
Electron. Commun. Probab. 20 (2015), no. 57, 1–6.
DOI: 10.1214/ECP.v20-4183
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Necessary and sufficient conditions for
the continuity of permanental processes
associated with transient Lévy processes*

Michael B. Marcus† Jay Rosen‡

Abstract

Let uβ(x, y) be the β-potential density of a transient Lévy process Y and Xα =

{Xα,x, x ∈ R} be the α-permanental process determined by uβ(x, y). Let L =

{Lxt , (t, x),∈ R+ × R} be the local time process of Y and let G = {Gx, x ∈ R} be
the stationary mean zero Gaussian process with covariance uβ(x, y) + uβ(y, x). Then
the processes Xα, L and G are either all continuous almost surely or all unbounded
almost surely. Therefore, the well known necessary and sufficient condition for the
continuity of L and G is also a necessary and sufficient condition for the continuity of
Xα.
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1 Introduction

Let Y = {Yt, t ∈ R+} be a Lévy process with state space R and continuous β-
potential densities uβ = {uβ(x, y), x, y ∈ R}, β > 0. Consider the transient Lévy process
Y = {Y t, t ∈ R+} that is Y killed at an independent exponential time with mean β > 0.
Note that uβ is also the zero potential density of Y . We have

uβ(x, y) = uβ(0, y − x) =: uβ(y − x). (1.1)

For all x1, . . . , xn in R+ consider Uβ(x1, . . . , xn), the n×n matrix with entries {uβ(xi−
xj)}ni=1. Since uβ(x, y) is the potential density of a transient Markov process, it follows
from [3, Theorem 3.1] that for all α > 0 and x1, . . . , xn ∈ R+ there exists a random
variable (Xx1

, . . . , Xxn
) with Laplace transform

E
(
e−

∑n
i=1 siXxi

)
=

1

|I + Uβ(x1, . . . , xn)S|α
(1.2)

where S is the diagonal matrix with entries si, 1 ≤ i ≤ n. Therefore {uβ(y − x), x, y ∈ R}
determines a stochastic process X = {Xx, x ∈ R} which is called the α-permanental
process associated with Y .
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Continuity of permanental processes

Vere-Jones defines and briefly considers permanental processes in [9]. Here is why
we are interested in them. Local times of certain Markov processes with symmetric
potential densities are related by isomorphism theorems to the squares of Gaussian
processes. ( Suppose that uβ(x, y) is symmetric. Then by [5, Lemma 3.3.3] it is also
positive definite and (η2x1

/2, . . . , η2xn
/2), where (ηx1

, . . . , ηxn
) is an n-dimensional normal

random variable with mean zero and covariance matrix {uβ(xi − xj)}ni=1 satisfies (1.2)
with α = 1/2.) When α 6= 1/2 or uβ(x, y) is not symmetric, the isomorphism theorems
that hold for Gaussian squares can be generalized, by replacing the squares of the
Gaussian processes by other permanental processes, so that they also hold for Markov
processes with potential densities that are not symmetric. To apply these isomorphism
theorems it is important to know sample path properties of permanental processes.

The Lévy processes we consider have local times. Therefore the potential density uβ

can be associated with a local time process and a permanental process. It can also be
associated with a stationary Gaussian process, that we define below. In Theorem 1.1 we
show that these processes are either all continuous almost surely or else all unbounded
almost surely.

We write the characteristic function of Y as

EeiλYt = e−tψ(λ). (1.3)

When uβ(y − x) is not symmetric, ψ(λ) is complex.
It follows from the assumption that uβ(x, y) is continuous, that

uβ(0) =
1

2π

∫ ∞
−∞
Re (1/(β + ψ(λ))) dλ (1.4)

and

σ2(z) := 2uβ(0)− (uβ(z) + uβ(−z)) (1.5)

=
1

π

∫ ∞
−∞

(1− cos(λz))Re (1/(β + ψ(λ))) dλ;

see [2, Theorem 19]. Clearly

uβ(z) + uβ(−z) =
1

π

∫ ∞
−∞

cos(λz)Re (1/(β + ψ(λ))) dλ. (1.6)

Since Re (1/(β + ψ(λ))) is positive and in L1(R), Γ(x, y) = uβ(y − x) + uβ(x − y) is the
covariance function of a stationary Gaussian process, say G = {Gx, x ∈ R} and(

E(Gx −G0)2
)1/2

= σ(x). (1.7)

We refer to G as the stationary Gaussian process associated with Y .
Another consequence of the assumption that the potential densities uβ(x, y) are

continuous is that Y has a local time which we denote by L = {Lxt , (t, x),∈ R+ × R},
which we can normalize so that Ex(L

y

∞) = uβ(x, y).

Let σ(u) denote the non-decreasing rearrangement of σ(u) on [0,1]. We note that the
well known criteria

Iσ(1) :=

∫ 1

0

σ(u)

u(log 2/u)1/2
du <∞ (1.8)

is a necessary and sufficient condition for there to exist a version of {Gx, x ∈ R} that is
continuous almost surely; see e.g. [5, Corollary 6.4.4].

We have the following theorem:
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Continuity of permanental processes

Theorem 1.1. Let Let Y = {Y t, t ∈ R+} be a transient Lévy process with continuous
potential densities uβ(x, y). Then the following are equivalent:

(i) The local time process L = {Lxt , (t, x),∈ R+ × R} has continuous sample paths
almost surely,

(ii) The associated α-permanental processes Xα = {Xα,x, x ∈ R} have continuous
sample paths almost surely,

(iii) The associated stationary Gaussian process G = {Gx, x ∈ R} has a continuous
version,

(iv) (1.8) holds.

Furthermore, if the processes in (i), (ii) and (iii) are not continuous almost surely,
they are unbounded almost surely.

Under additional conditions on the Lévy exponent ψ in (1.3) the condition in (1.8) can
be expressed in a more transparent form. It follows from [5, Section 6.4] that

∫ ∞
2

(∫∞
λ
Re (1/ψ(s)) ds

)1/2
λ(log λ)1/2

dλ <∞ (1.9)

implies (1.8) and when Re (1/ψ(λ)) is asymptotic to a monotonic function at infinity it is
equivalent to (1.8).

The only part of Theorem 1.1 that is new is (ii) =⇒ (iv). Finding necessary
conditions for permanental processes to be continuous seemed very difficult because
so little is known about them compared to what is known about Gaussian processes
or the local times of Lévy processes. In [7] we make progress in this direction in the
general case, i.e., when u is the potential density of a transient Markov process that does
not have to be a Lévy process. However, the necessary conditions obtained in [7] are
not best possible. While working on [7] we realized that actually all the ingredients for
obtaining (ii) ⇐⇒ (iv), when u is the potential density of a transient Lévy process, are
already contained in the literature in results of R. Dudley and X. Fernique, M. Barlow and
J. Hawkes, N. Eisenbaum and H. Kaspi and ourselves. References are given in Section 2
in which we give the proof of Theorem 1.1.

We conjecture that Theorem 1.1, with obvious modifications, holds when u is the
potential density of a general transient Markov process. In Remark 2.4 we point out that
this is the case if u(x, y) is symmetric.

2 Proofs

The next theorem shows that the necessary and sufficient condition for the continuity
of a stationary Gaussian process in (1.8) is also a sufficient condition for continuity of
α-permanental processes associated with Lévy processes.

Theorem 2.1. Let θα = {θt,α, t ∈ R} be an α-permanental process associated with a
transient Lévy process with potential density u(x, y) = u(y − x, 0) =: u(y − x) satisfying
u(0) <∞. For σ, defined in (1.5), let σ(u) denote the non-decreasing rearrangement of
σ(u) on [0,1]. Then Iσ(1) <∞ implies that there exists a version θ′α = {θ′x,α, x ∈ R} of θα
that is continuous on (R, σ).

Proof Theorem 2.1 is proved in [4, Theorem 3.1] with σ replaced by

σ̃(z) :=
(

2(u(0)− (u(z)u(−z))1/2
)1/2

. (2.1)
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Continuity of permanental processes

We can replace σ̃ by σ since it follows from [6, Lemma 5.5] and [5, Theorem 3.4.3] that

1√
2
σ̃(z) ≤ σ(z) ≤ σ̃(z). (2.2)

Note that [4, Theorem 3.1] is proved in the general case of associated processes de-
termined by potential densities u(x, y) that need not be symmetric nor functions of
y − x. Consequently the sufficient condition for continuity [4, (3.25)] is given in terms of
majorizing measures. Since [4, (3.25)] is necessary and sufficient for the continuity of all
Gaussian processes and (1.8) is necessary and sufficient for the continuity of stationary
Gaussian processes the two conditions for continuity must either both hold or both not
hold when σ can be expressed as it is in (1.7).

Let Y =(Ω, Yt, P
x) be a Borel right process with state space S and 0-potential densities

u(x, y) that satisfy u(x, y) > 0, for all x, y ∈ S. Let L = {Lyt ; (y, t) ∈ S ×R+} denote the
local times of Y , normalized so that

Ex (Ly∞) = u(x, y) (2.3)

and let X = {Xx, x ∈ S} be the α-permanental process associated with Y . The proof that
(ii) =⇒ (iv) in Theorem 1.1 uses the following lemma:

Lemma 2.2. Let C be a countable subset of S and z denote a fixed element of S. If

P z
(

sup
x∈C

Lxt =∞
)

= 1 (2.4)

for all t > 0, then

PX

(
sup
x∈C

Xx =∞
)

= 1. (2.5)

This lemma is proved using an isomorphism theorem relating permanental processes
and local times obtained by Eisenbaum and Kaspi, [3], when α = 1/2. For the general
case, see [8, Section 7.3].

Let hx(z) = u(z, x) and assume that hx(z) > 0 for all x, z ∈ S. The expectation
operator Ez/hx is defined by

Ez/hx(F1{t<ζ}) =
1

hx(z)
Ez(Fhx(Yt)), (2.6)

for all bounded F0
t measurable functions F , where F0

t is the σ-algebra generated by
{Yr, 0 ≤ r ≤ t}. (See e.g. [5, (3.211)].) Here, as usual, Ez denotes the expectation
operator for Y started at z. The next theorem is the isomorphism theorem we use in the
proof of Lemma 2.2.

Theorem 2.3. For any countable subset D ⊆ S,{
Ly∞ +Xy ; y ∈ D , P x/hx × PX

}
law
=
{
Xy ; y ∈ D ,

Xx

αu(x, x)
PX

}
. (2.7)

Equivalently, for all x1, . . . , xn in S and bounded measurable functions F on Rn+, for
all n,

Ex/hxEX

(
F

(
Lxi
∞ +

Xxi

2

))
= EX

(
Xx

αu(x, x)
F

(
Xxi

2

))
. (2.8)

(Here we use the notation F (f(xi)) := F (f(x1), . . . , f(xn)).)
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Continuity of permanental processes

Proof of Lemma 2.2 Let
B =

{
sup
x∈C

Xx =∞
}

(2.9)

and assume that
PX(B) < 1. (2.10)

Hence

EX

(
1B

Xz

αu(z, z)

)
< 1. (2.11)

This uses the fact that EX (Xz) = αu(z, z) and P (Xz = 0) = 0.
Using (2.11) and the isomorphism theorem, Theorem 2.3, we get

Ez/hzPX

(
sup
x∈C

Xx + Lx∞ =∞
)
< 1. (2.12)

This implies that

c0 := Ez/hz

(
sup
x∈C

Lx∞ =∞
)
< 1. (2.13)

Therefore, since Lxt is continuous and increasing in t, we see that for all t > 0

Ez/hz

(
sup
x∈C

Lxt =∞
)
≤ c0 < 1. (2.14)

Therefore, by (2.6) ∫
{supx∈C L

x
t =∞}

u(Yt, z)

u(z, z)
dP z ≤ c0 < 1. (2.15)

It then follows from (2.4) that for all t > 0

Ez
(
u(Yt, z)

u(z, z)

)
≤ c0 < 1. (2.16)

However, for z fixed, u(x,z)
u(z,z) is bounded and continuous in x, and under P z we have

limt→0 Yt = z. Hence limt→0E
z
(
u(Yt,z)
u(z,z)

)
= 1. Thus we can choose t0 > 0 such that

Ez
(
u(Yt,z)
u(z,z)

)
> c0 for all t ≤ t0. This contradiction proves the lemma.

Proof of Theorem 1.1 We first prove the four equivalencies regarding continuity. It is
well known that (iii) ⇐⇒ (iv). This is due to R. Dudley and X. Fernique, see [5, Section
6.5] for references.

We complete the proof by showing (iv) =⇒ (i) and (iv) =⇒ (ii) and (iv)c =⇒ (i)c

and (iv)c =⇒ (ii)c, where (iv)c is not (iv), etc.

(iv) =⇒ (i) This is a result of Barlow and Hawkes, see [1, Theorem B].

(iv) =⇒ (ii) This follows fromTheorem 2.1.

(iv)c =⇒ (i)c This is a result of Barlow, [1, Theorem 1].

(iv)c =⇒ (ii)c Since (iv)c =⇒ (i)c it suffices to show that (i)c =⇒ (ii)c. To show this
we first note that by [1, Theorem 1], if the local time process {Lxt , (t, x),∈ R+ ×R} for Y
does not have continuous sample paths almost surely, then for each t > 0

P 0

(
sup

x∈Q∩[−1,1]
Lxt =∞

)
= 1, (2.17)

where Q denotes the rational numbers.
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Continuity of permanental processes

Let λ denote an independent exponential random variable with mean 1/β. The local
time {Lxt , (t, x),∈ R+ × R} of Y can be obtained from the local time of Y by setting
L
x

t = Lxt∧λ. See [5, Remark 3.6.4 (3)]. It follows from (2.17) that

P
0

(
sup

x∈Q∩[−1,1]
L
x

t =∞

)
=

∫ ∞
0

P 0

(
sup

x∈Q∩[−1,1]
Lxt∧r =∞

)
e−βrβ dr = 1. (2.18)

Using this and Lemma 2.2 we see that (i)c =⇒ (ii)c.
We now consider the statement that if the processes in (i), (ii) and (iii) are not

continuous almost surely, they are unbounded almost surely. This is a well known
result for stationary Gaussian processes, see [5, Theorem 5.3.10]. For the local times
processes it is proved by Barlow and Hawkes and is what we show above in (iv) =⇒ (i)

and (iv)c =⇒ (i)c. For the permanental process we show above that (ii)c ⇐⇒ (i)c.
Furthermore, in the proof that (i)c =⇒ (ii)c we actually show that (i)c implies that the
permanental process is unbounded almost surely.

Remark 2.4. When the potential densities u = {u(s, t), s, t ∈ S} of a transient Markov
process determine an associated α-permanental process Xα = {Xα(t), t ∈ S} for some
α > 0, they determine α-permanental processes for all α > 0. Therefore, by (1.2), Xα

is infinitely divisible in α. It follows from this and the fact that Xα is positive, that for
α < α′ < mα,

‖Xα‖∞ ≤ ‖Xα′‖∞ ≤ m‖Xα‖∞. (2.19)

This shows that if ‖Xα‖∞ < ∞ almost surely for some α > 0, it is finite almost surely
for all α > 0. Therefore, for all α > 0, Xα is finite (infinite) almost surely if and only if
X1/2 is finite (infinite) almost surely. Suppose that u is symmetric. Then, as we point out
on page 2, X1/2 is the square of a Gaussian process. Consequently the necessary and
sufficient condition for boundedness of Gaussian processes is also the necessary and
sufficient condition for boundedness of α-permanental processes. A similar argument
involving inequalities for other norms shows that this also holds for continuity.
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