bk)µ(dz) +
∫

Bk

P z(Xt ∈ Bk, τ < t)µ(dz)

The second term above equals∫
Bk

P z(Xt ∈ Bk, τ ≤ t/2)µ(dz) +
∫

Bk

P z(Xt ∈ Bk, t/2 < τ < t)µ(dz) = J1 + J2 (5.4)

Since the process X started with measure µ is symmetric,

J2 = Pµ(X0 ∈ Bk,Xt ∈ Bk, t/2 < τ < t)
≤ Pµ(X0 ∈ Bk,Xt ∈ Bk,∃s ∈ [t/2, t) : Xs ∈ ∂DΛm(x))
= Pµ(Xt ∈ Bk,X0 ∈ Bk,∃s ∈ (0, t/2] : Xs ∈ ∂DΛm(x))
= Pµ(X0 ∈ Bk,Xt ∈ Bk, τ ≤ t/2) = J1

Write a(t/2) = sup{ps(y, y) : y ∈ K, t/2 ≤ s ≤ t}. We have

P z(Xt ∈ Bk, τ ≤ t/2) = Ez1(τ≤t/2)P
Xτ (Xt−τ ∈ Bk)

= Ez1(τ≤t/2)

∫
Bk

pt−τ (Xτ , y)µ(dy)

≤ P z(τ ≤ t/2)a(t/2)µ(Bk).

Combining these estimates, letting k → ∞, and using the continuity of pt(·, ·), we deduce that

pt(x, x) ≤ p
DΛm(x)
t (x, x) + 2a(t/2)P x(τ ≤ t/2).

By (2.13) and (5.2), there exists a > 0 such that

a(t/2) ≤ c1t
−apt(z, z) ∀z ∈ K \ V∗, 0 < ∀t < 1.

Thus by Proposition 4.3
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pt(x, x) ≤ p
DΛm (x)
t (x, x) + c2t

−apt(x, x) exp{−c3s
−γ}. (5.5)

Thus the last term in (5.5) is estimated from above by c2s
−a exp{an′−c3s

−γ}pt(x, x) when e−n′ ≤
t̄. Now, by taking s = (hn′)−l < 1 with sufficiently large l, h > 0, we can take c2s

−a exp{an′ −
c3s

−γ} ≤ 1/2 for all n ≥ 1. We thus have

pt(x, x) ≤ 1
2
p

DΛm (x)
t (x, x) ∀x ∈ K \ V∗, c4(n′)−le−n′ ≤ ∀t ≤ c5(n′)−le−m′

.

We thus obtain the result using Proposition 5.1. �

Note for the proof of Theorem 3.5.
First, it is enough to prove the following:
There exist C1, · · · , C6 > 0 and k(x) < ∞ such that for µ̂-a.e. x ∈ K and for each n̄ =
n + C1 log n, ñ = n + C2 log n, n > k(x) (note that n̄, ñ are increasing w.r.t. n),

C3{µ(DΛn−C4
(x))}−1 ≤ pt(x, x) ∀t ≤ e−n̄, (5.6)

pt(x, x) ≤ C5{ min
w∈Λ
^n+C6

Fw(K)⊂DΛ(n+C6)
(x)

µw}−1 e−(ñ+1) ≤ ∀t ≤ e−ñ. (5.7)

Indeed, by taking θ = µ− log t∗
∗ > 1, we see

µ(DΛn−r(x)) ≤ µ(DΛn(x))θr ∀r ≥ 0.

Thus, noting n̄ − C1 log n̄ ≤ n ≤ n̄ (as n̄ = n + C1 log n ≤ n + C1 log n̄), we have

µ(DΛn−C4
(x)) ≤ µ(DΛn̄(x))θn̄−n+C4

≤ µ(DΛn̄(x))θc1 log n̄ = ec2 log n̄µ(DΛn̄(x))

≤ (log
1
t
)c2µ(DΛn̄(x)),

so that we can replace the left hand side of (5.6) by (log 1
t )

−c2µ(DΛn̄(x))−1. By a similar
argument for the upper bound, we obtain Theorem 3.5. Note that by taking c3.12 large in (3.3),
we can state the upper and lower bounds simultaneously.
Now, in order to apply the proof in this section for (5.6) and (5.7), the following modification
is needed. First, taking c′ < 1/2, we have by Proposition 3.3 that for µ̂-a.e x ∈ K, there exists
ḡ(x) < ∞ such that

r−αec′j ≤ nr,j(x) ∀r ≥ 0, ∀j ≥ ḡ(x).

We will change the definition of kb so that

kb = inf{j ≥ ḡ(x) :
nr,j(x)
er+βj

≤ bt/c4.7,
nr,j−1(x)
er+β(j−1)

≥ bt/c4.7}. (5.8)

Then (4.3) holds for this kb (with bt instead of t). Noting that pr(x)/2 in Lemma 3.2 corresponds
to α log r in this case, it is not hard to modify Proposition 4.3 using kb in (5.8). Then, the lower
and upper bounds can be proved in the same way. The extra log n′ term is taken into C2 log n. �

Acknowledgment. The authors thank B. M. Hambly, J. Kigami and H. Osada for their
fruitful comments. Part of this research was done while the authors were visiting the Isaac
Newton Institute, Cambridge, during the program on Mathematics and Applications of Fractals.

21



References

[1] M. T. Barlow, Diffusions on fractals, Lectures on Probability Theory and Statistics: Ecole d’Eté de
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