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Abstract

We discuss the properties of three upsilon transforms, which are related to the class of
p-tempered α-stable (TSpα) distributions. In particular, we characterize their domains
and show how they can be represented as compositions of each other. Further, we
show that if −∞ < β < α < 2 and 0 < q < p <∞ then they can be used to transform
the Lévy measures of TSpβ distributions into those of TSqα.
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1 Introduction

Over the past decade there has been considerable interest in the study of trans-
forms of Lévy measures, especially upsilon transforms, which are closely related to
stochastic integration with respect to Lévy processes. Although upsilon transforms
were formally defined in [2], the concept goes back, at least, to [7]. In this paper, we
study the properties of three upsilon transforms, which are related to tempered stable
distributions.

Let Mσf be the collection of all σ-finite Borel measures on Rd such that every
M ∈Mσf satisfies M({0}) = 0, and let ρ be a nonzero σ-finite Borel measure on (0,∞).
A mapping Υρ : Mσf 7→ Mσf is called an upsilon transform with dilation measure ρ if,
for any M ∈Mσf , we have

[ΥρM ](B) =

∫ ∞
0

M(s−1B)ρ(ds), B ∈ B(Rd), (1.1)

where B(Rd) refers to the Borel sets in Rd.
We are particularly interested in the case when ΥρM is a Lévy measure. Recall that

a Borel measure M ∈Mσf is called a Lévy measure if

M ({0}) = 0 and

∫
Rd

(
1 ∧ |x|2

)
M(dx) <∞. (1.2)

Theorem 3.2 in [2] tells us that if ΥρM is a Lévy measure then, necessarily, M is a
Lévy measure as well. However, ΥρM need not be a Lévy measure even if M is. We
write D(Υρ) to denote the collection of all Lévy measures for which ΥρM remains a
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Three upsilon transforms

Lévy measure. This is called the domain of Υρ. Further, we write R(Υρ) to denote the
collection of all Lévy measures M ′ for which there exists an M ∈ D(Υρ) with M ′ = ΥρM .
This is called the range of Υρ.

A probabilistic interpretation of Υρ is given in [2]. Specifically, for an upsilon trans-
form Υρ let ηρ(t) = ρ([t,∞)) for t > 0. Assume that ηρ(t) <∞ for each t > 0 and let η∗ρ be
the inverse of ηρ in the sense η∗ρ(t) = inf{s > 0 : ηρ(s) ≤ t} for t > 0. Let {Xt : t ≥ 0} be a
Lévy process such that the distribution of X1 has Lévy measure M . Define (if possible)
the stochastic integral

Y =

∫ ηρ(0)

0

η∗ρ(t)dXt

in the sense of [17]. If the integral exists then M ∈ D(Υρ) and the distribution of Y is
infinitely divisible with Lévy measure ΥρM . However, even if M ∈ D(Υρ) this does not
guarantee that the integral exists since we must be careful with the Gaussian part and
the shift. See Theorem 3.5 in [17] for the exact conditions under which the stochastic
integral exists.

In this paper we focus on upsilon transforms with the following dilation measures:
1. For α ∈ R and p > 0 let

ψα,p(ds) = s−α−1e−s
p

1s>0ds. (1.3)

2. For −∞ < β < α <∞ and p > 0 let

τβ→α,p(ds) =
1

Kα,β,p
s−α−1(1− sp)

α−β
p −110<s<1ds, (1.4)

where

Kα,β,p =

∫ ∞
0

uα−β−1e−u
p

du = p−1Γ

(
α− β
p

)
.

3. For 0 < q < p <∞ and α ∈ R let

πα,p→q(ds) = pfq/p(s
−p)s−α−p−11s>0ds, (1.5)

where, for r ∈ (0, 1), fr is the density of a fully right skewed r-stable distribution with
Laplace transform ∫ ∞

0

e−txfr(x)dx = e−t
r

. (1.6)

For simplicity of notation we write

Ψα,p = Υψα,p , Tβ→α,p = Υτβ→α,p , and Pα,p→q = Υπα,p→q .

The transform Ψα,p was first introduced in [10] and then further studied in [11] and [12].
Several important subclasses were studied in [16], [1], and [8]. The transform, Tα→β,p
was discussed in Section 4 of [12], and the case where p = 1 was considered in [16],
[18], and [9]. The transform Pα,p→q is essentially new, although it appears, implicitly, in
[4]. Further, a related transform is studied in [3].

The transform Ψα,p is closely related to the class of tempered stable distributions,
which is a class of models that is obtained by modifying the tails of infinite variance stable
distributions to make them lighter. These models were first introduced in [14]. The more
general class of p-tempered α-stable distributions (TSpα), where p > 0 and α < 2, was
introduced in [4] as a class of infinitely divisible distributions with no Gaussian part and
a Lévy measure of the form Ψα,pM , where M ∈ D(Ψα,p). If we allow these distributions
to have a Gaussian part then we get the class of models studied in [10]. This, in turn,
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contains important subclasses including the Thorin class, the Goldie-Steutel-Bondesson
class, the class of type M distributions, and the class of generalized type G distributions.
For more about tempered stable distributions and their use in a variety of application
areas see [13], [5], [6], and the references therein.

The relationship between tempered stable distributions and the transforms Tβ→α,p
and Pα,p→q will become apparent from studying the relationships among the transforms.
Several such relationships are known. Specifically, if −∞ < γ < β < α < ∞ then
Theorem 3.1 in [16] (see also [9]) implies that

Ψα,1 = Tβ→α,1Ψβ,1

and Theorem 4.7 in [18] implies that

Tγ→α,1 = Tβ→α,1Tγ→β,1.

We will show that these relations hold with 1 replaced by any p > 0. Further, we show
that if 0 < r < q < p <∞ and α ∈ R then

Ψα,q = Pα,p→qΨα,p

and
Pα,p→r = Pα,q→rPα,p→q.

Putting these together implies that if −∞ < β < α <∞ and 0 < q < p <∞ then

Ψα,q = Pα,p→qTβ→α,pΨβ,p = Tβ→α,qPβ,p→qΨβ,p.

Thus we can transform Ψβ,p into Ψα,q by using the other two transforms. In the context
of tempered stable distributions this means that we can transform the Lévy measures of
TSpβ distributions into those of TSqα.

2 Main Results

We begin by characterizing the domains of the transforms of interest. Toward this
end we introduce some notation. For α ∈ [0, 2] let Mα be the class of Borel measures on
Rd such that M ∈Mα if and only if

M({0}) = 0 and

∫
Rd

(
|x|2 ∧ |x|α

)
M(dx) <∞. (2.1)

Note that if 0 < α1 < α2 < 2 then M2 ( Mα2 ( Mα1 ( M0, and that M0 is the class of
all Lévy measures on Rd. Let Mlog be the subclass of M0 such that M ∈Mlog satisfies∫
|x|≤1

|x|2M(dx) +
∫
|x|>1

log |x|M(dx) <∞.

Theorem 2.1. 1. For −∞ < β < α <∞ and p > 0 we have

D(Tβ→α,p) = D(Ψα,p) =


M0 if α < 0

Mlog if α = 0

Mα if α ∈ (0, 2)

{0} if α ≥ 2

.

2. For α ∈ R and 0 < q < p <∞ we have

D(Pα,p→q) =


M0 if α− q < 0

Mlog if α− q = 0

Mα−q if α− q ∈ (0, 2)

{0} if α− q ≥ 2

.
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The proof follows from a general result and is given in Section 4. We note that
D(Ψα,p) was already fully characterized in [10]. Henceforth, we assume that α < 2 in
the case of Tβ→α,p and Ψα,p and that α < 2 + q in the case of Pα,p→q. Of course, our
results will, trivially, remain true for the other cases.

We now turn to the composition of transforms. Let Υρ1 ,Υρ2 be two upsilon transforms
and define the composition Υρ2Υρ1 on the domain

D(Υρ2Υρ1) = {M ∈ D(Υρ1) : Υρ1M ∈ D(Υρ2)}.

Proposition 4.1 in [2] tells us that D(Υρ2Υρ1) = D(Υρ1Υρ2) and that

Υρ2Υρ1 = Υρ1Υρ2 .

Thus compositions of upsilon transforms commute. To give a better understanding of the
domains of compositions we give the following.

Lemma 2.2. If −∞ < γ < β < α <∞ and 0 < r < q < p <∞ then

R(Tβ→α,p) ⊂ D(Tγ→β,p) = D(Ψβ,p)

and

R(Ψα,p),R(Pα,q→r),R(Tβ→α,p) ⊂ D(Pα,p→q).

The proof follows from a general result and is given in Section 4. We now state our
main result.

Theorem 2.3. 1. If −∞ < β < α < 2 and p > 0 then

Ψα,p = Tβ→α,pΨβ,p.

2. If −∞ < γ < β < α < 2 and p > 0 then

Tγ→α,p = Tβ→α,pTγ→β,p.

3. If α < 2 and 0 < q < p <∞ then

Ψα,q = Pα,p→qΨα,p.

4. If 0 < r < q < p <∞ and −∞ < α < 2 + r then

Pα,p→r = Pα,q→rPα,p→q.

The proof is given in Section 4. In all cases equality of domains is part of the result.
Further, in the above, all compositions commute. Before proceeding, we recall a result
from [10].

Proposition 2.4. If −∞ < α < 2 and p > 0 then the transform Ψα,p is one-to-one.

Combining this with Theorem 2.3 will give the following.

Corollary 2.5. If −∞ < β < α < 2 and p > 0 then the transform Tβ→α,p is one-to-one. If
0 < q < p and α < 0 then the transform Pα,p→q is one-to-one.

For Tβ→α,p a different proof was given in [12]. For Pα,p→q, the case where α ≥ 0 is
more complicated and will be dealt with in a future work.

Proof. We begin with Part 1. Let M,M ′ ∈ D(Tβ→α,p) = D(Ψα,p). If Tβ→α,pM =

Tβ→α,pM
′ then Ψβ,pTβ→α,pM = Ψβ,pTβ→α,pM

′ and hence by commutativity and Theo-
rem 2.3 we have Ψα,pM = Ψα,pM

′. From here Proposition 2.4 implies that M = M ′ and
hence Tβ→α,p is one-to-one. The proof of Part 2 is similar. We just need to note that, in
this case, D(Ψα,q) = M0.
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We now interpret Theorem 2.3 in the context of tempered stable distributions. For α <
2 and p > 0 let LTSpα be the class of Lévy measures of p-tempered α-stable distributions,
and note that LTSpα = R(Ψα,p). For −∞ < β < α < 2 and 0 < q < p <∞ let TTSβ→α,p and

PTS
α,p→q be the restrictions of Tβ→α,p and Pα,p→q to the domains LTSpβ ∩D(Tβ→α,p) and

LTSpα respectively. Note that, by Lemma 2.2, LTSpα ⊂ D(Pα,p→q).

Corollary 2.6. For −∞ < β < α < 2 and p > 0 the mapping TTSβ→α,p is a bijection from

LTSpβ ∩D(Tβ→α,p) onto LTSpα. For 0 < q < p and α < 2 the mapping PTS
α,p→q is a bijection

from LTSpα onto LTSqα.

Proof. The result is immediate from Theorem 2.3 and Corollary 2.5, except in the case of
PTS
α,p→q with α ∈ [0, 2). In this case we can show that PTS

α,p→q is one-to-one by arguments
similar to the proof of Corollary 2.5.

3 Probabilistic Interpretation

In this section we interpret Theorem 2.3 in terms of stochastic integration. First,
recall that every infinitely divisible distribution µ on Rd has a characteristic function of
the form µ̂(z) = exp{Cµ(z)} for z ∈ Rd, where

Cµ(z) = −1

2
〈z,Az〉+ i〈b, z〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉1|x|≤1

)
M(dx),

A is a symmetric nonnegative-definite d× d matrix called the Gaussian part, b ∈ Rd is
called the shift, and M is a Lévy measure. The measure µ is uniquely identified by the
Lévy triplet (A,M, b) and we write µ = ID(A,M, b). Further, we write {X(µ)

t : t ≥ 0} to
denote a Lévy process with X1 ∼ µ. A Lévy measure M on Rd is called symmetric if
M(B) = M(−B) for every B ∈ B(Rd).

We say that a dilation measure ρ satisfies Assumption A if ρ(dt) = r(t)dt for some
Borel function r for which there exists a b ∈ (0,∞] with r(t) > 0 for t ∈ (0, b) and r(t) = 0

otherwise. For any dilation measure ρ satisfying Assumption A let ηρ(t) = ρ([t,∞)) for
t ∈ (0, b) and note that ηρ : (0, b) 7→ (0, ηρ(0)) is differentiable, strictly decreasing, and
invertible. Let η∗ρ(t) be its inverse function.

Fix a dilation measure ρ satisfying Assumption A. For any µ = ID(0,M, 0), where
M ∈ D(Υρ) is a symmetric Lévy measure, Theorem 3.5 in [17] implies that the stochastic
integral ∫ ηρ(0)

0

η∗ρ(t)dX
(µ)
t

exists. For such µ define the transform

Υρ(µ) = L

(∫ ηρ(0)

0

η∗ρ(t)dX
(µ)
t

)
,

where L (X) is the law of X. Theorem 3.10 in [17] implies that Υρ(µ) = ID(0,ΥρM, 0).
We can now give a probabilistic interpretation of Theorem 2.3. We only present it for

the first part of the theorem since the rest are similar. Fix −∞ < β < α < 2, p > 0, and
let M be a symmetric Lévy measure with M ∈ D(Ψα,p). If µ = ID(0,M, 0) then the first
part of Theorem 2.3 implies∫ ηψα,p (0)

0

η∗ψα,p(t)dX
(µ)
t

d
=

∫ ητβ→α,p (0)

0

η∗τβ→α,p(t)dX
(Υψβ,pµ)
t

d
=

∫ ηψβ,p (0)

0

η∗ψβ,p(t)dX
(Υτβ→α,pµ)
t .
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In this section we focused on the case where µ = ID(0,M, 0) and M is a symmetric
Lévy measure. This was done for simplicity. In the general case, the conditions for
the existence of the stochastic integral and the form of its Lévy triplet are a bit more
complicated, see Theorems 3.5 and 3.10 of [17]. Never-the-less, one can obtain more
general results analogous to those given in this section.

4 Proofs

In this section we prove our main results. First, recall that, for r ∈ (0, 1), fr is the
probability density of a fully right-skewed r-stable distribution with Laplace transform
given by (1.6). Recall further that the class of all stable distributions on R is a parametric
family with four parameters. While there are many ways to parametrize this family,
a common parametrization is given in Definition 14.16 of [15]. We note that, in this
parametrization, fr is the density of a stable distribution with parameters

(
r, 1, 0, cos πr2

)
.

We now give some properties of this density.

Lemma 4.1. 1. If r ∈ (0, 1) then there is a K > 0 depending on r such that

fr(x) ∼ Kx−r−1 as x→∞.

2. If r ∈ (0, 1) and β ∈ (−∞, r) then∫ ∞
0

sβfr(s)ds <∞.

3. If r, p ∈ (0, 1) then

frp(u) =

∫ ∞
0

fr(uy
−1/r)y−1/rfp(y)dy.

Proof. Part 1 follows from (14.37) in [15]. When β < 0 Part 2 follows from Theorem
5.4.1 in [19] and when β ∈ [0, r) it follows from Part 1. Now, let X ∼ fr and Y ∼ fp be
independent random variables. The fact that

E
[
e−tY

1/rX
]

= E
[
E
[
e−tY

1/rX |Y
]]

= E
[
e−t

rY
]

= e−t
rp

implies that Y 1/rX ∼ frp. From here Part 3 follows by representing the density of Y 1/rX

in terms of the densities of X and Y .

Lemma 4.2. Assume that ρ(ds) = g(s)1s>0ds and that there exist δ ∈ (0, 1), α ∈ R, and
0 < a < b <∞ such that a < sα+1g(s) < b for all s ∈ (0, δ). When α < 2 assume also that∫∞

0
s2g(s)ds <∞. In this case

D(Υρ) =


M0 if α < 0

Mlog if α = 0

Mα if α ∈ (0, 2)

{0} if α ≥ 2

.

Further, when α ∈ (0, 2) we have R(Υρ) ⊂Mβ for every β ∈ [0, α).

We note that a related result is given in Theorem 4.1 of [18].

Proof. Fix M ∈M0. We need to characterize when∫
Rd

(
|x|2 ∧ 1

)
[ΥρM ](dx) <∞.
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First assume α ≥ 2. If M 6= 0 then there exists a δ′ ∈ (0, δ) such that M(|x| ≤ 1/δ′) > 0

and ∫
|x|≤1

|x|2[ΥρM ](dx) =

∫
Rd
|x|2

∫ 1/|x|

0

s2g(s)dsM(dx)

≥
∫
|x|≤1/δ′

|x|2
∫ δ′

0

s2g(s)dsM(dx)

≥ a

∫
|x|≤1/δ′

|x|2
∫ δ′

0

s1−αdsM(dx) =∞.

Now assume that α < 2. We have∫
|x|>1

[ΥρM ](dx) =

∫
|x|≤1/δ

∫ ∞
1/|x|

g(s)dsM(dx)

+

∫
|x|>1/δ

∫ δ

1/|x|
g(s)dsM(dx)

+

∫
|x|>1/δ

∫ ∞
δ

g(s)dsM(dx) =: I1 + I2 + I3.

Since M ∈ M0 and for any c > 0 we have
∫∞
c
g(s)ds ≤ c−2

∫∞
0
s2g(s)ds < ∞ we have

I3 <∞ and

I1 ≤
∫
|x|≤1/δ

|x|2M(dx)

∫ ∞
0

s2g(s)ds <∞.

Now note that

a

∫
|x|>1/δ

∫ δ

1/|x|
s−1−αdsM(dx) ≤ I2 ≤ b

∫
|x|>1/δ

∫ δ

1/|x|
s−1−αdsM(dx).

From here the fact that
∫ δ

1/|x| s
−1−αds = (|x|α − δ−α)/α when α 6= 0 and it equals log |xδ|

when α = 0 gives the necessity of our conditions. Now note that∫
|x|≤1

|x|2[ΥρM ](dx) =

∫
Rd
|x|2

∫ 1/|x|

0

s2g(s)dsM(dx)

≤
∫
|x|≤1/δ

|x|2M(dx)

∫ ∞
0

s2g(s)ds+ b

∫
|x|>1/δ

|x|2
∫ 1/|x|

0

s1−αdsM(dx)

=

∫
|x|≤1/δ

|x|2M(dx)

∫ ∞
0

s2g(s)ds+
b

2− α

∫
|x|>1/δ

|x|αM(dx).

This gives sufficiency of the conditions and completes the proof of the first part.
Now assume that α ∈ (0, 2) and β ∈ [0, α). It suffices to show that for any M ∈Mα∫

|x|>1

|x|β [ΥρM ](dx) =

∫
Rd
|x|β

∫ ∞
|x|−1

sβg(s)dsM(dx) <∞.

Observing that∫
|x|≤1/δ

|x|β
∫ ∞
|x|−1

sβg(s)dsM(dx) ≤
∫
|x|≤1/δ

|x|2M(dx)

∫ ∞
0

s2g(s)ds <∞,

∫
|x|>1/δ

|x|β
∫ ∞
δ

sβg(s)dsM(dx) <∞,
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and ∫
|x|>1/δ

|x|β
∫ δ

|x|−1

sβg(s)dsM(dx) ≤ b

∫
|x|>1/δ

|x|β
∫ ∞
|x|−1

sβ−α−1dsM(dx)

=
b

α− β

∫
|x|>1/δ

|x|αM(dx) <∞

gives the result.

We can now prove Theorem 2.1 and Lemma 2.2.

Proof of Theorem 2.1 and Lemma 2.2. Both results follow easily from Lemma 4.2, we
just need to check that the assumptions hold. We only verify this for Pα,p→q as it is
immediate for the other cases. In this case we have g(s) = pfq/p(s

−p)s−α−p−1. Lemma
4.1 implies that∫ ∞

0

s2g(s)ds = p

∫ ∞
0

fq/p(s
−p)s1−α−pds =

∫ ∞
0

fq/p(v)v−(2−α)/pdv <∞

and that g(s) ∼ pKsq−α−1 as s ↓ 0. From here the result follows.

Proof of Theorem 2.3. In all cases, equality of the domains follows from Theorem 2.1
and Lemma 2.2. We now turn to proving the equalities. We begin with Part 1. Fix
M ∈ D(Tβ→α,pΨβ,p) and let M ′ = Tβ→α,pΨβ,pM . For any B ∈ B(Rd)

M ′(B) = K−1
α,β,p

∫ 1

0

[Ψβ,pM ](u−1B)u−α−1 (1− up)
α−β
p −1

du

= K−1
α,β,p

∫ ∞
0

∫ 1

0

M((ut)−1B)t−1−βe−t
p

u−α−1 (1− up)
α−β−p

p dudt

= K−1
α,β,p

∫ ∞
0

∫ t

0

M(v−1B)tα−β−1e−t
p

v−α−1

(
1− vp

tp

)α−β−p
p

dvdt

= K−1
α,β,p

∫ ∞
0

∫ ∞
v

M(v−1B)tp−1e−t
p

v−α−1 (tp − vp)
α−β−p

p dtdv

= K−1
α,β,p

∫ ∞
0

M(v−1B)e−v
p

v−α−1dv

∫ ∞
0

e−s
p

sα−β−1ds

=

∫ ∞
0

M(v−1B)e−v
p

v−α−1dv = [Ψα,pM ](B),

where the third line follows by the substitution v = ut and the fifth by the substitution
sp = tp − vp

We now show Part 2. Note that by the well-known relationship between beta and
gamma functions∫ 1

0

wα−β−1 (1− wp)
β−γ
p −1

dw = p−1

∫ 1

0

w
α−β
p −1 (1− w)

β−γ
p −1

dw

= p−1
Γ
(
α−β
p

)
Γ
(
β−γ
p

)
Γ
(
α−γ
p

) =
Kα,β,pKβ,γ,p

Kα,γ,p
.

For simplicity of notation let A = K−1
α,β,pK

−1
β,γ,p and note that

K−1
α,γ,p = A

∫ 1

0

wα−β−1 (1− wp)
β−γ
p −1

dw.
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Fix M ∈ D(Tβ→α,pTγ→β,p) and let M ′ = Tβ→α,pTγ→β,pM . For B ∈ B(Rd)

M ′(B) = K−1
α,β,p

∫ 1

0

[Tγ→β,pM ](u−1B)u−α−1 (1− up)
α−β
p −1

du

= A

∫ 1

0

∫ 1

0

M((ut)−1B)u−α−1 (1− up)
α−β
p −1

dut−β−1 (1− tp)
β−γ
p −1

dt

= A

∫ 1

0

∫ t

0

M(v−1B)v−α−1

(
1− vp

tp

)α−β
p −1

dvtα−β−1 (1− tp)
β−γ
p −1

dt

= A

∫ 1

0

M(v−1B)v−α−1

∫ 1

v

(tp − vp)
α−β
p −1

(1− tp)
β−γ
p −1

tp−1dtdv

= A

∫ 1

0

M(v−1B)v−α−1(1− vp)
α−γ
p −1dv

∫ 1

0

wα−β−1 (1− wp)
β−γ
p −1

dw

= K−1
α,γ,p

∫ 1

0

M(v−1B)v−α−1(1− vp)
α−γ
p −1dv = [Tγ→α,pM ](B),

where the third line follows by the substitution v = ut and the fifth by the substitution
wp = (tp − vp)/(1− vp), which implies 1− tp = (1− wp)(1− vp).

To show Part 3, fix M ∈ D(Pα,p→qΨα,p) and note that for B ∈ B(Rd)

[Pα,p→qΨα,pM ](B) = p

∫ ∞
0

fq/p(s
−p)s−α−p−1[Ψα,pM ](s−1B)ds

=

∫ ∞
0

fq/p(s)s
α/p[Ψα,pM ](s1/pB)ds

=

∫ ∞
0

fq/p(s)s
α/p

∫ ∞
0

M(s1/pt−1B)t−1−αe−t
p

dtds

=

∫ ∞
0

M(v−1B)v−1−α
∫ ∞

0

e−v
psfq/p(s)dsdv

=

∫ ∞
0

M(v−1B)v−1−αe−v
q

dv = [Ψα,qM ](B),

where the fourth line follows by the substitution v = s−1/pt.
For Part 4, fix M ∈ D(Pα,q→rPα,p→q) and let M ′ = Pα,q→rPα,p→qM . For any B ∈

B(Rd)

M ′(B) =

∫ ∞
0

fr/q(t)t
α/q[Pα,p→qM ](t1/qB)dt

=

∫ ∞
0

fq/p(s)s
α/p

∫ ∞
0

fr/q(t)t
α/qM(t1/qs1/pB)dtds

=

∫ ∞
0

M(u1/pB)uα/p
∫ ∞

0

fq/p(ut
−p/q)fr/q(t)t

−p/qdtdu

=

∫ ∞
0

M(u1/pB)uα/pfr/p(u)du = [Pα,p→rM ](B),

where the third line follows by the substitution u = stp/q and the fourth by Lemma
4.1.
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