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1. Introduction

Let X = (Xt, P
x) and Y = (Yt, Q

x) be non-explosive regular Markov diffusion processes in R. Let P x,yt

denote the conditional law of (Xs)0≤s≤t given X0 = x, Xt = y. Let Qx,yt denote the analogous “bridge” law

for Y . Recently, Benjamini & Lee [BL97] proved the following result.

(1.1) Theorem. Suppose that X is standard Brownian motion and that Y is a weak solution of the

stochastic differential equation

(1.2) dYt = dBt + µ(Yt) dt,

where B is standard Brownian motion and the drift µ is bounded and twice continuously differentiable. If

Qx,xt = P x,xt for all x ∈ R and all t > 0, then either (i) µ(x) ≡ k or (ii) µ(x) = k tanh(kx+ c), for some real

constants k and c.

Our aim in this paper is to generalize this theorem in two ways.

Firstly, we allow X and Y to be general strong Markov processes with values in an abstract state space

E. We require that X and Y have dual processes with respect to suitable reference measures, and that X

and Y admit transition densities with respect to these reference measures. (These conditions are met by all

regular 1-dimensional diffusions without absorbing boundary points.)

Secondly, under an additional continuity condition, we show that the equality of Qx,yt and P x,yt for a

single choice of the triple (x, t, y) is enough to imply that Qx,yt = P x,yt for all (x, t, y) ∈ E×]0,∞[×E. We

provide a simple example illustrating what can go wrong when the continuity condition fails to hold.

The conclusion of Theorem (1.1) is more transparently stated as follows. Given a drift µ define ψ(x) :=

exp
∫ x

0 µ(y) dy. Then µ satisfies the conclusion of Theorem (1.1) if and only if

1
2
ψ′′(x) = λψ(x), ∀x ∈ R,

where λ := k2/2. Thus, Theorem (1.1) can be stated as follows: If X is Brownian motion and if Y is

“Brownian motion with drift µ,” then X and Y have common bridge laws if and only if µ is the logarithmic

derivative of a strictly positive eigenfunction of the local infinitesimal generator of X, in which case the laws

of X and Y are related by

(1.3)
dQx

dP x

∣∣∣
Ft

= e−λt
ψ(Xt)

ψ(X0)
.

Theorem (1.1) and our extensions of it depend crucially on the existence of a “reference” measure

dominating the transition probabilities of X and Y . This fact is amply demonstrated by the work of H.

Föllmer in [F90]. Let E be the Banach space of continuous maps of [0, 1] into R that vanish at 0, and let

m denote Wiener measure on the Borel subsets of E. Let X = (Xt, P
x) be the associated Brownian motion

in E; that is, the E-valued diffusion with transition semigroup given by

Pt(x, f) :=

∫
E

f(x +
√
ty)m(dy).

This semigroup admits no reference measure; indeed Pt(x, · ) ⊥ Pt(y, · ) unless x − y is an element of the

Cameron-Martin space H, consisting of those elements of E that are absolutely continuous and possess a
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square-integrable derivative. Now given z ∈ E, let Y = (Yt, Q
x) be Brownian motion in E with drift z. By

this we mean the E-valued diffusion with transition semigroup

Qt(x, f) :=

∫
E

f(x+ tz +
√
ty)m(dy).

Given (x, t, y) ∈ E×]0,∞[×E, let P x,yt be the P 0-distribution of the process {x+Xs + (s/t)(y − x −Xt) :

0 ≤ s ≤ t}. Evidently, (i) (x, y) 7→ P x,yt is weakly continuous, (ii) P x,yt (Xt = y) = 1, and (iii) {P x,yt : y ∈ E}
is a regular version of the family of conditional distributions Qx({Xs; 0 ≤ s ≤ t} ∈ · |Xt = y), regardless of

the choice of z ∈ E. In other words, X and Y have common bridge laws. However, the laws of X and Y are

mutually absolutely continuous (as in (1.3)) if and only if z ∈ H.

Before stating our results we describe the context in which we shall be working. Let X = (Xt, P
x) now

denote a strong Markov process with cadlag paths and infinite lifetime. We assume that the state space E is

homeomorphic to a Borel subset of some compact metric space, and that the transition semigroup (Pt)t≥0 of

X preserves Borel measurability and is without branch points. In other words, X is a Borel right processes

with cadlag paths and infinite lifetime; see [G75, S88]. The process X is realized as the coordinate process

Xt : ω 7→ ω(t) on the sample space Ω of all cadlag paths from [0,∞[ to E. The probability measure P x is

the law of X under the initial condition X0 = x. We write (Ft)t≥0 for the natural (uncompleted) filtration

of (Xt)t≥0 and (θt)t≥0 for the shift operators on Ω: Xs◦θt = Xs+t.

In addition, we assume the existence of transition densities with respect to a reference measure and (for

technical reasons) the existence of a dual process. (The duality hyothesis (1.4) can be replaced by conditions

ensuring the existence of a nice Martin exit boundary for the space-time process (Xt, r+t)t≥0; see [KW65].)

Let E denote the Borel σ-algebra on E.

(1.4) Hypothesis. (Duality) There is a σ-finite measure mX on (E, E) and a second E-valued Borel right

Markov process X̂, with cadlag paths and infinite lifetime, such that the semigroup (P̂t) of X̂ is in duality

with (Pt) relative to mX :

(1.5)

∫
E

f(x)Ptg(x)mX(dx) =

∫
E

P̂tf(x)g(x)mX (dx),

for all t > 0 and all positive E-measurable functions f and g.

(1.6) Hypothesis. (Transition densities) There is an E⊗B]0,∞[⊗E-measurable function (x, t, y) 7→ pt(x, y) ∈
]0,∞[ such that

(1.7) P x(f(Xt)) = Ptf(x) =

∫
E

pt(x, y) f(y)mX (dy), ∀ t > 0,

and

(1.8) P̂ x(f(Xt)) = P̂tf(x) =

∫
E

pt(y, x) f(y)mX (dy), ∀ t > 0,

for any bounded E-measurable function f . Furthermore, we assume that the Chapman-Kolmogorov identity

holds:

(1.9) pt+s(x, y) =

∫
E

pt(x, z)ps(z, y)m
X (dz), ∀ s, t > 0, x, y ∈ E.
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Hypothesis (1.6) implies that mX(U) > 0 for every non-empty finely open subset of E.

When (1.4) is in force, the existence and uniqueness of a (jointly measurable) transition density func-

tion pt(x, y) such that (1.7)–(1.9) hold is guaranteed by the apparently weaker condition: Pt(x, ·) � mX ,

P̂t(x, ·)� mX for all x ∈ E, t > 0. See, for example, [D80, W86, Y88]. For more discussion of processes

with “dual transition densities,” see [GS82; §3].

Let Y = (Yt, Q
x) be a second E-valued Borel right Markov process with cadlag paths and infinite

lifetime. The process Y is assumed to satisfy all of the conditions imposed on X above. In particular, we

can (and do) assume that Y is realized as the coordinate process on Ω. The transition semigroup of Y is

denoted (Qt)t≥0 and we use mY and qt(x, y) to denote the reference measure and transition density function

for Y . (The bridge laws P x,yt and Qx,yt for X and Y will be discussed in more detail in section 2.)

In what follows, the prefix “co-” refers to the dual process X̂ (or Ŷ ).

(1.10) Theorem. Let X and Y be strong Markov processes as described above, satisfying Hypotheses (1.4)

and (1.6). Suppose there exists t0 > 0 such that Qx,xt0 = P x,xt0 for all x ∈ E. Then

(a) P x|Ft ∼ Qx|Ft and P̂ y|Ft ∼ Q̂y|Ft, for all x ∈ E, y ∈ E, and t > 0;

(b) There exist a constant λ ∈ R, a Borel finely continuous function ψ : E →]0,∞[, and a Borel

co-finely continuous function ψ̂ : E →]0,∞[ such that for all t > 0,

(1.11) Ptψ(x) = eλt ψ(x), ∀x ∈ E,

(1.12) P̂tψ̂(x) = eλt ψ̂(x), ∀x ∈ E,

(1.13) Qx|Ft = e−λt
ψ(Xt)

ψ(X0)
P x|Ft, ∀x ∈ E,

(1.14) Q̂x|Ft = e−λt
ψ̂(Xt)

ψ̂(X0)
P̂ x|Ft, ∀x ∈ E.

The function ψψ̂ is a Borel version of the Radon-Nikodym derivative dmY /dmX .

(c) Qx,yt = P x,yt for all (x, t, y) ∈ E×]0,∞[×E;

(1.15) Remarks.

(i) Given functions ψ and ψ̂ as in (1.11) and (1.12), the right sides of (1.13) and (1.14) determine the

laws of Borel right Markov processes Y ∗ and Ŷ ∗ on E. It is easy to check that Y ∗ and Ŷ ∗ are in duality

with respect to the measure ψψ̂ ·mX , that Hypotheses (1.4) and (1.6) are satisfied, and that Y ∗ (resp. Ŷ ∗)

has the same bridge laws as X (resp. X̂).

(ii) As noted earlier, any one-dimensional regular diffusion without absorbing boundaries satisfies Hy-

potheses (1.4) and (1.6). Such a diffusion is self-dual with respect to its speed measure, which serves as

the reference measure. Moreover, the transition density function of such a diffusion is jointly continuous in

(x, t, y). See [IM; pp. 149–158].

(1.16) Theorem. Let X and Y be right Markov processes as described before the statement of Theorem

(1.10). Suppose, in addition to (1.4) and (1.6), that for each t > 0 the transition density functions pt(x, y) and
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qt(x, y) are separately continuous in the spatial variables x and y. If there is a triple (x0, t0, y0) ∈ E×]0,∞[×E
such that P x0,y0

t0 = Qx0,y0
t0 , then the conclusions (a), (b), and (c) of Theorem (1.10) remain true.

(1.17) Remark. Let us suppose that X is a real-valued regular diffusion on its natural scale, and that its

speed measure mX admits a strictly positive density ρ with respect to Lebesgue measure. Let LX denote

the local infinitesimal generator of X. Then (1.11) implies LXψ = λψ, or more explicitly

1

ρ(x)
ψ′′(x) = λψ(x).

Moreover, (1.13) means that the transition semigroups of X and Y are related by

Qt(x, dy) = exp(−λt)[ψ(y)/ψ(x)]Pt(x, dy).

From this it follows that the (local) infinitesimal generators of X and Y are related by

(1.18) LY f(x) = LXf(x) +
2µ(x)

ρ(x)
· f ′(x),

where µ := (logψ)′. When X is standard Brownian motion (so that ρ(x) ≡ 2), the right side of (1.18) is the

infinitesimal generator of any weak solution of (1.2). By Remark (1.15)(ii), the additional condition imposed

in Theorem (1.16) is met in the present situation. Consequently, Theorem (1.16) implies that the conclusion

of Theorem (1.1) is true once we know that the (x0, t0, y0)-bridge law of Y is a Brownian bridge, for one

triple (x0, t0, y0)

Without some sort of additional condition as in Theorem (1.16), there may be an exceptional set in the

conclusions (a)–(c). Recall that a Borel set N ⊂ E is X-polar if and only if P x(Xt ∈ N for some t > 0) = 0

for all x ∈ E.

(1.19) Example. The state space in this example will be the real line R. Let Z = (Zt, R
x) be a 3-

dimensional Bessel process, with state space [0,∞[. (Under Rx, (Zt)t≥0 has the same law as the radial part

of a standard 3-dimensional Brownian motion started at (x, 0, 0).) We assume that the probability space

on which Z is realized is rich enough to support an independent unit-rate Poisson process (N(t))t≥0. The

process X is presented (non-canonically) as follows:

Xt :=

{
(−1)N(t)Zt, if X0 ≥ 0;
(−1)N(t)+1Zt, if X0 < 0,

whereas Y is presented as

Yt :=

{
(−1)N(t)Zt, if Y0 > 0;
(−1)N(t)+1Zt, if Y0 ≤ 0.

Both X and Y are Borel right Markov processes satisfying (1.4) and (1.6); indeed, both processes are self-dual

with respect to the reference measure m(dx) := x2 dx. The singleton {0} is a polar set for both processes.

If neither x nor y is equal to 0, then P x,yt = Qx,yt for all t > 0. However, P 0,y
t and Q0,y

t are different for all

y ∈ R and t > 0, because

P 0,y
t (Xs > 0 for all small s) = Q0,y

t (Xs < 0 for all small s) = 1.
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The reader will have no trouble finding explicit expressions for the transition densities pt(x, y) and qt(x, y),

thereby verifying that for t > 0, y > 0,

pt(0+, y) = qt(0−, y) =
1 + e−2t

√
2πt3

e−y
2/2t

>
1− e−2t

√
2πt3

e−y
2/2t = pt(0−, y) = qt(0+, y),

which is consistent with Theorem (1.16).

This example is typical of what can go wrong when the hypothesis [P x,xt0
= Qx,xt0 , ∀x] of Theorem (1.10)

is weakened to P x0,y0
t0 = Qx0,y0

t0 . In general, under this latter condition, there is a set N ∈ E that is both

X-polar and Y -polar and a set N̂ ∈ E that is both X̂-polar and Ŷ -polar, such that the conclusions drawn

in Theorem (1.10) remain true provided one substitutes “x ∈ E \ N” for “x ∈ E” and “y ∈ E \ N̂” for

“y ∈ E” throughout. (Actually, the functions ψ and ψ̂ can be defined so that (1.11) and (1.12) hold on all

of E; these functions will be strictly positive on E, but their finiteness can be guaranteed only off N and N̂ ,

respectively.) Since the proof of this assertions is quite close to that of Theorem (1.10), it is omitted.

After discussing bridge laws in section 2, we turn to the proof of Theorem (1.10) in section 3. Theorem

(1.16) is proved in section 4.

2. Bridges

The discussion in this section is phrased in terms of X, but applies equally to Y . The process X is as

described in section 1. All of the material in this section, with the exception of Lemmas (2.8) and (2.9), is

drawn from [FPY93], to which we refer the reader for proofs and further discussion.

The following simple lemma shows that in constructing P x,yt it matters not whether we condition P x

on the event {Xt = x} or on the event {Xt− = x}.

(2.1) Lemma. P x(Xt− = Xt) = 1 for every x ∈ E and every t > 0.

In what follows, Ft− denotes the σ-algebra generated by {Xs, 0 ≤ s < t}.

(2.2) Proposition. Given (x, t, y) ∈ E×]0,∞[×E there is a unique probability measure P x,yt on (Ω,Ft−)

such that

(2.3) P x,yt (F ) = P x
(
F · pt−s(Xs, y)

pt(x, y)

)
for all positive Fs-measurable functions F on Ω, for all 0 ≤ s < t. Under P x,yt the coordinate process

(Xs)0≤s<t is a non-homogeneous strong Markov process with transition densities

(2.4) p(y,t)(z, s; z′, s′) =
ps′−s(z, z

′)pt−s′(z
′, y)

pt−s(z, y)
, 0 < s < s′ < t.

Moreover P x,yt (X0 = x,Xt− = y) = 1. Finally, if F ≥ 0 is Ft−-measurable, and g ≥ 0 is a Borel function on

E, then

(2.5) P x(F · g(Xt−)) =

∫
E

P x,yt (F ) g(y) pt(x, y)m(dy).

Thus (P x,yt )y∈E is a regular version of the family of conditional probability distributions {P x(· |Xt− = y),

y ∈ E}; equally so with Xt− replaced by Xt, because of Lemma (2.1).

The following corollaries of Proposition (2.2) will be used in the sequel.
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(2.6) Corollary. The P x,yt -law of the time-reversed process (X(t−s)−)0≤s<t is P̂ y,xt , the law of a (y, t, x)-

bridge for the dual process X̂.

(2.7) Corollary. For each (Ft+) stopping time T , a P x,yt regular conditional distribution for (XT+u, 0 ≤
u < t− T ) given FT+ on {T < t} is provided by PXT ,yt−T .

Continuity properties are useful in trying to minimize the exceptional sets involved in statements con-

cerning bridge laws. The following simple result will be used in the proof of (1.16).

(2.8) Lemma. Assume that x 7→ pt(x, y) is continuous for each fixed pair (t, y) ∈]0,∞[×E. Fix 0 < s < t

and let G be a bounded F(t−s)−-measurable function on Ω. Then for each y ∈ E,

x 7→ P x,yt (G◦θs)

is continuous on E.

Proof. By Corollary (2.7),

(2.9) P x,yt (G◦θs) =

∫
E

ps(x, z)pt−s(z, y)

pt(x, y)
P z,yt−s(G)mX(dz).

The ratio on the right side of (2.9) (call it fx(z)) is a probability density with respect to mX(dz), and the

mapping x 7→ fx(z) is continuous by hypothesis. It therefore follows from Scheffé’s Theorem [B68; p. 224]

that x 7→ fx is a continuous mapping of E into L1(mX).

The backward space-time process associated with X is the (Borel right) process

Xt(ω, r) := (Xt(ω), r − t),

realized on the sample space Ω ×R equipped with the laws P x ⊗ εr. A (universally measurable) function

f : E ×R→ [0,∞] is X-excessive if and only if

t 7→
∫
E

pt(x, y)f(y, r − t)mX(dy)

is decreasing and right-continuous on [0,∞[ for each (x, r) ∈ E ×R. For example, if (y, s) ∈ E ×R is fixed,

then (x, r) 7→ 1]s,∞[(r) pr−s(x, y) is X-excessive. A Borel function f : E ×R→ R is finely continuous with

respect to X if and only if t 7→ f(Xt, r − t) is right-continuous P x ⊗ εr-a.s. for every (x, r) ∈ E ×R. Since

X is a right process [S88; §16], X-excessive functions are finely continuous. Because of Hypotheses (1.4)

and (1.6), the measure mX ⊗ Leb on E ×R is a reference measure for X. Thus, if two finely continuous

functions of X agree mX ⊗ Leb-a.e., then they agree on all of E ×R.

(2.10) Lemma. Fix n ∈N and let f1, f2, . . . fn be bounded real-valued Borel functions on E× [0,∞[. Then

for each y ∈ E, the function

(2.11) (x, t) 7→ 1]0,∞[(t)P
x,y
t

(
n∏
i=1

∫ t

0

fi(Xs, t− s) ds
)
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is finely continuous with respect to the backward space-time process (Xt, r − t)t≥0.

Proof. Without loss of generality, we assume that 0 < fi ≤ 1 for every i. The expression appearing in (2.11)

can be written as the sum of n! terms of the form

(2.12) 1]0,∞[(t)P
x,y
t

∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sn−1

dsn

n∏
i=1

gi(Xsi , t− si),

where (g1, g2, . . . , gn) is a permutation of (f1, f2, . . . , fn). Let h(x, t) denote the expression in (2.12) multiplied

by pt(x, y). Also, let h̃(z, u) := pu(z, y) · P z,yu (Ju), where

Ju :=

∫ u

0

du2

∫ u

u2

du3 · · ·
∫ u

un−1

dun

n∏
i=2

gi(Xui , u− ui).

For t > 0, the Markov property (2.7) yields

(2.13)

h(x, t) = pt(x, y) · P x,yt

∫ t

0

g1(Xs1 , t− s1)Jt−s1◦θs1 ds1

= pt(x, y) · P x,yt

∫ t

0

g1(Xs1 , t− s1)P
X(s1),y
t−s1 (Jt−s1) ds1

=

∫
E

∫ t

0

ps1(x, z)g1(z, t− s1)h̃(z, t− s1) ds1 m
X(dz)

=

∫
E

∫ t

0

pt−s(x, z)g1(z, s)h̃(z, s) dsmX(dz).

The final line in (2.13) exhibits h as a positive linear combination of the space-time excessive functions

(x, t) 7→ 1]s,∞[(t)pt−s(x, z), showing that h is space-time excessive. Since (x, t) 7→ 1]0,∞[(t)pt(x, y) is also

space-time excessive, the function appearing in (2.12) is finely continuous as asserted.

3. Proof of (1.10)

For typographical convenience, throughout this section we assume (without loss of generality) that t0 = 2,

so the basic hypothesis under which we are working is that Qx,x2 = P x,x2 for all x ∈ E.

Proof of (1.10)(a). Given x ∈ E and t ∈]0, 2[, the mutual absolute continuity of P x|Ft and Qx|Ft follows

immediately from the hypothesis Qx,x2 = P x,x2 because of (2.3). Let us now show that if P x|Ft ∼ Qx|Ft for all

x, then P x|F2t ∼ Qx|F2t for all x; an obvious induction will then complete the proof. By an application of the

monotone class theorem, given a bounded F2t-measurable function F , there is a bounded Ft⊗Ft-measurable

function G such that F (ω) = G(ω, θtω) for all ω ∈ Ω. Consequently,

P x(F ) =

∫
Ω

∫
Ω

P x(dω)Pω(t)(G(ω, · ))

and

Qx(F ) =

∫
Ω

∫
Ω

Qx(dω)Qω(t)(G(ω, · ))

so the equivalence of P x and Qx on F2t follows from their equivalence on Ft, as desired. The dual assertion

can be proved in the same way once we notice that Q̂x,x2 = P̂ x,x2 for all x ∈ E, because of Corollary (2.6).
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An important consequence of the equivalence just proved is that X and Y have the same fine topologies,

as do their space-time processes. Of course, the same can be said of X̂ and Ŷ .

Proof of (1.10)(b). The argument is broken into several steps.

Step 1: mX ∼ mY . Indeed, because the transition densities are strictly positive and finite by hypothesis,

mX is equivalent to the P x,x2 -distribution of X1, while mY is equivalent to the Qx,x2 -distribution of Y1 (for

any fixed x ∈ E).

Step 2. For each (x, t) ∈ E×]0, 2[, Qx,yt = P x,yt for mX -a.e. y ∈ E. Fix (x, t) ∈ E×]0, 2[. Then by

(2.6) and (2.7), the P x,x2 -conditional distribution of (Xs)0≤s<t, given Xt− = y, is P x,yt (for mX -a.e. y ∈ E).

Similarly, the Qx,x2 -conditional distribution of (Ys)0≤s<t, given Yt− = y, is Qx,yt (for mY -a.e. y ∈ E). The

assertion therefore follows from the basic hypothesis (Qx,x2 = P x,x2 , ∀x) because of Step 1.

Step 3. There exists b ∈ E such that Qx,bt = P x,bt for all x ∈ E and all t ∈]0, 2[. By Step 2 and Fubini’s

theorem there exists b ∈ E such that P x,bt = Qx,bt for mX ⊗Leb-a.e. (x, t) ∈ E×]0, 2[. Let I denote the class

of processes I of the form

It :=
n∏
i=1

∫ t

0

fi(Xs, t− s) ds, t ≥ 0,

where n ∈ N and each fi is a bounded real-valued Borel function on E × [0,∞[. It is easy to see that for

each fixed t > 0, the family {It : I ∈ I} is measure-determining on (Ω,Ft−). Therefore, it suffices to show

that

(3.1) P x,bt (It) = Qx,bt (It)

for all x ∈ E, t ∈]0, 2[, and I ∈ I. But by Lemma (2.10) and the remark made following the proof of

(1.10)(a), the two sides of (3.1) are finely-continuous (with respect to the space-time processes (Xt, r− t)t≥0

and (Yt, r−t)t≥0) on all of E×]0,∞[, as functions of (x, t). By the choice of b these functions agree mX⊗Leb-

a.e. on the (space-time) finely open set E×]0, 2[; consequently, they agree everywhere on E×]0, 2[, because

mX ⊗ Leb is a reference measure for the space-time processes.

Step 4. In view of Step 3 there exists b ∈ E such that P x,b1 = Qx,b1 for all x ∈ E. This b will remain fixed

in the following discussion. Recall from (1.10)(a) that the laws P x and Qx are (locally) mutually absolutely

continuous for each x ∈ E. Let Zt denote the Radon-Nikodym derivative dP x|Ft+/dQx|Ft+. Then Z is a

strictly positive right-continuous martingale and a multiplicative functional of X; see, for example, [K76;

Thm. 5.1]. The term multiplicative refers to the identity

Zt+s = Zt ·Zs◦θt, P x-a.s., ∀x ∈ E, ∀ s, t ≥ 0.

Using (2.3) we see that for any x ∈ E,

P x,b1 (F ) = Qx,b1 (F ) = Qx
(
F
q1−s(Xs, b)

q1(x, b)

)
= P x

(
F · Zs

q1−s(Xs, b)

q1(x, b)

)
= P x,b1

(
F ·Zs

q1−s(Xs, b)

q1(x, b)

p1(x, b)

p1−s(Xs, b)

)
9



for any F ∈ Fs+, provided 0 < s < 1. Since Zs is Fs+ measurable, it follows that

(3.2) Zs =
p1−s(Xs, b)

q1−s(Xs, b)

q1(x, b)

p1(x, b)
P x,b1 -a.s.

for all x ∈ E and 0 < s < 1. Since P x and P x,b1 are equivalent on Fs+ for 0 < s < 1, we see that

Zs = ϕs(X0, Xs) P x-a.s., ∀ s ∈]0, 1[, ∀x ∈ E,

where

ϕs(x, z) :=
ψs(z)

ψ0(x)

and

ψs(z) :=
p1−s(z, b)

q1−s(z, b)
.

The function (z, s) 7→ 1[0,1[(s)p1−s(z, b) is an excessive function of the forward space-time process (Xt, t +

r)t≥0 restricted to E × [0,∞[; it is therefore space-time finely continuous on E × [0, 1[. In the same way

(z, s) 7→ q1−s(z, b) is finely continuous on E× [0, 1[ with respect to the space-time process (Yt, t+r)t≥0. But

the fine topology of the latter process is the same as that of (X, r + t)t≥0 because of the mutual absolute

continuity (P x|Ft ∼ Qx|Ft, ∀(x, t)) already established. It follows that (z, s) 7→ ψs(z) is space-time finely

continuous on E × [0, 1[. Now from the multiplicativity of Z and the strict positivity of the transition

densities of X we deduce that for all x ∈ E and all t, s > 0 such that t + s < 1, there is an mX ⊗mX -null

set N(x, t, s) ⊂ E ×E such that

(3.3) ϕt+s(x, y) = ϕt(x, z) · ϕs(z, y)

provided (y, z) /∈ N(x, t, s). By the preceding discussion, the two sides of (3.3) are space-time finely contin-

uous as functions of (y, s). Moreover, mX ⊗ Leb is a reference measure for (Xt, r+ t); thus, two space-time

finely continuous functions equal mX ⊗ Leb-a.e. must be identical. From this observation and Fubini’s the-

orem it follows that given (x, t) ∈ E×]0, 1[ there is an mX -null set N(x, t) such that (3.3) holds for all

(y, s) ∈ E × [0, 1− t[ and all z /∈ N(x, t). Taking s = 0 we find that

(3.4)
ψ0(y)

ψt(y)
=
ψ0(z)

ψt(z)

for all y ∈ E, 0 < t < 1, and z /∈ N(x, t). Thus, defining λt := − log[ψt(b)/ψ0(b)] and ψ := ψ0, we have, for

each x ∈ E,

(3.5) Zt = e−λt
ψ(Xt)

ψ(X0)
, P x-a.s.,

for all t ∈]0, 1[, since P x(Xt ∈ N) = 0 for any mX -null set N . The multiplicativity of Z implies first that

λt = λt for some real constant λ, and then that (3.5) holds for all t > 0. This yields (1.13), from which

(1.11) follows immediately because Z is a P x-martingale.

The dual assertions (1.12) and (1.14) are proved in the same way, and the fact that ψ and ψ̂ correspond

to the same “eigenvalue” λ follows easily from (1.5).
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Turning to the final assertion, let ρ denote a strictly positive and finite version of the Radon-Nikodym

derivative dmY /dmX—the equivalence of mX and mY follows immediately from (1.13). Using (1.5) (for X

and for Y ) one can check that Pt(ρ/ψψ̂) = ρ/ψψ̂ and Pt(ψψ̂/ρ) = ψψ̂/ρ, mX -a.e. Consequently,

1 = Pt1 = Pt

(
(ρ/ψψ̂)1/2(ψψ̂/ρ)1/2

)
≤
(
Pt(ρ/ψψ̂)Pt(ψψ̂/ρ)

)1/2

= 1,

which forces ρ = ψψ̂, mX -a.e, as claimed.

Proof of (1.10)(c). Formula (1.13) implies that for each x ∈ E and t > 0,

(3.6) qt(x, y) = e−λt
1

ψ(x)ψ̂(y)
pt(x, y), mX -a.e. y ∈ E,

because ψψ̂ = dmY /dmX . For fixed x the two sides of (3.6) are finely continuous (as functions of (y, t) ∈
E×]0,∞[) with respect to the backward space-time process (X̂t, r−t)t≥0. (As before, the equivalence of laws

established in (1.10)(a) implies that (X̂t, r− t) and (Ŷt, r− t) have the same fine topologies.) Since mX⊗Leb

is a reference measure for this space-time process, the equality in (3.6) holds for all (y, t) ∈ E×]0,∞[. The

asserted equality of bridges now follows from (1.13) and (2.3).

4. Proof of (1.16)

We first show that P x,y0
t1 = Qx,y0

t1 for all x ∈ E, where t1 := t0/2. To this end fix x ∈ E, let d be a metric on

E compatible with its topology, and let B(δ) denote the d-ball of radius δ centered at x. Let F be a bounded

Ft1−-measurable function of the form G◦θs, where 0 < s < t1 and G ∈ F(t1−s)−. By Corollary (2.7),

(4.1)

P x0,y0
t0 (F ◦θt1 |Xt1 ∈ B(δ))

=

∫
B(δ)

P z,y0
t1 (F )P x0,y0

t0 (Xt1 ∈ dz)/P
x0,y0
t0 (Xt1 ∈ B(δ)).

(Notice that P x0,y0
t0 (Xt1 ∈ B(δ)) > 0 because of the strict positivity of the transition density function of X.)

By Lemma (2.8), the mapping z 7→ P z,y0
t1 (F ) is continuous. Since the probability measure

dz 7→ 1B(δ)(z)P
x0,y0

t0
(Xt1 ∈ dz)/P

x0,y0

t0
(Xt1 ∈ B(δ))

converges weakly to the unit mass at x as δ → 0, it follows from (3.7) that

(4.2) P x,y0
t1 (F ) = lim

δ→0
P x0,y0
t0 (F ◦θt1 |Xt1 ∈ B(δ)).

By hypothesis, the right side of (4.2) is unchanged if P x0,y0
t0 is replaced by Qx0,y0

t0 ; the same is therefore true

of the left side, so P x,y0
t1 (F ) = Qx,y0

t1 (F ). The monotone class theorem clinches the matter.

The arguments used in the proof of Theorem (1.10) (especially Step 4 of the proof of (1.10)(b)) can now

be used to finish the proof. The dual assertion follows in the same way.
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