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1 Introduction and previous results

In this paper, we are interested in the deviation on the right of weighted sums of
independent random variables. We will assume throughout the paper that the random
variables are bounded on the right and that the weights are positive. So, let X1, X2, . . .

be a sequence of independent random variables satisfying the conditions below:

vk := VarXk <∞, IE(Xk) = 0 and Xk ≤ 1 almost surely. (1.1)

Let then (ck)k>0 be a sequence of positive deterministic reals. The normalized weighted
sums (Wn)n>0 are defined by

Wn = V −1/2n

n∑
k=1

ckXk, where Vn =

n∑
k=1

c2kvk. (1.2)

We now recall some known results on random variables bounded on the right. Bennett
(1962, page 42) proved that, for a centered random variable X with variance v bounded
on the right by some positive constant c, the value of IE(exp(tX) is maximized for any
positive t by the discrete distribution µ given by

µ({c}) = v/(c2 + v) and µ({−v/c}) = c2/(c2 + v). (1.3)

When c = 1, Bennett’s result ensures that, for any positive t,

log IE(exp(tX)) ≤ `v(t) := log
(
vet + e−vt

)
− log(1 + v). (1.4)

Next Hoeffding (1963, Lemma 3, page 23) proved that, for any t > 0, the function
v → `v(t) is concave with respect to v. Hoeffding’s lemma ensures that, for any t > 0,

`v1
(t) + `v2(t) + · · ·+ `vn(t) ≤ n`v(t) with v = (v1 + v2 + · · ·+ vn)/n. (1.5)
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Exponential inequalities for weighted sums

Using the above results, Hoeffding (1963, Theorem 3, page 16) obtained the large
deviations inequality

IP(X1 +X2 + · · ·+Xn ≥ nu) ≤ exp(−n`∗v(u)), (1.6)

where `∗v(u) = +∞ for u > 1 and

`∗v(u) = sup
t≥0

(
ut− `v(t)

)
=
(v + u

v + 1

)
log
(

1 +
u

v

)
+
(1− u
v + 1

)
log
(
1− u

)
for u ∈ [0, 1]. (1.7)

Hoeffding (1963) also proved that, for any positive u,

`∗v(u) ≥ u2/(2v) for v ≥ 1 and `∗v(u) ≥ u2 log(1/v)/(1− v2) for v < 1. (1.8)

Since `v = (`∗v)∗, the above lower bound implies that, for any positive t,

`v(t) ≤ ϕ(v)t2/4 with ϕ(v) = 2v for v ≥ 1 and ϕ(v) = (1−v2)/ log(1/v) for v < 1. (1.9)

The upper bound (1.9) was rediscovered much later by Kearns and Saul (1998). We refer
to Bentkus (2002, 2003, 2004), Pinelis (2014), Fan, Grama and Liu (2015) and Bercu,
Delyon and Rio (2015) for additional results concerning Hoeffding’s type inequalities
and exponential inequalities for sums or martingales.

Let us now turn to the general case of distincts weights. Let c = max(c1, c2, . . . , cn).
Applying Inequality (1.6), which is Hoeffding’s Theorem 3, to the random variables
X ′k = (ck/c)Xk with u = x

√
Vn /nc, one can obtain that

IP(Wn ≥ x) ≤ exp
(
−n`∗(Vn/nc2)

(x
√
Vn /nc)

)
. (1.10)

Let then the function g be defined by

g(u) = (1 + u) log(1 + u)− u for any u ≥ 0. (1.11)

Since `∗v(u) ≥ vg(x/v), Inequality (1.10) implies the inequality of Bennett (1962):

IP(Wn ≥ x) ≤ exp
(
−c−2Vng(V −1/2n cx)

)
. (1.12)

Now, on the one hand, if Vn ≥ nc2, (1.10) and the first part of (1.8) ensure that

IP(Wn ≥ x) ≤ exp
(
−x2/2

)
, (1.13)

for any positive x, and, one the other hand, if vk ≥ 1 for every k in [1, n], then, by (1.9),

log IE
(
exp(tWn)

)
≤ 1

2Vn

n∑
k=1

vkc
2
kt

2 =
1

2
t2, (1.14)

which also implies (1.13). If vk < 1 for some k in [1, n] and Vn < nc2, the situation
becomes more intricate. Using (1.9), one can obtain the Kearns-Saul type inequality

IP(Wn ≥ x) ≤ exp
(
− Vnx

2∑n
k=1 c

2
kϕ(vk)

)
(1.15)

(see Bercu, Delyon and Rio (2015) for more details). However, in this inequality, the
denominator may be much larger than 2Vn. Next, using (1.12) and the lower bound

g(x) ≥ x2/(2v + 2x/3), (1.16)
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Exponential inequalities for weighted sums

one can obtain the Bernstein inequality

IP(Wn ≥ x) ≤ exp
(
− x2

2
(
1 + cx/(3

√
Vn
)). (1.17)

In the above inequality, the first order term is exact. However the second order term
may be very large, due to the fact that c = max(c1, c2, . . . , cn), which limits drastically
the accuracy of this inequality in some cases.

In this paper, we will obtain inequalities with new second order terms. The main idea
of the paper is that, for some adequate function γ,

`v(t) ≤ v(t2/2) + γ(v)(t3/6). (1.18)

Combining this bound with (1.4), we will obtain upper bounds on the Laplace transform
of Wn which will allow us to get new exponential inequalities. In Section 2, we explain
our method and we give exponential inequalities with upper bounds depending on the
above function γ. Section 3 is devoted to upper bounds on γ for large values of v and
Section 4 is devoted to upper bounds on γ for small values of v. These upper bounds on
the function γ will allow us to show that, in the case of weighted sums of independent
and bounded random variables, our method provides more efficient inequalities than
the inequalities of Bennett (1962), Hoeffding (1963) and Kearns and Saul (1998) for
intermediate values of the deviation, under adequate conditions on the weigths ck and
the variances vk (see Remark 4.2 ). Finally, in Section 5, we compare our results with the
previous results on an example.

2 The main inequality

In this Section, we explain how Inequality (1.18) can be used to obtain new expo-
nential inequalities. The estimation of the function γ appearing here is carried out in
Sections 3 and 4. Let us now state our main result.

Theorem 2.1. Let the random variable Wn be defined by (1.2). Define the function
γ : IR+ → IR+ by

γ(v) = 0 if v ≥ 1 and γ(v) = 6 sup
t>0

t−3(`v(t)− vt2/2) if v < 1. (2.1)

For any positive t,

log IE
(
exp(tWn)

)
≤ (t2/2) +A3,n(t3/6), where A3,n = V −3/2n

n∑
k=1

c3kγ(vk). (2.2)

Consequently, for any positive x,

IP
(
Wn ≥ x

)
≤ exp

(
− (1 + 2A3,nx)3/2 − 1− 3A3,nx

3A2
3,n

)
(2.3)

≤ exp
(
−
g
(
A3,nx

)
A2

3,n

)
≤ exp

(
− x2

2(1 + xA3,n/3)

)
, (2.4)

where g(x) = (1 + x) log(1 + x)− x. Furthermore, for any positive x,

IP
(
Wn > x

(
1 +A3,n(x/2)

)1/3) ≤ exp
(
−x2/2

)
. (2.5)

Remark 2.1. We will prove in Section 3 that γ(v) is finite for any positive v. Now
assume that, for any positive k, the random variables Xk have the variance v, for some

ECP 20 (2015), paper 77.
Page 3/10

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v20-4204
http://ecp.ejpecp.org/


Exponential inequalities for weighted sums

v < 1. Suppose that the sequence (ck) does not belong to `2(IN) and that, however, this
sequence belongs to `3(IN). Then limn→∞A3,n

√
Vn = 0, which shows that the corrective

term xA3,n/n in (2.4) is much smaller than the term cx/
√
Vn appearing in (1.17).

Remark 2.2. We will prove in Section 4 that γ(v)� v for small values of v. Consequently,

for constant values of ci and small values of vi, the quantity A3,n is larger than V −1/2n . In
that case, (1.12) is more efficient than (2.4) for small values of x.

Proof of Theorem 2.1. We start by proving (2.2). From (1.4) and the independence of
the random variables Xk, for any positive s,

log IE
(
exp(sV 1/2

n Wn)
)
≤

n∑
k=1

`vk(cks). (2.6)

If vk ≥ 1, then, by (1.9), `vk(cks) ≤ vkc2k(s2/2). If vk < 1, it follows from the definition of
γ that

`vk(cks) ≤ vkc2k(s2/2) + c3kγ(vk)(s3/6). (2.7)

Hence, for any positive s,

log IE
(
exp(sV 1/2

n Wn)
)
≤ s2

2

( n∑
k=1

c2kvk

)
+
s3

6

( n∑
k=1

c3kγ(vk)
)
. (2.8)

Now, setting s = tV
−1/2
n in the above inequality, we get (2.2).

We now prove (2.3), (2.4) and (2.5). Let h(t) = (t2/2) + (t3/6). The proofs are based
on the calculation of the Legendre dual h∗ of h and on some upper bound for the inverse
function of h∗.

Lemma 2.2. Let the function h be defined by h(t) = (t2/2) + (t3/6) for any nonnegative
t. Then, for any positive x,

h∗(x) =
(
(1 + 2x)3/2 − 1− 3x

)
/3 ≥ (1 + x) log(1 + x)− x ≥ x2/(2 + 2x/3) (2.9)

and
h∗−1(x) ≤

√
2x
(
1 +

√
x/2

)1/3 ≤ √2x+ x/3. (2.10)

Proof of Lemma 2.2. Let tx be the positive solution of the equation h′(t) = x. Then
tx =

√
1 + 2x− 1, whence

h∗(x) = xtx − h(tx) =
(
(1 + 2x)3/2 − 1− 3x

)
/3

after straightforward computations. Now h′′(x) = (1 + 2x)−1/2 ≥ (1 + x)−1 ≥ (1 + x/3)−3.
Integrating two times these inequalities, we obtain the two lower bounds in (2.9).

We now prove the second part of Lemma 2.2. From the inversion formula for h∗ given
in Rio (2000, p. 159),

h∗−1(x) = inf{s−1(h(s) + x) : s > 0}. (2.11)

Let sx =
√

2x
(
1 +

√
x/2

)−1/3
. According to (2.11),

h∗−1(x) ≤ s−1x (h(sx) + x). (2.12)

Now set ux =
(
1 +

√
x/2

)1/3
. Then

√
x/2 = u3x − 1, from which sx = 2u−1x (u3x − 1) and

s−1x (h(sx) + x) = ux(u3x − 1)
(
1 + u−2x + 2

3 (1− u−3x )
)
. (2.13)

Now, applying the elementary inequality 2(1− a3) ≤ 3(1− a2), valid for a ≥ 0, to the last
term in the above equation, we get that

s−1x (h(sx) + x) ≤ 2ux(u3x − 1) =
√

2x
(
1 +

√
x/2

)1/3 ≤ √2x+ x/3, (2.14)

which ends up the proof of Lemma 2.2.
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Exponential inequalities for weighted sums

We now complete the proof of Theorem 2.1. Let the function h be defined as in
Lemma 2.2 and define the functions hA for A > 0 by hA(t) = A−2h(At). From (2.2),

log IE
(
exp(tWn)

)
≤ hA(t), with A = A3,n. (2.15)

Now, using Lemma 2.2, it is readily checked that

h∗A(x) = A−2h∗(Ax) =
(1 + 2Ax)3/2 − 1− 3Ax

3A2
(2.16)

and

h∗−1A (x2/2) = A−1h∗−1(A2x2/2) ≤ x
(
1 + (Ax/2)

)1/3
. (2.17)

The three above facts imply (2.3) and (2.5). The upper bound (2.4) follows from (2.9).

3 Upper bound on γ : large values of v

In this section, we give an upper bound on the function γ, which is exact if the
variances vk are in the interval [2−

√
3, 1]. We now state the main result of this section.

Proposition 3.1. Define the function ψ : IR+ → IR+ by

ψ(v) = 0 if v ≥ 1, ψ(v) = v(1− v) if v ∈ (2−
√

3, 1) and ψ(v) =
(1 + v)3

6
√

3
if v ≤ 2−

√
3.

Then γ(v) ≤ ψ(v) for any positive v.

Remark 3.1. From the definition of A3,n,

A3,n

√
Vn =

( n∑
k=1

c2kvk

)−1( n∑
k=1

c3kγ(vk)
)
≤ sup

k∈[1,n]

ckγ(vk)

vk
.

Now, if v ≥ 0.145, then ψ(v) ≤ v, which ensures that γ(v) ≤ v. Thus, if vk ≥ 0.145 for any

k in [1, n], then A3,n ≤ cV −1/2n , where c = max(c1, c2, . . . , cn). Noting that x→ x−2g(x) is
nonincreasing, one infers that

A−23,ng
(
A3,nx

)
≥ c−2Vng

(
V −1/2n cx

)
,

provided that vk ≥ 0.145 for any k in [1, n]. Then Inequality (2.4) of Theorem 2.1 is more
efficient than (1.12) for any choice of the weights ck.

Remark 3.2. Let µv be the discrete distribution given by µv({1}) = v/(1 + v) and
µv({−v}) = 1/(1 + v). If Xk has the distribution µvk for any positive k, then

log IE
(
exp(tWn)

)
=

n∑
k=1

`vk(ckV
−1/2
n t) =

t2

2
+

t3

6V
3/2
n

( n∑
k=1

c3kvk(1− vk)
)

+O(t4).

Consequently, if vk belongs to [2−
√

3, 1] for any positive k, then the upper bound (2.2) is
exactly the expansion at order three of the logarithm of the Laplace transform of Wn. In
that case, Theorem 2.1 provides the optimal second order term.

Proof of Proposition 3.1. If v ≥ 1, then, by (1.9), `v(t) ≤ v(t2/2), which implies the result.
We now prove the proposition in the case v < 1. Let a(t) = ve(1+v)t. With this notation,

`′v(t) =
a(t)− v
a(t) + 1

, `′′v(t) =
(1 + v)2a(t)

(a(t) + 1)2
, `(3)v (t) =

(1 + v)3a(t)(1− a(t))

(a(t) + 1)3
(3.1)
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and

`(4)v (t) =
(1 + v)4a(t)(1− 4a(t)) + (a(t))2)

(a(t) + 1)4
. (3.2)

From (3.1), if a(t) ≥ 1, which is equivalent to t ≥ t0 := log(1/v)/(1 + v), then `(3)v (t) ≤ 0.

Recall that a(t) ≥ v. Hence, in order to find the maximum of `(3)v , it is enough to study

the sign of `(4)v for a(t) in [v, 1]. Now

1− 4a(t) + (a(t))2 = (a(t)− 2 +
√

3)(a(t)− 2−
√

3). (3.3)

If v ≥ 2−
√

3, then `(4)v (t) ≤ 0 for t in [0, t0]. In that case

`(3)v (t) ≤ `(3)v (0) = v(1− v) for any t ∈ [0, t0]. (3.4)

Since `(3)v (t) ≤ 0 for t ≥ t0, it implies that `(3)v (t) ≤ v(1 − v) for any t ≥ 0. Integrating
three times this inequality, we then get Proposition 3.1 in the case v ≥ 2−

√
3.

If v < 2−
√

3, then the equation `(4)v (t) = 0 has an unique solution t1 in [0, t0]. More

precisely t1 = (log(2 −
√

3) − log v)/(1 + v) and a(t1) = 2 −
√

3. In that case `(3)v takes

its maximum at point t1. Since `
(3)
v (t1) = (1 + v)3/(6

√
3), integrating three times this

inequality, we get Proposition 3.1 in the case v < 2−
√

3, which completes the proof.

4 Upper bound on γ : small values of v

From Proposition 3.1, we know that γ(v) ≤ ψ(v). Nevertheless the function ψ does
not decrease to 0 as v tends to 0. Hence it seems clear that the bounds of Section 3 can
be improved for small values of v. This is done in the proposition below, which gives the
exact order of magnitude of γ.

Proposition 4.1. Let the function gv be defined, for positive values of t, by

gv(t) = t−3(`v(t)− vt2/2). (4.1)

Then, for any v ≤ 1/25,

γ(v) ≤ β(v), where β(v) = 12gv

(2| log v|
1 + v

)
=

3(1 + v)(1− v2 + 2v log v)

2 | log v |2

and γ(v) ≥ 1
2β(v) for any v < 1.

Proof. From the definitions of γ and gv,

γ(v) = 6 sup
t>0

gv(t). (4.2)

Let t0 = log(1/v)/(1 + v). Then 1
2β(v) = 6gv(2t0), which implies the second part of

Proposition 4.1. The main tool for proving the first part of Proposition 4.1 is the lemma
below, which will allow us to localize the maximum of gv and to bound up the maximal
value.

Lemma 4.2. Let the function fv be defined by fv(t) = tgv(t). Suppose that v ≤ 1/25.
Let t0 = log(1/v)/(1 + v). Then fv reaches its maximum at point 2t0 and gv reaches its
global maximum at some point tc in the interval (t0, 2t0).

Proof of Lemma 4.2. The first assertion is due to Kearns and Saul (1998). Below we give
a proof for the sake of completeness (see Berend and Kontorovich (2013) for an other
proof). By definition of fv, limt↓0 fv(t) = 0 and

t3f ′v(t) = t`′v(t)− 2`v(t) := η(t).
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In order to study the sign of η, we note that η(0) = η′(0) = 0. Next η′′(t) = t`
(3)
v (t). Hence,

from (2.6), η′′(t) > 0 for t in (0, t0) and η′′(t) < 0 for t > t0, which means that η is convex
on [0, t0] and concave on [t0,+∞). Since η(0) = η′(0) = 0, η is increasing and convex on
(0, t0). Since η is concave on [t0,+∞), it follows that η has at most one zero on (t0,∞)

and that this zero is the unique maximum of fv. Now, noting that

`v(t) = log(1 + a(t))− log(1 + v)− vt (4.3)

and a(2t0) = 1/v, we get that

η(2t0) = 2t0(1− v)− 2 log(1/v) + 4vt0 = 2t0(1 + v)− 2 log(1/v) = 0.

Consequently fv has an unique maximum at point 2t0, which proves the first assertion.
Furthermore fv is increasing on (0, 2t0) and decreasing on (2t0,∞).

We now prove the second assertion. By definition of gv, limt↓0 gv(t) = v(1− v)/6 and

t4g′v(t) = t`′v(t)− 3`v(t) + v(t2/2) := δ(t).

In order to study the sign of δ, we note that δ(0) = δ′(0) = δ′′(0) = 0. Next

δ(3)(t) = t`(4)v (t) =
(1 + v)4ta(t)(a(t)− 2 +

√
3)(a(t)− 2−

√
3)

(a(t) + 1)4

by (3.2) and (3.3). Now, let t1 and t2 by defined respectively by a(t1) = 2 −
√

3 and
a(t2) = 2 +

√
3. Then t1 < t0 < t2 and, from the above equation δ(3) is positive on (0, t1),

negative on (t1, t2) and positive on (t2,∞). Since δ(0) = δ′(0) = δ′′(0) = 0, it implies
that δ is increasing and convex on [0, t1]. Furthermore δ′′ has at most two zeros, which
implies that δ has at most two zeros. Now, recall that η(2t0) = 0. Therefore

δ(2t0) = η(2t0)− `v(2t0) + 2vt20 = −`v(2t0) + 2vt20.

Now `′′v is increasing on [0, t0], decreasing on [t0, 2t0] and `′′v(0) = `′′v(2t0) = v. Conse-
quently `v(2t0) > 2vt20. Thus δ(2t0) < 0. It follows that δ has an unique zero tc in (0, 2t0).
If δ(t0) > 0, then tc belongs to (t0, 2t0) and is the maximum of gv on [0, 2t0].

δ(t0) = 1
2 t0(1− v) + 3 log(1 + v)− 3 log 2 + 3vt0 + 1

2vt
2
0.

If (1/v) ≥ 25, then t0 ≥ 3.08 and log(1 + v) ≥ 0.98v, whence

δ(t0) ≥ 0.50 t0 + 4.04 vt0 + 2.94 v − 2.08. (4.4)

Now t0 ≥ (1− v) log(1/v) ≥ 0.96 log(1/v). Therefore

δ(t0) ≥ 0.50(1− v) log(1/v) + 3.87v log(1/v) + 2.94v − 2.08

≥ 0.50 log(1/v) + 3.37v log(1/v) + 2.94v − 2.08.

Now, log(1/v) ≥ log 25 ≥ 3.21, whence

δ(t0) ≥ 0.50 log(1/v) + 13.75v − 2.08 (4.5)

The above lower bound takes its minimum at v = 2/55 and the value of this minimum is
strictly positive. Hence δ(t0) > 0 for any v in (0, 1/25], which proves that δ has an unique
zero tc in (t0, 2t0). Moreover tc is the unique maximum of gv on [0, 2t0].

It remains to prove that gv(t) < gv(tc) for t ≥ 2t0. Recall that fv = tgv is positive at
point 2t0 and decreasing on [2t0,∞). Furthermore limt↑∞ fv(t) = −v/2. Hence fv has an
unique zero t3 on (2t0,∞). Clearly fv is nonnegative on [2t0, t3] and negative on (t3,∞).
If t > t3 then gv(t) < 0 < gv(tc). Now, if t belongs to [2t0, t3], then gv = t−1fv is the
product of two decreasing nonnegative functions, whence gv(t) ≤ gv(2t0) < gv(tc), which
ends up the proof of Lemma 4.2.
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We now complete the proof of Proposition 4.1. From the proof of the first part of
Lemma 4.2, we know that fv is increasing on [t0, 2t0]. Hence fv(tc) ≤ fv(2t0), which
is equivalent to tcgv(tc) ≤ 2t0gv(2t0). It follows that gv(tc) ≤ 2t0t

−1
c gv(2t0) ≤ 2gv(2t0).

Finally

gv(2t0) =
(1 + v)(1− v2 + 2v log v)

8(log v)2
,

which completes the proof of Proposition 4.1.

Remark 4.1. Note that β(v) ∼ (3/2)| log v|−2 as v tends to 0. Hence the functions β and
γ decrease slowly to 0 as v tends to 0. Therefore the function β is less than the function ψ
only for small values of v. Indeed one can prove that ψ(v) ≤ β(v) for v ≥ v0 = 3.62× 10−2

and β(v) ≤ ψ(v) for v ≤ v0. Since v0 < 1/25, Propositions 3.1 and 4.1 ensure that

1
2β(v) ≤ γ(v) ≤ (β ∧ ψ)(v) ≤ β(v) for any positive v, (4.6)

with the convention that β(v) = ψ(v) = 0 if v ≥ 1. Thus the results of Theorem 2.1 hold
true with B3,n instead of A3,n, where

B3,n = V −3/2n

n∑
k=1

c3k min(ψ(vk), β(vk)).

Remark 4.2. Suppose that c1 = 1 and ck ≤ 1 for any positive k. Then (1.10) yields

−V −1n log IP(Wn ≥
√
Vn x) ≥ (n/Vn)`∗Vn/n

(xVn/n).

Assume furthermore that
∑

k c
2
kvk = +∞ and limk c

2
kvk = 0. Then limn Vn = ∞ and

limn(Vn/n) = 0, which implies that the above lower bound converges to g(x). In that
case, either (1.10) or (1.11) yield the asymptotic result

− lim sup
n→∞

V −1n log IP(Wn ≥
√
Vn x) ≥ g(x) = (1 + x) log(1 + x)− x. (4.7)

Now, let

Rn = A3,n

√
Vn =

( n∑
k=1

c2kvk

)−1( n∑
k=1

c3kγ(vk)
)
.

Inequality (2.3) of Theorem 2.1 yields

− V −1n log IP(Wn ≥
√
Vn x) ≥ x2r(Rnx), where r(y) =

(1 + 2y)3/2 − 1− 3y

3y2
. (4.8)

Note that r is decreasing and that r(0) := limy↓0 r(y) = (1/2). Suppose now that
limk→∞(ckγ(vk)/vk) = 0. From (4.6), this condition is equivalent to the condition
limk→∞(ckβ(vk)/vk) = 0. Then the Toeplitz lemma ensures that limnRn = 0 and (4.8)
yields

− lim sup
n→∞

V −1n log IP(Wn ≥
√
Vn x) ≥ x2r(0) = x2/2 > g(x), (4.9)

which improves on (4.7). For example, if vk = v < 1 for any positive k,
∑

k c
2
k =∞ and

limk ck = 0, then limnRn = 0 and (4.9) holds true.

Remark 4.3. If Rn ≤ a, then r(Rnx) ≥ R(ax) and consequently

−V −1n log IP(Wn ≥
√
Vn x) ≥ x2r(ax) > a−2g(ax).

When a ≤ 1, a−2g(ax) ≥ g(x). In that case, Inequality (2.3) is more efficient than the
Bennett Inequality.
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5 An example

Throughout this section, we compare our results with the previous results on some ex-
ample. We consider a triangular array (Xk,m) of independent centered random variables
such that

VarXk,m = 1/(m+ 1) and Xk,m ≤ 1 a.s. for any (k,m) ∈ IN∗ × IN∗. (5.1)

Define the centered and normalized random variables Tm by

Tm = X1,m +
1

m

m3+1∑
k=2

Xk,m =

n∑
k=1

ξk,m, (5.2)

where n = m3 + 1, ξ1,m = X1,m and ξk,m = m−1Xk,m for k ≥ 2.

Inequality (2.3) of Theorem 2.1 and (4.6) yield

IP(Tm ≥ x) ≤ exp
(
−b−2m h∗(bmx)

)
, where bm = 2(β ∧ ψ)(1/(m+ 1)) (5.3)

and h∗ is the dual function given in (2.9). The Kearns-Saul type inequality (1.15) yields

IP(Tm ≥ x) ≤ exp
(
−x

2(m+ 1) log(m+ 1)

m(m+ 2)

)
(5.4)

and Hoeffding’s inequality - Inequality (1.10) - gives

IP(Tm ≥ x) ≤ exp
(
−n`∗(1/n)(x/n)

)
. (5.5)

Now, let Q denote the tail function of a standard normal random variable. If furthermore
|Xk,m| ≤ 1 a.s. for any (k,m), the Berry-Esseen type estimates of Shevtsova (2013) yield

IP(Tm ≥ x) ≤ Q(x) + ∆n with ∆n = 0, 3057 (Ln + τn), (5.6)

Ln =
∑n

k=1 IE
(
|ξk,m|3

)
≤ 2(m+ 1)−1 and τn =

∑n
k=1

(
Var ξk,m

)3/2 ≤ 2(m+ 1)−3/2.

Below I give the numerical values of the above upper bounds for x = x0 = 3 and
m = 2, m = 3, m = 4 , m = 8, m = 24, m = 99, m = 9999.

Ineq. m=2 m = 3 m=4 m=8 m=24 m=99 m=9999
(5.3) 0,0330 0,0297 0,0276 0,0242 0,0219 0,0176 0,0129
(5.4) 0,0245 0,0359 0,0489 0,1081 0,3133 0,6607 0,9917
(5.5) 0,0607 0,0729 0,0761 0,0782 0,0785 0,0785 0,0785
(5.6) 0,3228 0,2306 0,1783 0,0919 0,0307 0,0081 0,00141

One can see here that Inequality (5.3) is more efficient than (5.4), (5.5) and (5.6) for
m in [3, 24], which corresponds to n in [28, 13825]. For m = 2, the Kearns-Saul inequality
is more efficient. For large values of m, the Berry-Esseen type estimates provide better
results.

Concerning the asymptotic behavior of these inequalities as m tends to∞,

lim
m

exp
(
−b−2m h∗(bmx0)

)
= e−x

2
0/2 = 0, 0111, lim

m
exp
(
−x

2
0(m+ 1) log(m+ 1)

m(m+ 2)

)
= 1

and

lim
m
e−n`

∗
(1/n)(x0/n) = e−g(x0) = 0, 0785, lim

m
(Q(x0) + ∆n) = Q(x0) = 0, 00135.
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