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Abstract

We consider both the Bolthausen-Sznitman and the Kingman coalescent restricted to
the partitions of {1, . . . , n}. Spectral decompositions of the corresponding generators
are derived. As an application we obtain a formula for the Green’s functions and
a short derivation of the well-known formula for the transition probabilities of the
Bolthausen-Sznitman coalescent.
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1 Introduction

An exchangeable coalescent process is a discrete or continuous-time Markov chain
that encodes the dynamics of particles grouped into so-called blocks. The jumps of
the process consist of mergers of two or more blocks, and the rate at which a merger
happens only depends on the current number of blocks, but not, for instance, on their
sizes or the specific particles they contain. The theory of exchangeable coalescent
processes has its origins in the study of genealogies in population genetics, culminating
in the seminal work of Kingman [4].

Among exchangeable coalescent processes the so-called Λ-coalescents have received
increasing attention in recent years. The latter were introduced independently by
Donnelly and Kurtz [2], Pitman [7] and Sagitov [9]. A Λ-coalescent {Π(t), t ≥ 0} is
a time-homogeneous exchangeable coalescent process in continuous time with state
space PN, the set of partitions of the non-negative integers N := {1, 2, . . .}, that only
allows for one merger of blocks at any jump. It can be characterized via its restrictions
{Πn(t), t ≥ 0} to [n] := {1, . . . , n} as follows. If at any given time Πn(t) contains b ≥ 2

blocks, then any 2 ≤ k ≤ b of these blocks merge at rate λb,k :=
∫ 1

0
xk−2(1− x)b−kΛ(dx),

where Λ denotes a finite measure on the unit interval. This measure Λ together with the
initial state Π(0) uniquely determines Π, hence the name Λ-coalescent.

In this note we consider both the Kingman coalescent ΠK = {ΠK(t), t ≥ 0} and the
Bolthausen-Sznitman coalescent ΠBS = {ΠBS(t), t ≥ 0}, which are both Λ-coalescents.
For convenience we drop the superscripts K and BS when there is no risk of ambiguity.
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Spectral decomposition for Bolthausen-Sznitman and Kingman coalescent

The article is organized as follows. Our main results are spectral decompositions
of the generator of the Bolthausen-Sznitman n-coalescent, Theorem 2.1, respectively
of the generator of Kingman’s n-coalescent, Theorem 2.7. As Corollaries we obtain
for the Bolthausen-Sznitman coalescent a derivation of the formula for the transition
probabilites that goes back to [1], and a formula for its Green’s matrix. As a further
application we obtain a spectral decomposition of the generator of the block counting
process of the Bolthausen-Sznitman, respectively Kingman’s coalescent.

2 Results

Let us introduce some notation. A partition of a set A is a set, π say, of nonempty
pairwise disjoint subsets of A whose union is A. The members of π are called the blocks
of π. Let #A denote the cardinality of A and let PA denote the set of partitions of A.

2.1 Bolthausen-Sznitman n-coalescent

The Bolthausen-Sznitman n-coalescent Πn,BS = {Πn,BS(t), t ≥ 0} is obtained by
choosing Λ to be the uniform measure on [0, 1]. From the definition of the rates in the
introduction it follows that the corresponding Q-matrix Q := Qn,BS = (qπρ)π,ρ∈P[n]

is
given by

qπρ =


(#ρ−1)!(#π−#ρ−1)!

(#π−1)! if π ≺ ρ,
−(#π − 1) if π = ρ,

0 otherwise,

(2.1)

where π ≺ ρ if and only if ρ is obtained by exactly one merger of blocks of π. In this
section we only consider the Bolthausen-Sznitman n-coalescent and therefore write Π
instead of Πn,BS .

For any two sets A and B ⊆ A and a partition π ∈ PA we call π|B := {C ∩ B : C ∈
π,C ∩B 6= ∅} ∈ PB the restriction of π to B.

Theorem 2.1 (Spectral decomposition of the Bolthausen-Sznitman coalescent). Let L =

(lπρ)π,ρ∈P[n]
and R = (rπρ)π,ρ∈P[n]

be matrices defined by

lπρ :=

{
(−1)#π−#ρ (#ρ−1)!

(#π−1)! if π ≤ ρ,
0 otherwise,

(2.2)

and

rπρ :=

{
(#ρ−1)!
(#π−1)!

∏
B∈ρ(#π|B − 1)! if π ≤ ρ,

0 otherwise,
(2.3)

where π ≤ ρ if and only if each block of π is contained in a block of ρ. Then a spectral
decomposition of Q is given by Q = RDL, where D = (dπρ)π,ρ∈P[n]

is defined by dππ =

−(#π − 1) and dπρ = 0 if π 6= ρ. In particular, lππ = rππ = 1 for any π ∈ P[n].

The right eigenvectors rπρ may be interpreted as the probability that a random
recursive tree on the label set π can be cut down to a tree on the label set ρ, see the
paragraph "A connection with random recursive trees" in Section 3.1 below. As an
application of this spectral decomposition we derive the well-known formula for the
transition probabilities of Π given by Bolthausen and Sznitman in [1], Proposition 1.4.

Corollary 2.2 (Transition probabilities of the Bolthausen-Sznitman coalescent). For any
two partitions π, ρ ∈ P[n] and any time t ≥ 0 the transition probabilities pπρ(t) :=
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P{Π(t) = ρ|Π(0) = π} of the Bolthausen-Sznitman n-coalescent are given by

pπρ(t) = (−1)#ρet (#ρ− 1)!

(#π − 1)!

∏
B∈ρ

(−e−t)#π|B = (e−t)#ρ−1
(#ρ− 1)!

(#π − 1)!

∏
B∈ρ

(1− e−t)#π|B−1,

where for x ∈ R, k ∈ N we denote by xk := x(x+1) · · · (x+ k− 1) the ascending factorial
power with the convention x0 := 1.

Thanks to the spectral decomposition, Theorem 2.1, we obtain a formula for the
Green’s matrix G = (gπρ)π,ρ∈P[n]

of the Bolthausen-Sznitman n-coalescent defined by

gπρ :=
∫∞
0
pπρ(t)dt. Recall that gπρ = E[

∫∞
0

1{Π(t)=ρ}dt|Π(0) = π] is the expected total

time that Π spends in ρ starting from π. We denote by
[
i
j

]
the Stirling permutation

numbers, which count the number of permutations of a set of i elements with j cycles.

Corollary 2.3 (Green’s matrix of the Bolthausen-Sznitman coalescent). The Green’s
matrix G = (gπρ)π,ρ∈P[n]

is given by

gπρ =


(−1)#ρ (#ρ−1)!

(#π−1)!
∑

(kB)B∈ρ∈N#ρ
(−1)|k|
|k|−1

∏
B∈ρ

[#π|B
kB

]
if π ≤ ρ 6= {[n]},

∞ if π ≤ ρ = {[n]},
0 otherwise,

(2.4)

where |k| :=
∑
B∈ρ kB .

Remark 2.4. Notice that since the return probability to any state π ∈ P[n], π 6= {[n]},
equals 0 for any Λ-coalescent Π there is a close connection between the Green’s matrix G
of Π and its hitting probabilities defined by h(π, ρ) := P{Π hits ρ when started from π},
namely via gπρ = h(π, ρ)/qρ = h(π, ρ)/(1−#ρ), cf. [6], p. 146, where qρ :=

∑
σ∈P[n],σ 6=ρ qρσ

is the total rate in ρ.

For a set A and j ∈ N let PA,j denote the set of partitions of A into j blocks. Moreover,{
i
j

}
denotes the Stirling partition numbers, which count the number of partitions into j

blocks of a set of i elements.

Remark 2.5. To the best of the authors’ knowledge, Corollary 2.3 is the first result on the
Green’s matrix, respectively hitting probabilities, of the (partition-valued) Bolthausen-
Sznitman coalescent. However, the hitting probabilities of the corresponding block
counting process have been considered before in [5, Corollary 1.5] and the references
given in Remark 1.6 therein. From Corollary 2.3 it follows by a technical but straightfor-
ward computation that for any π ∈ P[n],i and j ≤ i

∑
ρ∈P[n],j

gπρ = (−1)j (j − 1)!

(i− 1)!

i∑
k=j

(−1)k

k − 1

[
i

k

]{
k

j

}

in agreement with the entries of the Green’s matrix of the block counting process of the
Bolthausen-Sznitman coalescent provided in the proof of Corollary 1.5 in [5].

As a further application of the spectral decomposition of Q, Theorem 2.1, we derive a
spectral decomposition of the generator Q′ = (q′ij)i,j∈[n] of the block counting process
{N(t), t ≥ 0} of the Bolthausen-Sznitman n-coalescent defined by N(t) := #Π(t). It is
well-known that the matrix Q′ is given by q′ij = i/((i− j)(i− j + 1)) if i > j, q′ij = 1− i if
i = j, and q′ij = 0 otherwise.

In [5] this spectral decomposition of Q′ was derived by means of generating functions
without recourse to the partition-valued process Π.
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Corollary 2.6. Let L′ = (l′ij)i,j∈[n], R
′ = (r′ij)i,j∈[n], and D′ = (d′ij)i,j∈[n] be matrices

given by

l′ij := (−1)i−j (j − 1)!

(i− 1)!

{
i

j

}
, r′ij :=

(j − 1)!

(i− 1)!

[
i

j

]
, d′ij := (1− i)1{i=j}. (2.5)

Then a spectral decomposition of Q′ is given by Q′ = R′D′L′.

2.2 Kingman’s n-coalescent

Kingman’s n-coalescent Πn,K = {Πn,K(t), t ≥ 0} is obtained by choosing Λ to be δ0,
the Dirac measure in 0, that is the corresponding Q-matrix Q := Qn,K = (qπρ)π,ρ∈P[n]

is
given by

qπρ =


1 if π l ρ,
−
(#π
2

)
if π = ρ,

0 otherwise,

(2.6)

where π l ρ if and only if π ≤ ρ and #π − #ρ = 1. In other words, the jump chain of
Kingman’s n-coalescent is the directed simple random walk on the partition lattice P[n],
where at each step the chain jumps into a coarser partition. From now on we only
consider Kingman’s n-coalescent and therefore write Π instead of Πn,K .

Theorem 2.7 (Spectral decomposition of Kingman’s coalescent). Define the matrices
L = (lπρ)π,ρ∈P[n]

and R = (rπρ)π,ρ∈P[n]
by

lπρ :=

{
(−1)#π−#ρ (#π+#ρ−2)!

(2#π−2)!
∏
B∈ρ #π|B ! if π ≤ ρ,

0 otherwise,
(2.7)

and

rπρ :=

{
(2#ρ−1)!

(#π+#ρ−1)!
∏
B∈ρ #π|B ! if π ≤ ρ,

0 otherwise.
(2.8)

Then a spectral decomposition of Q is given by Q = RDL, where D = (dπρ)π,ρ∈P[n]
is

defined by dππ := −
(#π
2

)
and dπρ = 0 if π 6= ρ. In particular, lππ = rππ = 1 for any π ∈ P[n].

Remark 2.8. i) Although the spectral decomposition of Q, Theorem 2.7, directly yields
a spectral decomposition of the matrix of transition probabilites pπρ(t) := P{Π(t) =

ρ|Π(0) = π}, analoguously to the one given in (3.10) for the Bolthausen-Sznitman n-
coalescent, this expression is not particularly handy. In fact, a better approach to
calculating pπρ(t) is the one given by Kingman in [4] Equation (2.5).

ii) A combinatorial interpretation of the right eigenvectors rπρ is given in the proofs.
Unlike in the Bolthausen-Sznitman case, the authors are not aware of a probabilistic
interpretation of the rπρ.

As in the case of the Bolthausen-Sznitman coalescent, consider the block counting
process {N(t), t ≥ 0} of Kingman’s n-coalescent defined by N(t) := #Π(t) and let
Q′ = (q′ij)i,j∈[n] denote the generator of N(t). From Theorem 2.7 we obtain a spectral
decomposition of Q′.

Corollary 2.9. Let L′ = (l′ij)i,j∈[n], R
′ = (r′ij)i,j∈[n] be matrices defined by

l′ij := (−1)i+j (i+ j − 2)!

(2i− 2)!

⌊
i

j

⌋
, r′ij :=

(2j − 1)!

(i+ j − 1)!

⌊
i

j

⌋
, (2.9)

where
⌊
i
j

⌋
:=
(
i−1
j−1
)
i!
j! denotes the unsigned Lah numbers which count the number of

partitions into j blocks of a set of i elements, where the elements in each block are
ordered. Then Q′ = R′D′L′ is a spectral decomposition of Q′, where D′ = (d′ij)i,j∈[n] is

defined by d′ii = −
(
i
2

)
and d′ij = 0 if i 6= j.
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3 Proofs

In order to prove our results, we need some notions and facts from the theory of
lattices that we collect from [10]. Recall that a partially ordered set (poset for short)
(P,≤) is a set P together with a binary relation ≤ satisfying:

1. For all p ∈ P, p ≤ p (reflexivity).
2. If p ≤ q and q ≤ p, then p = q (antisymmetry).
3. If p ≤ q and q ≤ r, then p ≤ r (transitivity).

The binary relation ≤ is called the order and the elements of P are said to be orderd
with respect to ≤ . Recall that two posets P,Q are called isomorphic, in which case we
write P ∼= Q, if there exists an order-preserving bijection φ : P → Q whose inverse is
order-preserving. The cartesian product P ×Q of two posets P,Q is defined on the set
{(p, q) : p ∈ P, q ∈ Q} by letting (p, q) ≤ (p′, q′) in P × Q if and only if p ≤ p′ in P and
q ≤ q′ in Q. For p, q ∈ P an upper bound of p and q is an element r ∈ P such that p, q ≤ r.
A least upper bound of p and q is an upper bound s ∈ P of p and q such that for any upper
bound r of p and q one has s ≤ r. Clearly, if a least upper bound of two elements p and q
exists, it is unique. A greatest lower bound is defined in complete analogy. A lattice is
a poset with the property that any two of its elements have a least upper bound and a
greatest lower bound. It is well-known, that P[n] together with the relation ≤ as defined
in Theorem 2.1 is a lattice, the so-called partition lattice. For π, ρ ∈ P[n] with π ≤ ρ we
call the set [π, ρ] := {σ ∈ P[n] : π ≤ σ ≤ ρ} an interval. We will make repeated use of the
isomorphism

[π, ρ] ∼=×
B∈ρ
Pπ|B , (3.1)

cf. Example 3.10.4 in [10]. For more information on posets in general and the partition
lattice in particular the reader is referred to [10]. Evidently, we have P[n] = [∆[n], {[n]}],
where for any set A we let ∆A := {{a} : a ∈ A} be the partition of A into singletons.
Occasionally, we write ∆n instead of ∆[n].

Using the notation we just introduced, the n-Λ-coalescent Πn is a Markov chain with
state space P[n], initial state ∆[n] and Q-matrix Qn = (qnπρ)π,ρ∈P[n]

given by

qnπρ :=


λ#π,#π−#ρ+1 if π ≺ ρ,
−λ#π if π = ρ,

0 otherwise,

(3.2)

where λb :=
∑b
k=2

(
b
k

)
λb,k, b ≥ 2, is the infinitesimal rate.

There are several extensions of ≤ to a linear order on P[n]. Let us fix such an
extension ≤ex and notice that the following quantities of Qn that we are interested
in do not depend on the specific extension chosen. The linear order ≤ex induces a
natural bijection ψ from P[n] to [Bn], where Bn denotes the nth Bell number, which
is the number #P[n] of partitions of [n], defined inductively by letting ψ(∆[n]) = 1 and
ψ(π) ≤ ψ(ρ) iff π ≤ex ρ. Then Qn can be seen as an upper right triangular matrix with
entries ordered according to ≤ex, if we define row/column π to be lower than row/column
ρ iff π ≤ex ρ. The determinant of Qn is therefore given by the product of its diagonal
entries. Hence, the characteristic polynomial of Qn is given by χQn(x) = det(Qn−xIn) =
(−1)Bn

∏
π∈P[n]

(λ#π + x) = (−1)Bn
∏n
i=1(λi + x){

n
i}, where In is the identity matrix on

P[n]. Hence, for each i ∈ [n], −λi is an eigenvalue of Qn with algebraic multiplicity
#P[n],i =

{
n
i

}
.

From now on we fix an n ∈ N, n ≥ 2, and drop this index in the notation, if there is
no risk of confusion.

ECP 20 (2015), paper 87.
Page 5/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4612
http://ecp.ejpecp.org/


Spectral decomposition for Bolthausen-Sznitman and Kingman coalescent

3.1 Bolthausen-Sznitman n-coalescent

In order to prepare the proof of the spectral decomposition of Q = Qn,BS , Theorem
2.1, we calculate the left and right eigenvectors of Q. In the sequel we give two proofs
for the right eigenvectors of Q that are of rather different flavours. The first proof is com-
pletely self-contained and only makes use of the partition lattice P[n]. Together with the
proof of Lemma 3.5 it might serve as a starting point to find a spectral decomposition for
more general coalescents, e.g. beta coalescents. There is a probabilistic interpretation
of the right eigenvector of Q in terms of random recursive trees which then motivates
our second proof that heavily draws on random recursive trees and their connection to
the Bolthausen-Sznitman coalescent as explored in Goldschmidt and Martin [3].

Lemma 3.1. For ρ ∈ P[n] the vector (rπρ)π∈P[n]
defined by

rπρ :=

{
(#ρ−1)!
(#π−1)!

∏
B∈ρ(#π|B − 1)! if π ≤ ρ,

0 otherwise,
(3.3)

is a right eigenvector of Q with corresponding eigenvalue 1− #ρ.

Proof. (first proof of Lemma 3.1) In order to carry out the following calculations, for
any two partitions π, ρ ∈ P[n] we need to parameterize the set {σ : π ≺ σ ≤ ρ}. To
construct an arbitrary partition σ such that π ≺ σ, we could choose a subset C ⊆ π

of at least two blocks of π and merge them in order to obtain σ. In this case #σ =

#π − #C + 1. If, additionally, we require σ ≤ ρ, we certainly cannot choose any collection
C of blocks in π. Instead, all blocks chosen have to be in π|B for some block B ∈ ρ,

in which case #σ|B = #π|B − #C + 1. To summarize, we have {σ : π ≺ σ ≤ ρ} ={{⋃
D∈C D

}
∪ (π \ C) : B ∈ ρ, C ⊆ π|B , #C ≥ 2

}
. Using this parametrization, we obtain∑

σ∈P[n]

qπσrσρ =
∑

σ : π≺σ≤ρ

qπσrσρ − (#π − 1)rπρ

=
∑
B∈ρ

∑
C⊆π|B
#C≥2

(#π − #C)!(#C − 2)!

(#π − 1)!

(#ρ− 1)!

(#π − #C)!

× (#π|B − #C)!
∏

D∈ρ\{B}

(#π|D − 1)!− (#π − 1)rπρ

=
∑
B∈ρ

#π|B∑
c=2

(
#π|B
c

)
(c− 2)!

(#π − 1)!
(#ρ− 1)!

(#π|B − c)!
(#π|B − 1)!

∏
D∈ρ

(#π|D − 1)!− (#π − 1)rπρ

=

∑
B∈ρ

#π|B∑
c=2

(
#π|B
c

)
(c− 2)!

(#π|B − c)!
(#π|B − 1)!

− (#π − 1)

 rπρ

=

∑
B∈ρ

#π|B
#π|B∑
c=2

1

c(c− 1)
− (#π − 1)

 rπρ

=

∑
B∈ρ

(#π|B − 1)− (#π − 1)

 rπρ = (1− #ρ)rπρ,

and the claim follows.

A connection with random recursive trees. Let us now recall the notion of a
random recursive tree in order to prepare our second proof of Lemma 3.1, where we
closely follow Goldschmidt and Martin [3]. We call a tree on n nodes labelled by 1, 2, . . . , n
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an increasing tree if the root has label 1 and the labels in any path from the root to
another node are increasing.

If we have an increasing tree on n − 1 nodes, we obtain an increasing tree on n

nodes by adding a node labelled n and attaching it by an edge to one of the nodes in
the given tree. Starting from the tree that only consists of the root node 1 this gives
an explicit construction of all increasing trees on n nodes. Consequently, there are
(n− 1)! increasing trees on n nodes. A random recursive tree is a tree chosen uniformly
at random from all increasing trees on n nodes. An explicit construction of a random
recursive tree on n nodes is the following. Start with the root node labelled 1. If the tree
has k nodes, choose one of these nodes uniformly at random and attach to it node k + 1

by an edge. Stop after attaching node n.
For any partition π ∈ P[n] an increasing tree on π is a tree with #π nodes that are

labelled by the blocks in π such that the labels in any path from the root to another node
are increasing with respect to their least element. We denote a random recursive tree
on π by Tπ.

Crucial to the construction of Πn via random recursive trees is the following cutting
procedure. When given a tree T on π, a cut is performed by picking an edge, removing
the subtree above this edge (here we picture trees as they grow in nature: from the
root at the bottom to the leaves at the top) and adding the labels of this subtree to the
labels of the node below the edge. For a simple tree the cutting procedure is depicted in
Figure 1. We denote by cT the tree obtained by cutting T at an edge chosen uniformly at

{1}

{2}

{4}

{3}

{1, 2, 4}

{3}

{1, 2, 3, 4}

Figure 1: An increasing tree on {{1}, {2}, {3}, {4}} cut down successively to a tree on
{{1, 2, 3, 4}}.

random. For any tree T on the label set π let p(T ) = π. A striking result is [3, Proposition
2.1], which states that after cutting a random recursive tree Tπ at an edge chosen
uniformly at random, the new tree cTπ is a random recursive tree on the new label set
(which is again a partition of [n]), more formally: cTπ =d Tp(cTπ).

For π ∈ P[n] define a time-homogeneous continuous-time Markov chain Rπ :=

{Rπ(t), t ≥ 0} with values in the set of random recursive trees as follows. The ini-
tial state Rπ(0) is the random recursive tree Tπ on π. The process Rπ evolves according
to the following dynamics. Suppose Rπ is in state T . If T has only one vertex, do
nothing. Otherwise, attach to each edge in T an exponential 1 clock, all clocks being
independent. When the first clock rings, cut T at the associated edge to obtain the next
state of Rπ. Proposition 2.2 in [3] then establishes that Πn is equal in distribution to
{p(R∆n(t)), t ≥ 0}.

Let {Rπ(k), k ≥ 0} denote the jump chain of Rπ. From the definition of R it follows
that a process that is equal in distribution to the jump chain R can be constructed
recursively by letting

Rπ(0) := Tπ, Rπ(k + 1) := cRπ(k), k ≥ 0.

Fix two partitions π, ρ ∈ P[n] such that π ≤ ρ. We say that an increasing tree T on π
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contains ρ (in symbols: ρ @ T ) iff one can obtain an increasing tree on ρ by successively
cutting T . A simple question then is: what is the probability P{ρ @ Tπ} that a random
recursive tree on π contains ρ? Notice first, that an increasing tree T on π contains
ρ if for each block B ∈ ρ we can find a node v = v(B) in T such that the labels in the
subtree above v coincide with the elements in π|B. In other words, we can construct all
increasing trees on π that contain ρ by first constructing an increasing tree T on ρ. Then
each node v ∈ T is labelled by some block B ∈ ρ. Now if #π|B > 1, build an increasing
tree on π|B and replace v by this tree. This procedure is done for all nodes v ∈ T to
obtain an increasing tree on π that contains ρ. Therefore, the number of increasing trees
on π containing ρ is #{T : T increasing tree on π, ρ @ T } = (#ρ−1)!

∏
B∈ρ(#π|B −1)!. On

the other hand, the total number of increasing trees on π is (#π − 1)!. Since a random
recursive tree on π is a tree chosen uniformly at random from all increasing trees on π,
we obtain

P{ρ @ Tπ} =

{
(#ρ− 1)!

∏
B∈ρ(#π|B − 1)!/(#π − 1)! if π ≤ ρ,

0 otherwise,
(3.4)

which is just rπρ. We can now turn to our second proof of Lemma 3.1 in terms of random
recursive trees.

Proof. (second proof of Lemma 1) We rewrite the statement as
∑
σ : π≺σ qπσrσρ = (#π −

#ρ)rπρ. Let J = {J(k), k ≥ 0} denote the jump chain of Π = ΠBS,n. Since P{J(1) =

σ|J(0) = π} = qπσ/qπ is the probability that J jumps from π to σ, after dividing the
rewritten statement by qπ = #π − 1 we obtain for the left hand side∑

σ : π≺σ

qπσ
qπ

rσρ =
∑

σ : π≺σ
P{J(1) = σ|J(0) = π}P{ρ @ Tσ}

=
∑

σ : π≺σ
P{p(cTπ) = σ}P{ρ @ Tσ} = P{ρ @ Tp(cTπ)}

= P{ρ @ cTπ} = P{ρ @ cTπ|ρ @ Tπ}P{ρ @ Tπ},

where we used Propositions 2.2 and 2.1 of [3]. Conditional on ρ @ Tπ, there are precisely
#π − #ρ among the #π − 1 edges in Tπ that we may cut in order to obtain a tree cTπ
that contains ρ. Since, by definition, cTπ is obtained by cutting Tπ at an edge chosen
uniformly at random, we have P{ρ @ cTπ|ρ @ Tπ} = (#π − #ρ)/(#π − 1). The claim
follows.

Lemma 3.2. For x ∈ R \ {0} we have∑
σ∈P[n]

rπσx
#σ−1lσρ = (−1)#ρx−1 (#ρ− 1)!

(#π − 1)!

∏
B∈ρ

(−x)#π|B . (3.5)

Proof. Notice that∑
σ∈P[n]

rπσx
#σ−1lσρ =

(#ρ− 1)!

(#π − 1)!

∑
σ∈[π,ρ]

(−1)#σ−#ρx#σ−1
∏
B∈σ

(#π|B − 1)!

= (−1)#ρx−1 (#ρ− 1)!

(#π − 1)!

∑
σ∈[π,ρ]

∏
B∈σ
−x(#π|B − 1)!. (3.6)

Since
[
n
i

]
counts the number of permutations of [n] with i cycles it is clear that

[
n
i

]
=∑

π∈P[n],i

∏
B∈π(#B − 1)!, cf. equation (1.15) in [8]. Using the isomorphism [π, ρ] ∼=
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×B∈ρ Pπ|B , we calculate∑
σ∈[π,ρ]

∏
B∈σ
−x(#π|B − 1)! =

∑
τ ′∈×B∈ρ Pπ|B

∏
B∈ρ

∏
C∈τ ′B

−x(#C − 1)!

=
∏
B∈ρ

∑
τ∈Pπ|B

∏
C∈τ
−x(#C − 1)! =

∏
B∈ρ

#π|B∑
k=1

(−x)k
∑

τ∈Pπ|B,k

∏
C∈τ

(#C − 1)!


=
∏
B∈ρ

#π|B∑
k=1

(−x)k
[
#π|B
k

]
(3.7)

=
∏
B∈ρ

(−x)#π|B , (3.8)

where in the last step we used xn =
∑n
k=1

[
n
k

]
xk, cf. equation (1.16) in [8].

Lemma 3.3. The matrix L = (lπρ)π,ρ∈P[n]
defined by

lπρ :=

{
(−1)#π−#ρ (#ρ−1)!

(#π−1)! if π ≤ ρ,
0 otherwise,

(3.9)

is the inverse matrix of R, i.e.
∑
σ∈P[n]

rπσlσρ = δπρ.

Proof. Choosing x = 1 in Lemma 3.2 we have that
∑
σ∈P[n]

rπσlσρ = δπρ.

Proof. (of Theorem 2.1) The claim follows by Lemmata 3.1 and 3.3.

Proof. (of Corollary 2.2) Since Π is a continuous-time Markov chain with finite state
space, we have for P (t) = (pπρ(t))π,ρ∈P[n]

the identity P (t) = exp(tRDL) = R exp(tD)L.

In the last step we made use of the spectral decomposition, Theorem 2.1. In particular,
this yields

pπρ(t) =
∑
σ∈P[n]

rπσe
−t(#σ−1)lσρ =

∑
σ∈[π,ρ]

rπσe
−t(#σ−1)lσρ. (3.10)

Letting x = e−t in Lemma 3.2 proves the claim.

Proof. (of Corollary 2.3) From (3.7) we have

x−1
∑

σ∈[π,ρ]

∏
B∈σ
−x(#π|B − 1)! = x−1

∏
B∈ρ

#π|B∑
k=1

(−x)k
[
#π|B
k

]

=
∑

(kB)B∈ρ∈N#ρ

(−1)|k|x|k|−1
∏
B∈ρ

[
#π|B
kB

]
,

where |k| :=
∑
B∈ρ kB . Letting x = e−t and integrating out with respect to t we see for

ρ 6= {[n]} ∫ ∞
0

et
∑

σ∈[π,ρ]

∏
B∈σ
−e−t(#π|B − 1)! dt =

∑
(kB)B∈ρ∈N#ρ

(−1)|k|

|k| − 1

∏
B∈ρ

[
#π|B
kB

]
,

where for ρ = {[n]}∫ ∞
0

et
∑

σ∈[π,ρ]

∏
B∈σ
−e−t(#π|B − 1)! dt =

#π∑
k=1

(−1)k
∫ ∞
0

e−t(k−1) dt

[
#π

k

]
= −∞.

The claim follows from (3.6) and the definition of gπρ.
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Proof. (of Corollary 2.6) Evidently, the rate at which a jump from i to j blocks occurs
equals the sum of all rates at which a jump from a partition π ∈ P[n],i to a partition
ρ ∈ P[n],j occurs, i.e. q′ij =

∑
ρ∈P[n],j

qπρ, where π ∈ P[n],i is fixed arbitrarily. The quantity∑
ρ∈P[n],j

qπρ does not depend on the choice of π ∈ P[n],i, as the following calculation
shows. By the spectral decomposition of Q, Theorem 2.1, we obtain

q′ij =
∑

ρ∈P[n],j

∑
σ∈[π,ρ]

rπσdσσlσρ

=
∑

σ : π≤σ
#σ≥j

∑
ρ : σ≤ρ
#ρ=j

(#σ − 1)!

(#π − 1)!

∏
B∈σ

(#B − 1)!(1− #σ)(−1)#σ−j (j − 1)!

(#σ − 1)!

=
(j − 1)!

(i− 1)!
(−1)j

∑
σ : π≤σ
#σ≥j

(#σ − 1)!
∏
B∈σ

(#B − 1)!(1− #σ)
(−1)#σ

(#σ − 1)!

{
#σ

j

}

=
(j − 1)!

(i− 1)!
(−1)j

i∑
k=j

(k − 1)!

[
i

k

]
(1− k) (−1)k

(k − 1)!

{
k

j

}
=

i∑
k=j

r′ikd
′
kkl
′
kj ,

hence, Q′ = R′D′L′.

3.2 Kingman’s n-coalescent

For any two partitions π, ρ ∈ P[n] such that π ≤ ρ one may ask in how many different
ways the jump chain of Kingman’s coalescent may reach ρ when started in π. Since at
each step only one merger of a pair of blocks occurs, there are #π − #ρ+ 1 steps to be
taken, and so the set of different ways is C(π, ρ) := {(π1, . . . , πm) : π = π1 l · · · l πm =

ρ,m = #π − #ρ+ 1}, where we defined l in the paragraph preceding Theorem 2.7. We
call each element in C(π, ρ) a maximal chain in [π, ρ] and denote by m(π, ρ) := #C(π, ρ)
the number of maximal chains in [π, ρ]. Before we turn to the proof of the spectral
decomposition of Q, Theorem 2.7, we count the number of maximal chains m(π, ρ) in
[π, ρ] in the next Lemma.

Lemma 3.4 (Number of maximal chains). For π, ρ ∈ P[n] with π ≤ ρ we have that

m(π, ρ) = 2#ρ−#π(#π − #ρ)!
∏
B∈ρ

#π|B !. (3.11)

Proof. Notice that any maximal chain (π1, . . . , πn) in [∆[n], {[n]}] can be constructed
as follows. Let π1 := ∆[n], and if πi with i < n is constructed, πi+1 is obtained by
merging two blocks in πi, which can be done in

(#πi
2

)
ways. When πn = {[n]} is reached,

the construction is finished. This construction shows that there are m(∆[n], {[n]}) =(
n
2

)(
n−1
2

)
· · ·
(
2
2

)
= 21−nn!(n− 1)! maximal chains in [∆[n], {[n]}]. Hence (3.11) holds in the

case (π, ρ) = (∆[n], {[n]}).
For the general case, recall the isomorphism [π, ρ] ∼=×B∈ρ Pπ|B . As a consequence,

any maximal chain in [π, ρ] can be built by choosing a maximal chain in each factor Pπ|B
and then ‘intertwining’ these chains, i.e. ordering their elements (excluding the first
element — the partition into singletons — in each chain) in any order subject to the
restriction that the order of elements of the same chain is preserved. Consequently, we
have

m(π, ρ) = (#π − #ρ)!
∏
B∈ρ

[(#π|B − 1)!]−1
∏
B∈ρ

m(∆π|B , {π|B})

= (#π − #ρ)!
∏
B∈ρ

21−#π|B#π|B ! = 2#ρ−#π(#π − #ρ)!
∏
B∈ρ

#π|B !.
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Lemma 3.5. For any ρ ∈ P[n] the vector (rπρ)π∈P[n]
defined by

rπρ :=

{
2#π−#ρ(2#ρ−1)!

(#π−#ρ)!(#π+#ρ−1)!m(π, ρ) if π ≤ ρ,
0 otherwise,

(3.12)

=

{
(2#ρ−1)!

(#π+#ρ−1)!
∏
B∈ρ #π|B ! if π ≤ ρ,

0 otherwise,
(3.13)

is a right eigenvector of Q with corresponding eigenvalue −
(#ρ
2

)
.

Proof. Fix π, ρ ∈ P[n]. If π < ρ, we have

∑
σ∈P[n]

qπσrσρ =
∑

σ : πlσ
rσρ −

(
#π

2

)
rπρ

=
2#π−1−#ρ(2#ρ− 1)!

(#π − 1− #ρ)!(#π + #ρ− 2)!

∑
σ : πlσ

m(σ, ρ)−
(
#π

2

)
rπρ

=

(
(#π − #ρ)(#π + #ρ− 1)

2
−
(
#π

2

))
rπρ = −

(
#ρ

2

)
rπρ,

where we used
∑
σ : πlσm(σ, ρ) = m(π, ρ). If π = ρ, we have

∑
σ∈P[n]

qπσrσρ = qππ =

−
(#ρ
2

)
rπρ, since m(π, π) = 1, hence rππ = 1. Finally, if π ≤ ρ does not hold, thus rπρ = 0,

we cannot have π ≤ σ ≤ ρ for any σ ∈ P[n] and therefore
∑
σ∈P[n]

qπσrσρ = 0. This shows
(3.12). Now (3.13) follows from Lemma 3.4 on the number of maximal chains.

Evidently, the Bn eigenvectors of Q defined by (3.12) are linearly independent.
We are now interested in the inverse matrix of R = (rπρ)πρ∈P[n]

, that is the matrix
L = (lπρ)π,ρ∈P[n]

such that δπρ =
∑
σ∈P[n]

rπσlσρ for all π, ρ ∈ P[n].

Lemma 3.6. For any π ∈ P[n] the vector (lπρ)ρ∈P[n]
given by

lπρ :=

{
(−1)#π−#ρ 2#π−#ρ(#π+#ρ−2)!

(2#π−2)!(#π−#ρ)!m(π, ρ) if π ≤ ρ,
0 otherwise,

(3.14)

=

{
(−1)#π−#ρ (#π+#ρ−2)!

(2#π−2)!
∏
B∈ρ #π|B ! if π ≤ ρ,

0 otherwise,
(3.15)

is a left eigenvector of Q with corresponding eigenvalue −
(#π
2

)
.

Proof. Use
∑
σ : σlρm(π, σ) = m(π, ρ) to obtain

∑
σ∈P[n]

lπσqσρ =
∑

σ : σlρ
lπσ −

(
#ρ

2

)
lπρ

= (−1)#π−#ρ−1 2#π−#ρ−1(#π + #ρ− 1)!

(2#π − 2)!(#π − #ρ− 1)!

∑
σ : σlρ

m(π, σ)−
(
#ρ

2

)
lπρ

=

(
− (#π + #ρ− 1)(#π − #ρ)

2
−
(
#ρ

2

))
lπρ = −

(
#π

2

)
lπρ,

thus (3.14) holds. Equation (3.15) follows from the Lemma on the number of maximal
chains, Lemma 3.4.
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Proof. (of Theorem 2.7) The inverse matrix of R, let us call it U = (uπρ)π,ρ∈P[n]
, is

uniquely determined, and is a matrix of left eigenvectors of Q, i.e. UQ = DU . Moreover,
for any π ∈ P[n] we have by assumption uππ =

∑
σ : π≤σ≤ρ uπσrσρ = δππ = 1. This uniquely

determines a matrix of left eigenvectors of Q, since for any π, ρ ∈ P[n] with π < ρ we
have −

(#ρ
2

)
uπρ =

∑
σ∈[π,ρ] uπσqσρ = 1{πlρ} +

∑
σ : π<σ≤ρ uπσqσρ, and uπρ = 0 for π � ρ.

Since QR = RD by Lemma 3.6, and evidently lππ = 1 for any π ∈ P[n], we have U = L

and the claim follows.

Remark 3.7. Instead of calculating the hitting probabilites h(π, ρ) of Kingman’s n-
coalescent via the spectral decomposition, Theorem 2.7, we use the observation from
section 2 that the jump chain of Π can be interpreted as the directed simple random
walk on P[n]. This implies that the jump chain of Π (when started from π) traces out any
maximal chain in [π, {[n]}] with equal probability m(π, {[n]})−1. Clearly, the total number
of maximal chains in [π, {[n]}] that contain ρ is m(π, ρ)m(ρ, {[n]}), and thus

h(π, ρ) =
m(π, ρ)m(ρ, {[n]})

m(π, {[n]})
=

(
#π − 1

#ρ− 1

)−1
#ρ!

#π!

∏
B∈ρ

#π|B ! =
⌊
#π

#ρ

⌋−1 ∏
B∈ρ

#π|B !,

where we used the Lemma on the number of maximal chains, Lemma 3.4, in the
second step. In the special case π = ∆[n] this formula was given by Kingman in [4],
equation (2.3).

Proof. (of Corollary 2.9) In complete analogy to the argument in Corollary 2.6, we have
q′ij =

∑
ρ∈P[n],j

qπρ independent of the particular partition π ∈ P[n],i, as the following
calculation shows. Using the spectral decomposition of Q, Theorem 2.7, we obtain

q′ij =
∑

ρ∈P[n],j

∑
σ∈[π,ρ]

rπσdσσlσρ

= −
∑

σ : π≤σ
#σ≥j

(2#σ − 1)!

(i+ #σ − 1)!

(∏
B∈σ

#π|B !

)(
#σ

2

) ∑
ρ : σ≤ρ
#ρ=j

(−1)#σ+j (#σ + j − 2)!

(2#σ − 2)!

∏
B∈ρ

#σ|B !

= −
i∑

k=j

(2k − 1)!

(i+ k − 1)!

⌊
i

k

⌋(
k

2

)
(−1)k+j (k + j − 2)!

(2k − 2)!

⌊
k

j

⌋
=

i∑
k=j

r′ikd
′
kkl
′
kj ,

where in the third step we used the identity
⌊
i
k

⌋
=
∑
σ∈P[i],k

∏
B∈σ #B! twice. This identity

is obvious from the interpretation of
⌊
i
k

⌋
as the number of partitions into k ordered blocks

of a set of i elements, where the elements in each block are ordered.
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