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Abstract

We study the large deviation rate functional for the empirical distribution of indepen-
dent Brownian particles with drift. In one dimension, it has been shown by Adams,
Dirr, Peletier and Zimmer that this functional is asymptotically equivalent (in the
sense of I'-convergence as the time-step goes to zero) to the Jordan-Kinderlehrer-Otto
functional arising in the Wasserstein gradient flow structure of the Fokker-Planck
equation. In higher dimensions, part of this statement (the lower bound) has been
recently proved by Duong, Laschos and Renger, but the upper bound remained open,
since their proof of the upper bound relies on regularity properties of optimal trans-
port maps that are restricted to one dimension. In this note we present a new proof of
the upper bound, thereby generalising the result of Adams, Dirr, Peletier and Zimmer
to arbitrary dimensions.
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1 Introduction

In the recent paper [1], Adams, Dirr, Peletier and Zimmer unveiled a fundamental
connection between two seemingly unrelated aspects of diffusion equations. They
connected the large deviation rate functional for the empirical measure of a system
of independently diffusing particles to the entropy gradient flow structure of diffusion
equations in the Wasserstein space of probability measures. Let us informally describe
these two concepts and their connection here, before giving rigorous statements in
Section 2.

Large deviations for independently diffusing particles

We consider n indistinguishable particles evolving according to the stochastic differ-
ential equations

dX;(t) = —=VU(X;(t)) dt + V2dW;(t) , (1.1)

where (Wi (t),...,W,(t)):>o is a collection of independent standard R?-valued Brownian
motions. We assume that ¥ : R — R is twice continuously differentiable and that
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From large deviations to Wasserstein gradient flows

its Hessian is uniformly bounded from below. Let pE") :=n"1Y " dx,) denote the
empirical measure of (X;(¢))",. If the initial values X;(0) are chosen deterministically
such that ,oé") converges weakly to some fixed measure py € P(R?), then, for each ¢ > 0,
it is a classical result that the empirical measure pg") converges almost surely to the
unique solution of the Fokker-Planck equation

with initial condition pg, see, e.g., [4, 7] for much stronger results. Under suitable growth
conditions on ¥, a Sanov-type theorem implies that the random measures (pfkn))n satisfy
a large deviation principle of the form

Pp} ~ p] ~ exp (—nl(p|po))

where the rate functional is given by

Ii(plpo) == _inf H(v|po) , (1.3)
Y€ (po,p)
see [10, Proposition 3.2] and [13, Theorem A.1]. Here, po; € P(R?x R?) denotes the joint
law of a solution (X, X;) to (1.1) with random initial condition X, ~ po (independent of
the Brownian motion), H(-|po.) denotes the relative entropy with respect to po ¢, and
['(po, p) is the set of probability measures v € P(R? x RY) with marginals py and j. For
background on large deviation theory we refer the reader to [5, 7].
In this paper we are interested in the short-time behaviour of the rate functional
I;(-|po) and its relation to the Wasserstein gradient structure of the Fokker-Planck
equation.

The Wasserstein gradient structure of the Fokker-Planck equation

A seminal result by Jordan-Kinderlehrer-Otto [9] asserts that the Fokker-Planck
equation (1.2) can be regarded as the gradient flow equation of the relative entropy

/ p() log p(x) da + / U(2)p(e)de p(de) = p(z)de |
]Rd ]Rd

+o0o otherwise ,

Flp) =

in the Wasserstein space of probability measures (P(R¢), W>). This result can be
rigorously interpreted in different ways, e.g., using the theory of gradient flows in metric
spaces, or using an infinite-dimensional Riemannian structure on the space of probability
measures; see [2] for details. Here we present the original interpretation from [9] in
terms of the convergence of a discrete “minimizing movement” scheme, which can be
seen as an analogue of the implicit Euler scheme for the gradient flow equation. For
po € P2(R%) and t > 0, define J;(:|po) : P2(R?) — R U {+0c0} by

1 o
Je(plpo) = F(p) = F(po) + 5, Walpo,p)*, andset S;[po] := argmin J;(plpo) . (1.4)
2t pEP(RY)

Since this minimisation problem has a unique minimiser, S;[po] is well defined. The
JKO-functional J; can be used to construct an iterative discretisation scheme: it was
shown in [9] that

pr = lim (/)" [po]

n— oo

exists for each ¢ > 0 and satisfies the Fokker-Planck equation (1.2).
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Relating /; and J;

The main result of [1] unveils a relation between the large deviation principle and the
Wasserstein gradient flow structure. Roughly speaking, it asserts that the functionals I;
and %Jt are asymptotically equivalent as ¢ — 0. More precisely, it was shown that

1 1 1
Ii(-|po) — ZtWQ('vPO)Q — 5}-(') - 5}—(/’0) ast—0, (1.5)

in the sense of I'-convergence. This result provides an appealing microscopic explanation
for the emergence of the Wasserstein gradient flow structure at the macroscopic level.

The proof of this theorem in [1] required two strong technical assumptions. Firstly,
the result was limited to one space dimension. Secondly, the proof required highly
restrictive regularity assumptions on the involved measures.

In a subsequent paper [6], Duong, Laschos and Renger were able to remove the
strong regularity assumptions. Their approach is based on a different representation
of the rate functional I; due to Dawson and Gartner [4] (see also [7]), that we shall
describe in Section 2. The proof of the lower bound in the I'-convergence result in [6]
is valid in arbitrary dimensions. However, the remaining part of the argument (the
construction of a recovery sequence) is restricted to one dimension, since it relies on
regularity estimates for optimal transport maps which are known to be false in multiple
dimensions.

In this note we shall provide a different argument for the construction of a recovery
sequence that works in arbitrary dimensions. Combined with the result from [6], this
completes the proof of (1.5) in arbitrary dimensions. We refer to Theorem 2.2 below for
a precise statement.

Structure of the paper

In Section 2 we give a detailed statement of the main convergence result. In Section
3 we collect well-known results about Wasserstein gradient flows that will be used in the
proof. Section 4 contains the proof of the convergence result. For completeness, we also
include the proof of the lower bound taken from [6]. In the appendix we provide a short
proof of the equivalence of different formulations of the Benamou-Brenier formula.

2 Statement of the main result

In this section we shall rigorously introduce the three objects appearing in the main
result of this paper: the Wasserstein metric W5, the relative entropy functional F, and
the large deviation rate functional I..

The Wasserstein metric

Let Po(R?) := {p € P(R?) : [|z|? p(dz) < oo} denote the set of probability measures with
finite second moment. The L?-Wasserstein distance between pg, p; € P2(RY) is defined
by

1/2
W2(POvPl) = inf </ |x_y2ﬂ-(d‘rady)> ’
RIXR

m€l(po,p1)

where the infimum is taken over all couplings 7 of py and py, i.e., ['(po, p1) denotes the
collection of all 7 € P(R? x R?) with (- x R?) = po(-) and 7(R? x -) = p1(-).
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The relative entropy

Throughout this paper we assume that ¥ : RY — R is twice continuously differentiable
and \-convex for some A € R, i.e., Hess W(z) > A\1d for all € R%. The relative entropy
functional F : Po(RY) — R U {+oo} is defined by

Flp) = /]Rd f(x)log f(x)dx + /I[{d U(z)f(z)dx if p(dz) = f(z)dx,
+o0 otherwise .

This functional is well-defined, since the assumption on the second moment implies that
the negative parts of flog f and V f are integrable with respect to the Lebesgue measure.
If p is absolutely continuous with respect to the Lebesgue measure, then F can be
written as a relative entropy with respect to the equilibrium measure v(dz) = e~ ¥(*) dz.
Namely,

Flp) = | o) logg(a) dv(e)

where p(dz) = g(z)v(dz).
We also introduce the relative Fisher information G : Po(R%) — [0, +00] defined by

2

[ O ) it plan) = glopvlan). g € R
{g>0} g(x)

+o00 otherwise .

G(p) =

The large deviation rate functional

The definition of the rate functional I, involves a weighted Sobolev norm of negative
order 1. Let D = C°(R%) be the space of test functions and let D’ be the dual space of
distributions. Given p € P(R?), we define the weighted H~!(p)-norm of s € D’ by the
duality formula

(s, f)°
Isl|2 , := sup

R
]Rd

where the supremum runs over all smooth test functions f € D for which the denominator
does not vanish. Using the identity b%/a? = sup,c 2tb — t?a?, one obtains the equivalent
formula

sl = sup {2<s,f> -/ Vf|2dp} .

For fixed py € P2(R%) and 7 > 0, the functional I, (-|pg) : P2(RY) — [0, +00] is defined
by

1

L. (p = inf —
(Pleo) (pe )+ €AC2(po,p) 4T

1
/O 0o — Ap — T div(pVO)|P, dt, (2.1
where ACQ(pO7 p1) denotes the set of 2-absolutely continuous curves (p;)cjo,1) With values
in (Pg(Rd), WQ) and boundary conditions p|;—o = po and p|;=1 = p1. We refer to Section 3
for the definition of 2-absolutely continuity. Intuitively, I-(p|po) is the value of an optimal
control problem, which requires to interpolate between pg and p in such a way that
deviations from the Fokker-Planck equation

Btpt = TApt + lev(ptV\I/)

are minimised.

ECP 20 (2015), paper 89. ecp.ejpecp.org
Page 4/12


http://dx.doi.org/10.1214/ECP.v20-4315
http://ecp.ejpecp.org/

From large deviations to Wasserstein gradient flows

Remark 2.1. Under two different sets of growth conditions on the potential ¥, coined
‘subquadratic’ and ‘superquadratic’, the term inside the infimum of (2.1) is the large
deviation rate functional for trajectories [0,7] — P(R?) of the empirical measure of
independent particles, see [4]. Using the contraction principle, it was proved in [6,
Cor. 4.10] that the large deviation rate functional for the empirical measure at the
end time 7 is obtained by taking the infimum over (1-)absolutely continuous curves in
(P2(R%), Wy) with the right boundary conditions. In the subquadratic case, it follows from
the proof of [6, Prop. 4.6] that if py € Po(R?) and F(py) < oo, any weakly continuous curve
with fOT||8t pt — Apy — div(p; V) |2 dt < oo, is also 2-Wasserstein absolutely continuous. In
the superquadratic case, the same result was proved in [8, Lem. 2.1]. Therefore, under
both sets of conditions on ¥, we can take the infimum over 2-absolutely continuous
curves in (Py(R%), W>), hence the large deviation rate functional (1.3) coincides with
(2.1). In the rest of this paper we will not be concerned with the exact conditions under
which these expressions coincide, but rather take (2.1) as the object of study. For more
details, see [6, Section 4].

Now we are ready to state the main theorem of this paper:

Theorem 2.2 (Main result). Let ¥ € CQ(]Rd) be A-convex for some A € R. Then, for every
po € P2(RY) such that G(py) < oo, we have
_ W22(p0, ) r 1

1
L(-1po) = == =7 37 () = 37 (p0) (2.2)

in the sense of I'-convergence. More precisely:

(i) For any p; € P2(R") and any sequence {p]}, C Py(R?) converging to p; in the
2-Wasserstein metric, we have

WS(ﬂmﬂI))

1 1
ir > SF(p1) — §f(Po) : (2.3)

lim inf (Ir(m | po) — 5
In addition, if v(R?) = [, e™¥(®) dz < oo, then the lower bound (2.3) also holds for
any weakly converging sequence {p]}, C P2(R%).

(ii) For any p; € P2(RY) there exists a sequence {p]}, C Po(R?) converging to p, in
the 2-Wasserstein metric such that

W3 (po. p7)

4Tt

1 1
) < §]:(P1) - 5}—(00) : (2.4)

lim sup (upi [ o0)
T—0

As discussed in the introduction, this theorem was first proved in dimension 1 in [1]
under more restrictive conditions on the measures py and p;. Part (i) has been extended
to arbitrary dimensions in [6]. The novel contribution of our paper is a proof of (ii) in
arbitrary dimensions.
Remark 2.3. The right-hand side in (2.3) and (2.4) is well-defined in R U {+o0}, since
our assumptions on py imply that F(py) < oco. This is a consequence of the HWI-
inequality by Otto and Villani [12] (see also [15, Corollary 20.13]), which asserts that

Flp) < Walp,v)\/G(p) = 5W3(p,v).

3 Ingredients of the proof

The Benamou-Brenier formula

It will be convenient to work with the dynamic characterisation of the Wasserstein
distance due to Benamou-Brenier [3], which asserts that, for pg, p; € Pg(]Rd),

1
W3 (po,p1) = inf {/ 10epe)1% 1, dt} ; (3.1)
0

(pt)t€AC?(po,p1)
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For p > 1, recall that a curve (p;).c[o,1] is said to be p-absolutely continuous with respect
to Ws, if there exists a scalar function m € LP(0, 1) satisfying Wa(ps, pt) < f: m(r) dr for
all 0 < s < t < 1. We use the notation (p;); € AC?(pg, p1). If p = 1, we simply say that
(pt)eefo,1] is absolutely continuous. In this case, the metric derivative

. . Wz(ﬂtﬂu Pt)
= lim ————=
1] hs h

exists for a.e. t € (0,1), see, e.g., [2, Theorem 1.1.2] for more details. It can be shown
that (3.1) implies the identity

|pe] = Hatpt”*l,l)t . (3.2)

We refer to Appendix A for an equivalent formulation of the Benamou-Brenier formula
which is commonly used in the literature on optimal transport and to [2, Theorem 8.3.1]
for a proof of (3.1), (3.2) in this formulation.

Relative entropy, Fisher information, and heat flow

A seminal result by McCann [11] asserts that the A-convexity of ¥ implies displace-
ment A-convexity of F, see also [14, Theorem 5.15]. This means that for any constant
speed Wa-geodesic (p;)iepo,1] € P2(R?) and any ¢ € [0, 1], we have

Flpo) < (1= 0F(po) + tF(pr) = 51~ W20, 1) (33)

In particular, F is finite along geodesics as soon as it is finite at the endpoints. The fact
that the relative Fisher-information does not enjoy this property is the source of several
complications in [6]. We recall further that F is lower semicontinuous with respect to
Ws-convergence, see [2, Remark 9.4.2 and Lemma 9.4.3].

The semigroup associated to the Fokker-Planck equation (1.2) will be denoted by
(Py)¢>0. More precisely, for p € Po(R?) we set P,p := p;, where (p;); is the unique
distributional solution to the Fokker-Planck equation (1.2) with py = p. This solution can
be obtained using, e.g., the metric theory of gradient flows for (generalised) A\-convex
functionals, see [2, Thm. 11.2.8].

In the following result we collect some well-known results on the behaviour of the
semigroup (P;);>o.

Lemma 3.1. The following assertions hold:

1. The curve t — P,p is continuous on [0,00) and locally absolutely continuous on
(0, 00) with respect to W.

2. Forall p,o € P2(R%) and all t > 0 we have the contraction estimate:
Wa(Psp, Pio) < e MWa(p, o) . (3.4)

Moreover; for any curve (ps), that is absolutely continuous with respect to Wo we
have

185 (Peps)ll=1,Pip. < € |0sps]l=1,p, - (3.5)

3. For all p € P2(R%) and t > 0 we have

F(Pp) <o, G(Pp) < oo, (3.6)
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as well as the bounds
F(Pp) <F(p), G(Pip) <e*MG(p). (3.7)
Finally, for any W»-geodesic (ps)scjo,1) With F(po), F(p1) < 0o, we have ast ™\ 0:

F(Plps]) S F(ps) uniformly fors € [0,1] . (3.8)

Proof. For part (1) and the properties (3.4), (3.6) and (3.7), see [2, Theorems 11.2.1
and 11.2.8]. The estimate (3.5) follows immediately from (3.4) and (3.2). It remains to
prove the statement (3.8), which is less standard. Note first that by (3.3) we have that
s — F(ps) is continuous and bounded. Our aim is to show that for every ¢ > 0 there
exists § > 0 such that F(ps) — F(P:ps) < € whenever ¢t < § and s € [0,1]. Assume the
contrary, i.e., that there exist ¢ > 0 and sequences t; — 0 and (sj) C [0, 1] such that for
all k,

F(psy) = F(Pryps,) > €. (3.9)

By compactness we can assume that s, — so as k — oo for some s¢ € [0,1]. We claim
that P, ps, — ps, in Wh-distance as k — oo. Indeed, again by (3.4) the triangle inequality
yields

Wa(psgs Prypsi) < Walpss Poypsy) + Wa(Pry psor PriPsy,)
< WQ(pSoa Ptkpso) + 67)\“ WZ(pSov psk) s

and the claim follows from the continuity of P; at ¢ = 0 and the continuity of the curve
(ps). Passing to the limit £ — oo in (3.9), using the continuity of s — F(p;) and the lower
semicontinuity of F with respect to W5, we obtain the following contradiction:

0 = Flpso) = Flps,) = limsup (F(psk)—f(PtkPSk)) =

k—o0

which completes the proof. O

We conclude this section by stating some useful identities for the derivative of the
entropy. In fact, for any absolutely continuous curve (p;):c[o,1] With F(p;) € R for all ¢

and fol G(p¢) dt < oo we have that ¢t — F(p,) is absolutely continuous with
d

*f(Pt) = - <8tpt, Apf + dlv(pr\I/)>

T (3.10)

—1,p¢

for a.e. t € [0,1], see [6, Lemma 2.3]. In particular, if p; satisfies the Fokker-Planck
equation we have

d .
— g7 (o) = 1A + div(p, V)21, = Gpe) , 3.11)

where the second equality follows from (A.3).

4 Proof of the main result

Upper bound

In this section we prove existence of the recovery sequence, i.e., statement (ii) of
Theorem 2.2. For this purpose we define the set @ := {p € Po(R?) : G(p) < oc}. Note
that F(p) < oo for all p € Q in view of Remark 2.3. Below we will prove the following
two claims:

ECP 20 (2015), paper 89. ecp.ejpecp.org
Page 7/12


http://dx.doi.org/10.1214/ECP.v20-4315
http://ecp.ejpecp.org/

From large deviations to Wasserstein gradient flows

Claim 4.1. For all py, p1 € @ we have asT — 0,

1 1 1
L(pr | po) = 1= W5 (po, p1) = 5 F(p1) = 5F(po) - (4.1)

Claim 4.2. For every p € P»(R?) there exists a sequence (p"),, C Q such that
W3 (p",p) =0 and F(p") = F(p) .

The existence of the recovery sequence then follows from a straightforward diagonal
argument, see [6, Proposition 6.2] for details.

Proof of Claim 4.1: We only need to prove the limsup inequality for the left-hand side
of (4.1), since the liminf inequality will be proved in the subsection below. If py = p;
the claim is immediate, so we take distinct measures pg, p1 € @, and take a geodesic
(pt)tefo,1) connecting po and p;. We will approximate this curve by running the semigroup
for a small time ¢ = £(7) > 0, which will be determined below. A careful choice of ¢ as a
function of 7 is crucial for our argument. We thus consider the curve (pf):cjo,1) defined
by
Pipo , 0<t<e,
p; = qPepize , e<t<l-c,
Plftp17 1—E§t§1

For the sake of brevity, we shall write Lp = Ap + div(pV¥). Using the definition of
I.(p1 | po) and the second identity (3.11), we obtain

W22(p07 Pl)
4T

1 ! )
< o ([ 10wt = w2, at = W30 )

1/ e
= ([ 1001z 0= W30 0)) = 5 [0t L)+ [ t0a

We shall estimate these three terms separately. Let c,\, kx > 0 be sufficiently large so that
¢ <1l+kyeand [j e ?Mdt < cyeforalle € (0,1). Using the semigroup estimates
(3.7) and (3.5) and the Benamou-Brenier formula (3. 1), the first term can be bounded by

I‘r(pl | PO) -

1

[ i 0= [0t o [1oaRa it [ 12
—E&

1

/g Ptpo dt+ /||8tpt|\ 1,06 dt + Q(Pl_tpl)dt
1—¢

< exeG(po) +(1+ kAé?)Wz (po, p1) + cxeG(p1) -

—2)\5

For the third term we use (3.7) to obtain
1
[ 9161 dt < x=(Glpn) + Glpr)) + o) . where h(: / G(P.p)
0
We claim that h(e) is finite for each € > 0. Indeed, using (3.7) and (3.11) we obtain

Q(Pspt)/ ePE=9) dsg/ G(Pspt)ds = F(p;) — F(Pepy) . (4.2)
0 0

The right-hand side is uniformly bounded in ¢ thanks to the A-convexity of F and the
uniform convergence (3.8). Consequently, h(e) < co.

ECP 20 (2015), paper 89. ecp.ejpecp.org
Page 8/12


http://dx.doi.org/10.1214/ECP.v20-4315
http://ecp.ejpecp.org/

From large deviations to Wasserstein gradient flows

To treat the second term, we can thus use (3.10) to obtain

1
/ (0epf, Lp7)—1,p5 At = F(po) — F(p1) -
0
Combining these three bounds, we infer that

W22(100>P1) <

I (o1 | po) = 2L < S () = S F () + =2 (4 2) (Glow) + Glo)

kxe o T
+ sz (po, p1) + Zh(f) .

We claim that € = ¢(7) can be chosen as a function of 7 such that

e(r)

—0 and Th(e(r)) -0 as7—0. (4.3)

This yields the limsup inequality in (4.1). The corresponding liminf inequality will follow
from (2.3).
It thus remains to prove the claim (4.3). For € > 0 we set

g(e) :==+/e/h(e) .

Writing g(e) = y/ee?*¢/e2A<h(e), it follows from (3.7) that g is strictly increasing on
(0,£0) for gy sufficiently small. Taking into account that ~(0) > 0 since py # p1, we note
that lim._,0 g(¢) = 0. To show that g is right-continuous, note that for each ¢ € [0, 1],
the function G; : ¢ — G(P.p;) is lower semicontinuous and non-negative, see e.g. [2,
Proposition 10.4.14]. Fatou’s lemma implies that A := fol G dt is lower semicontinuous
as well. Hence g is upper semicontinuous and thus right-continuous, since it is also
increasing. It follows from these properties that we can define

e(r) =g '(r):==inf {e: g(e) > 7}

as the generalised inverse of g. We shall show that this function has the desired
properties.

Since g is right-continuous, we note that g(¢(7)/2) < 7 < g(e(7)), which implies that
the expressions in (4.3) can be estimated from above by

@ <2 @h <€(T)) , Th(s(T)) < +e(r)h(e(r)) .

T 2 2

It thus suffices to show that eh(e) — 0 as e — 0. To show this, note that e=* [ e***ds >
min{1,e*/?} =: k forall ¢ € (0, 1). Therefore, (4.2) yields

kxeG(Ppy) < F(pe) — F(Pepy) -

By (3.8) the right-hand side converges to 0 as ¢ — 0, uniformly for ¢ € [0, 1]. It follows
that

1
ch(e) = e/ G(Pop)dt — 0
0
as ¢ — 0, which completes the proof. O

Proof of Claim 4.2: We approximate p € Pg(]Rd) by applying the semigroup. The first
inequality in (3.6) yield that P.p € @ for any € > 0, and Lemma 3.1(1) implies that P.p
approximates p in Ws-distance. Finally, since F is lower semicontinuous with respect to
W3, the convergence F(P.p) — F(p) as ¢ — 0 follows from (3.7). O
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Lower bound
For completeness, we reproduce here the short proof of statement (i) in Theorem 2.2,
the lower bound, as given in [DLR13, Theorem 5.1, see erratum].

Proof. By definition of the infimum in (2.1), there exists a sequence of absolutely contin-
uous curves (pf )¢e[o,1] such that

T 1 1 T T : T 2
L0t o)+ 72 3= [ lowet = rlast +aivtr VI, e

In particular, the right-hand side is finite for all 7 > 0. Since (p]); is assumed to be
2-absolutely continuous, we infer that f01 007 1|21, oy dt is finite as well, and therefore

1 1
| atenat= [ 1807 + div(er VO, dt < oo
0 0

It follows that that ¢ — F(p]) is absolutely continuous and the identity (3.10) holds. Thus
we can estimate

T 1 1 T T : T 2
I (p1 | po) + 7 = E/ [0epT — T(Ap] + div(p] V‘I’))H_Lpr dt
0 e
1! ) e _
= */ 10pf 121,57 dt — */ (Op7, Apy +div(p; V) 1 7 dt
47- 0 t 2 0

1
T . . o 2
+ Z/0 | Ap] —l—dlv(ptV\I/)Hinz dt

1 1 1
> EWS(POWD + if(lﬁ) - 5}-(00) ,

where the last line follows from the Benamou-Brenier formula (3.1). The claim (2.3)
then follows from the lower semicontinuity of F with respect to W5.

If [rae” " 9% < o0, the result follows by applying the lower semicontinuity of 7 with
respect to weak convergence in the final step. O

We finish by remarking that in the statement of Theorem 2.2(i), the assumption of
Wasserstein convergence cannot be weakened to weak convergence if the equilibrium
measure v does not have finite mass. A counterexample can be found in the erratum to

[6].

A Equivalent formulations of the Benamou-Brenier formula

The Benamou-Brenier formula in optimal transport asserts that for pg, p1 € Pg(]Rd),

1
Wi(po,p1) = inf / Arpill® dt} : Al
Bovp) =t { 1o, (A
In this formula, the norm ||-||_, , is defined by
2 - H 2 . ; _
s, i= it [ @R s ravm =of. a2

for p € P(R?) and s € D'. It can be shown that the infimum in this definition is uniquely
attained, and its minimiser can be characterised as follows: a solution v € L?(p; R?) to
the “continuity equation” s + div(pv) = 0 is optimal in (A.2) if and only if it belongs to
the space of generalised gradient vector fields defined by

H,={V¢ RIS RIgeD) W),
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We refer to [2, Section 8.4] for the proof of these facts. Note in particular that
eI, = [ 190 dpta) a.3)

whenever Vi € L%(p; RY).
The following lemma relates the norm |[-[||_, , to [|-|-1,, defined in Section 2.

Lemma A.1. Let p € P(R?) and s € D'. Then ||s[|-1,, = [Islll_, ,-

Proof. Suppose first that ||s[||_, , < oo, and let v € L?(p; R?) be the unique minimiser in
the definition of [[s||_, ,. If[[s|| _; , = O, it follows that v vanishes p-a.e., hence (s, f) =0
for all f € D, which implies that ||s||—1, = 0. Assume now, without loss of generality, that
lsll* , = J [v|*dp = 1. Then,

o1 = sup { -t | [ 9san=1}
fED R4

zsup{/ U-Vfdp‘/ |Vf2dp:1}
feD R4 R4
|
—sup {5 [ 1P+ a7 =10 virap| [ vrap=1f
feD Rd R4

1
:sup{l—/ |U—Vf|2dp‘/ |Vf|2dp:1}.
feD 2 RA R

Since v € H), it follows from this computation that ||s|[_1,, =1 = [[s|_, .
On the other hand, if [|s||-1,, < oo, it follows from (s, f) < ||s||-1,, - [V fl£2(p;re) that
the mapping

T:{Vf:feD} >R, V(s f)

extends to a bounded linear functional T": (H, [|:||z2(,;r+)) — R of norm ||s||_; ,. Hence,
the Riesz representation theorem implies that (s, f) = [;.v - Vfdp for some v € H, with

[v]|£2(pimay = [Is]|-1,p. It follows that |s[|_, , < [[v[|r2(p;ra). In view of the first part of the
proof, the latter inequality is in fact an equality. O

As a consequence of this lemma we infer that the Benamou-Brenier formulas in (3.1)
and (A.1) are equivalent.
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