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Abstract

Let M be a manifold equipped (locally) with a pair of complementary foliations. In
Catuogno, da Silva and Ruffino [4], it is shown that, up to a stopping time τ , a stochas-
tic flow of local diffeomorphisms ϕt in M can be decomposed in diffeomorphisms
that preserves this foliations. In this article we present techniques which allow us to
extend the time of this decomposition. For this extension, we use two techniques: In
the first one, assuming that the vector fields of the system commute with each other,
we apply Marcus equation to jump nondecomposable diffeomorphisms. The second
approach deals with the general case: we introduce a ‘stop and go’ technique that
allows us to construct a process that follows the original flow in the ‘good zones’ for
the decomposition, and remains paused in ‘bad zones’. Among other applications, our
results open the possibility of studying the asymptotic behaviour of each component.
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1 Introduction

Given a stochastic flow ϕt of local diffeomorphisms in a differentiable manifold M , in
many circunstances the decomposition of ϕt with components in subgroups of the group
of diffeomorphisms Diff(M) provide interesting dynamical or geometrical information
of the system. In the literature, this kind of decomposition has been studied in several
frameworks and with different aimed subgroups; among others in Bismut [2], Kunita
[7], [8], Ming Liao [10] and some of our previous work [3], [5], [15]. In the last few
papers mentioned, geometrical conditions on a Riemannian manifold have been stated
to guarantee the existence of the decomposition where the first component lies in the
subgroups of isometries or affine transformations.

In particular, in Catuogno, da Silva and Ruffino [4], the authors consider a pair of
complementary distributions in a differentiable manifold M , in the sense that each
tangent space splits in a direct sum of two subspaces depending differentiably on M .
These subspaces are called, by convenience, horizontal and vertical distributions. In
that article it is shown that locally, up to a stopping time τ , a stochastic flow ϕt in M can
be decomposed as ϕt = ξt ◦Ψt, where ξt is a diffusion in the group of diffeomorphisms
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Extension for decomposition of stochastic flows

Diff(∆H ,M) generated by horizontal vector fields. On the other hand, Ψt is a process
in the group of diffeomorphisms Diff(∆V ,M) generated by vertical vector fields. The
infinite dimensional Lie group structure considered in this case is described in Milnor
[11], Neeb [12] and Omori [14]. In [4] the authors present stochastic differential
equations on the corresponding infinite dimensional Lie subgroups for the components
ξt and Ψt.

The stopping time τ mentioned above, which restricts the time where the decom-
position holds, appears due to an explosion in the equation of one of the components
of the decomposition, with initial condition at the identity. This explosion phenomenon
is related to the choice of the distributions, and it is not intrinsic to the original flow
ϕt. There might be large intervals on time after τ such that the diffeomosphisms ϕt are
decomposable for t in these intervals.

In this article we present techniques which allow us to extend the time of the
decomposition in a simplified framework of [4]: We consider that the distributions
are in fact integrable, hence the manifold M has locally a pair of complementary
foliations. This is a natural structure since any coordinate systems on M generates this
foliations. Besides, it means that locally the manifold is diffeomorphic to an open set in
Rn = Rp ×Rn−p, where p and (n− p) are the dimensions of the horizontal and vertical
foliations, respectively.

With this change of coordinates in mind, consider a diffeomorphism ϕ : U ⊂ Rp ×
Rn−p → ϕ(U) ⊂ Rp × Rn−p, with U an open set of Rn . One writes in coordinates
ϕ = (ϕ1(x, y), ϕ2(x, y)). Then, by the inverse function theorem, the local decomposition

exists if and only if the (n − p) × (n − p) matrix ∂ϕ2(x,y)
∂y is invertible. That is, ϕ =

(ξ1(x, y), Id2) ◦ (Id1, ϕ
2(x, y)), where Id1 and Id2 are the identities in Rp and in Rn−p,

respectively. With this notation, we call

Definition 1.1. A diffeomorphism ϕ : U ⊂ Rp × Rn−p → ϕ(U) ⊂ Rp × Rn−p is p-

decomposable in a neighborhood of (x, y) if det ∂ϕ
2(x,y)
∂y 6= 0.

The explosion time τ for the decomposition of the flow is related to the fact that ϕτ is
not p-decomposable. As a basic example to illustrate the explosion, consider the linear
rotation, whose 1-decomposition is given by

ϕt =

(
cos t − sin t

sin t cos t

)
=

(
sec t − tan t

0 1

)(
1 0

sin t cos t

)
.

Hence, ϕt is not decomposable when t = π
2 + kπ, with k ∈ Z. The stopping time as in [4]

is given by τ = π
2 , nevertheless, the decomposition can be done in many other intervals

after this point. Note that, in this example, immediately after this stopping time, cos t

changes its sign and the second component Ψt revert orientation, hence, it is no longer
in the subgroup of diffeomorphism generated by vertical vector fields, but it is rather in
the subgroup of diffeomorphisms which preserves each vertical leaves of the foliation,
not necessarily in the connected component of the identity. Hence, here Diff(∆H ,M)

and Diff(∆V ,M) are extended to include nonpreserving orientation diffeomorphisms.
One of the motivations for the decomposition in [4] is that it shows how close the

system is horizontal leaf-preserving, i.e., how close is the vertical component to the
identity. Here, the motivation is to show that this decomposition extends further in time,
even if one has to consider the nonpreserving orientation diffeomorphisms. Among other
applications, our results open the possibility of studying the asymptotic behaviour of
each component.

The extension of time is described using two techniques: the first one (Section 2)
assumes that the vector fields of the system commute with each other. We apply Marcus
equation to jump nondecomposable diffeomorphisms; essentially we construct a flow ϕ̃t
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Extension for decomposition of stochastic flows

which is close to the original one and is p-decomposable for all t ≥ 0. Approximation
here holds except in a set of arbitrarily small probability (Theorem 2.3). The second
approach (Section 3) deals with the general case: we introduce a ‘stop and go’ technique
that allows us to construct a process that follows the original flow in the ‘good zones’ for
the decomposition, and remains paused in ‘bad zones’, i.e., close to nondecomposable
diffeomorphisms (Proposition 3.2).

2 Commuting vector fields

2.1 Marcus equation and preliminaries

For reader’s convenience, we recall the definition of Marcus equation (see e.g. Kurtz,
Pardoux and Protter [9], Applebaum [1], Fujiwara and Kunita [6]):

dxt =

m∑
i=0

Xi(xt) ◦ dZit , (2.1)

where the integrator {Zis : s ≥ 0} is a semimartingale with jumps and Xi are smooth
vector fields in Rd for all i ∈ {0, 1, . . . ,m}, with initial condition x(0) = x0. The integral
form is given by

xt = x0 +

m∑
i=0

∫ t

0

Xi(Xs) ◦ dZis =: x0 +

∫ t

0

X(xs) ◦ dZs, (2.2)

where X(xs) and Zs are the matricial representation for the summation. The solution xt
is interpreted as an adapted stochastic process that satisfies the equation

xt = x0 +

∫ t

0

X(xs−) dZs +
1

2

∫ t

0

X ′X(xs) d[Z,Z]cs +

+
∑

0<s≤t

{
ϕ(X∆Zs, xs−)− xs− −X(xs−)∆Zs

}
,

(2.3)

in the following sense: the first term on the right hand side of equation (2.3) is a standard
Itô integral of the predictable process {X(xt−)} with respect to the semimartingale
Zt. The second term is a Stieltjes integral with respect to the continuous part of the
quadratic variation of Zt. In the third term: ϕ(X∆Zs, xs−) indicates the solution of the
initial value problem in t = 1 with respect to the vector field X∆Zs, and initial condition
xs− . Regularity conditions on the vector fields X implies that there exists a unique
stochastic flow of diffeomorphisms ϕt that is solution of equation (2.1). Conditions on
the derivatives of the vector fields guarantee that the flow exists for all t ≥ 0.

The main reason of using Marcus equation in this section is that, in these equations,
the jumps of the solution occur in the direction of the deterministic flow given by the
vector field X∆Zs. This property is used in the proof of Theorem 2.1 to guarantee that,
after a jump, the solution of the proposed approximation flow (ϕ̃t) reaches again the
original flow (ϕt).

Moreover, for an embedded submanifold M in an Euclidean space, if the vector fields
of the equation (2.1) are in TM then, for each initial condition on M , the solution stays
in M a.s., see [9]. This feature, a sort of support theorem, allows one to extend directly
the result of Theorem 2.1 to manifolds.

We present a simple example that illustrates the technique in the proof of the next
results. The idea is to use Marcus equation in order to construct a new flow ϕ̃t, which is
decomposable for all t ≥ 0 and simultaneously is close to the original flow ϕt. Consider
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again the simple example of pure rotation flow

ϕt =

(
cos t − sin t

sin t cos t

)
,

which is solution of the linear equation dxt = Axt dt, where A is skew-symmetric. We
have to construct an integrator Zt in such a way that the solution flow ϕ̃t of the Marcus
equation dxt = Axt ◦ dZt jumps over the nondecomposable rotations, with the additional
property that ϕ̃t differs from ϕt for t in a set with Lebesgue measure arbitrarily small.

Fix ε > 0 and choose a sequence of points pn just before the critical time for the
decomposition:

pn ∈ (
π

2
+ nπ − ε

2n
,
π

2
+ nπ)

for all nonnegative integer n. These points indicate the beginning of what we call in the
proof of the theorem a ‘red zone’ for the corresponding critical point. Then, define

Zt =

{
pn if t ∈ [pn, (2n+ 1)π − pn);

t otherwise.

Zt is a semimartingale with jumps, and the solution of dxt = Axt ◦ dZt is given by

ϕ̃t =

(
cos(Zt) − sin(Zt)

sin(Zt) cos(Zt)

)
.

We have that ϕ̃t is 1-decomposable for all t ≥ 0 and, by construction, it is arbitrarily close
to ϕt. A similar idea is used to obtain results on decomposition of stochastic flows driven
by Brownian motion (extensible to a larger class of semimartingales via representation,
see e.g. Nualart [13]).

2.2 Main results

In this section, we consider the flow ϕt generated by a Stratonovich SDE:

dxt = X0(xt) dt+

m∑
i=1

Xi(xt) ◦ dBit, (2.4)

where (B1
t , . . . , B

m
t ) ∈ Rm is a Brownian motion in a filtered probability space (Ω,F ,Ft,P);

Xi for i ∈ {0, 1, 2, . . . ,m} are smooth vector fields in Rn. We assume that the correspond-
ing (deterministic) flows φX

i

t commute with each other. Given u = (t0, t1, . . . , tm) ∈ Rm+1,
let φ(u) be the composition of the deterministic flows, that is:

φ(u) = φX0
t0 ◦ φ

X1
t1 ◦ . . . ◦ φ

Xm
tm .

We write (x, y) ∈ Rp × Rn−p = Rn and φ(u)(x, y) = (φ(u)1, φ(u)2). For a given initial

condition, consider P = {u ∈ Rm+1 : det ∂φ(u)
2

∂y = 0}, the set of undecomposable
generated diffeomorphisms.

Theorem 2.1. Let ϕt be the stochastic flow generated by equation (2.4). Assume that P
has zero Lebesgue measure. Then, given ε > 0 and a > 0, there exists a semimartingale
Zt ∈ Rm+1 such that:

1. the solution ϕ̃t of the Marcus SDE dxt =

m∑
i=0

Xi(xt) ◦ dZit is p-decomposable for

t ≥ 0;
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2. the random set C(ω) = {t ≥ 0 : ϕt(ω) 6= ϕ̃t(ω)} is Lebesgue measurable a.s;

3. P[µ(C) > a] ≤ ε.

Proof. Initially, fix ε > 0 and a > 0. For each t ≥ 0, denote Ut = (t, B1
t , . . . , B

n
t ). As P

has zero Lebesgue measure, given δ > 0, there is an open set Aδ, such that Aδ ⊇ P and
µ(Aδ) < δ. By properties of Brownian motion, given d > 0, we have that:

P
[
Us ∈ Aδ ∀s ∈ [t, t+ d]

∣∣ Us ∈ Aδ]→ 0 when δ → 0.

Therefore, for each k ∈ N, there exists an open set Ak that contains P with Lebesgue
measure sufficiently small such that:

P
[
Us ∈ Ak ∀s ∈ [t, t+

a

2k
]
∣∣ Us ∈ Ak ] < ε

2k
.

We can assume that the sequence of sets
(
Ak
)
k∈N is decreasing; besides, since 0 /∈ P

one can always assume that 0 /∈ Ak for all k ∈ N.
By Urysohn’s lemma, there exist continuous functions Fk : Rm → [0, 1], such that

F−1k (1) = (Ak)C and F−1k (0) = P . For each k ∈ N, consider the following partition in
Rm+1:

• ‘Green zone’ Gk := F−1k (1);

• ‘Yellow zone’ Yk = F−1k

(
1
2 , 1
)
;

• ‘Red zone’ Rk = F−1k

[
0, 12
]
.

Red zone corresponds to a set where we do not allow the dynamics to get into (via
stopping times). Green zone corresponds to the set where we allow the dynamics to go
on freely; finally, the yellow zone is an intermediate set.

By construction, the origin of Rm+1 belongs to green zone for all k ∈ N, besides, this
set is increasing with k. We define by induction the following sequences of stopping
times: Take T 0 = 0, Ti = inf{t > T i−1 : Ut ∈ Ri} and T i = inf{t > Ti : Ut ∈ Gi}. The
yellow zone guarantees that T i−1 < Ti < T i for all i ∈ N.

Define the semimartingale {Zt : t ≥ 0} as follows:

Zt =

{
Ut, if t ∈

[
T k−1, Tk

)
for some k ∈ N ;

UTk
, if t ∈

[
Tk, T k

)
.

Note that Zt is constant when Ut crosses the yellow zone and goes from the red to the
green zone; otherwise, it coincides with Ut. Now, consider the Marcus SDE given by

dxt =

m∑
i=0

Xi(xt) ◦ dZit ,

whose solution flow is given by:

ϕ̃t = φZt
= φX0

Z0
t
◦ φX1

Z1
t
◦ . . . ◦ φXm

Zm
t
.

Hence, ϕ̃t is p-decomposable for all t ≥ 0.
For the second part of the statement, initially note that C(ω) is Lebesgue measurable

a.s. since ϕt and ϕ̃t are measurable with respect to the product σ-algebra in R ⊗ Ω.
Moreover, ϕt(ω) = ϕ̃t(ω) if Ut(ω) = Zt(ω), therefore:

C(ω) ⊆
⋃
k∈N

(
Tk(ω), T k(ω)

)
.
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y

x

Green Zone

Yellow Zone

Red Zone

P Set

Figure 1: Sketch of possible green, yellow and red zones in R2.

Finally, a necessary condition to µ(C(ω)) > a is that, for some k ∈ N, we have
T k(ω)− Tk(ω) > a

2k
. So, it follows that:

P[µ(C) > a] ≤ P

[ ⋃
k∈N

{
ω :
(
T k − Tk

)
>

a

2k

}]

≤
∑
k∈N

P
[(
T k − Tk

)
>

a

2k

]
≤

∑
k∈N

ε

2k
= ε.

(2.5)

Remark 2.2. Generically in the C1 topology, when the SDE has just a single vector field,
then the set P ⊂ R in the statement of the theorem has zero Lebesgue measure: In fact,

the condition on the second component det
∂φ2

t

∂y = 0 is destroyed by small perturbation

on their derivatives. Also for linear vector fields, P ⊂ R is discrete since det
∂φ2

t

∂y is a
nonvanishing analytical function.

When P , defined above, has an arbitrary Lebesgue measure, a weaker result holds.
One can still construct a semimartingale Zt that is close to the process Ut, such that the
corresponding generated flows ϕ̃t and ϕt are again close of each other. But here one
loses the probabilistic approach to control the Lebesgue measure of C(ω). We have, with
the same notation as before:
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Proposition 2.3. Let ϕt be the stochastic flow generated by equation (2.4). Given ε > 0

and an open set A ⊇ P such that µ(A \ P ) < ε, there exists a semimartingale Zt which
satisfies the following properties:

1. The corresponding solution flow ϕ̃t driven by Zt is p-decomposable for all t ≥ 0;

2. If Ut(ω) /∈ A, then Zt(ω) = Ut(ω), hence ϕ̃t(ω) = ϕt(ω).

Proof. Since 0 /∈ P , we can assume (reducing A, if necessary), that 0 /∈ A. By Urysohn’s
lemma, there exists a continuous function F : Rm+1 → [0, 1], such that F−1(1) = AC and
F−1(0) = P . In an analogous way to the proof of Theorem 2.1, consider a partition of
Rm+1 as follows:

• ‘Green zone’ G = F−1(1);

• ‘Yellow zone’ Y = F−1
(
1
2 , 1
)
;

• ‘Red zone’ R = F−1
[
0, 12
]
.

We remark that here, different from the proof of the previous theorem, the green,
yellow and red zones remain fixed during all the process. Again, by induction, consider
the following sequences of stopping times: Take T 0 = 0, Ti = inf{t > T i−1 : Ut ∈ R} and
T i = inf{t > Ti : Ut ∈ G}. Define the process {Zt : t ≥ 0} as follows:

Zt =

{
Ut, if t ∈

[
T k−1, Tk

)
for some k ∈ N ;

UTk
, if t ∈

[
Tk, T k

)
.

Finally, note that if Ut(ω) /∈ A, then Ut(ω) is contained in the green zone. Therefore, in
this case Ut(ω) = Zt(ω) and ϕt(ω) = ϕ̃t(ω).

Example 2.4. We present an example of P with nonzero Lebesgue measure. Let f :

R→ [−π/2, π/2] be a smooth function such that f(x) = −π/2 if x ≤ −π/2 and f(x) = π/2

if x ≥ π/2. Consider the following deterministic ODE in R3: x′

y′

z′

 =

 −f ′(z)yf ′(z)x

1


whose solution at points in the horizontal plane (x0, y0, 0) is given by

ϕ(t)(x0, y0, 0) =

 cos f(t) − sin f(t) 0

sin f(t)

0

cos f(t) 0

0 1


 x0

y0
t

 .

Consider the 1-decomposition of the flow in R×R2. The determinant of the submatrix

in the dashed box above corresponds to det
∂φ2

t

∂y in the definition of P . Hence, for any
initial condition in the horizontal plane (x, y, 0), we have that P = [π/2,∞). Geometrically,
the dynamics of the horizontal plane {(x, y, 0);x, y ∈ R} is simply a rotation by f(t)

around the z-axis, with a constant velocity increasing in the z-coordinate. Hence, at time
t ≥ π

2 , the image of e1 (∈ Rp, with p = 1) intersects the plane {(0, y, z); y, z ∈ R} = R2,
the vertical foliation.
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3 General case

3.1 ‘Stop and go’ technique and preliminaries

The technique of the previous section (i.e., via Marcus equation) does not allow one
to generate a p-decomposable flow ϕ̃t of diffeomorphisms close to the original flow ϕt
when the vector fields do not commute with each other. In fact, the jumps of Marcus
equation occur in the direction of the deterministic flows (they do not reach, for example,
the directions of their Lie brackets). In other words, one can not control the proximity of
ϕ̃t and ϕt just controlling how close Zt is from Ut.

The idea of this section is to propose a technique to generate a process ϕ̃t, such that,
when necessary, it stops at a certain point, then it jumps, at appropriate times, landing
exactly at the original flow ϕt. This tool, that we call ‘stop and go’ technique, allows one
to obtain an analogous result of Proposition 2.3 for the general case.

Using the same notation as before, consider the Stratonovich SDE given by:

dxt = X0(xt) dt+

m∑
i=1

Xi(xt) ◦ dBit, (3.1)

whose solution is given by the flow of diffeomorphisms ϕt, but here, the vector fields not
necessarily commute with each other. Given an arbitrary sequence T of stopping times,
i.e.:

T : 0 = T 0 ≤ T1 < T 1 ≤ T2 < T 2 < . . .

we define the ‘stop and go’ equation, as follows:

dxt =

m∑
i=0

Xi(xt) �
T dU it , (3.2)

where, again Ut = (t, B1
t , . . . , B

m
t ) and whose solution must be interpreted, in terms of

action of diffeomorphisms, as the process:

ϕ̃t =

{
ϕt, if t ∈ [T j , Tj+1);

ϕTj , if t ∈ [Tj , T j).

3.2 Main result

Consider the SDE (3.1) and its corresponding stochastic flow ϕt. Given an initial

condition, for each ω ∈ Ω, define the set P (ω) = {t ∈ R : det
∂ϕ2

t

∂y (ω) = 0}, which is a
random set, different from the previous section.

Proposition 3.1. Given ε > 0, and an open random set A(ω) ⊇ P (ω) such that µ(A(ω) \
P (ω)) < ε, there exists a sequence T of stopping times such that:

• The process ϕ̃t, solution of the ‘stop and go’ equation (3.2), is p-decomposable for
all t ≥ 0;

• ϕ̃t(ω) = ϕt(ω) if t /∈ A(ω).

Proof. Since 0 /∈ P (ω) for all ω ∈ Ω, we can assume (reducing the set A(ω), if necessary),
that 0 /∈ A(ω). We define a random partition of R in an analogous way of the previous
results. Take, for each ω a continuous function Fω : R → [0, 1] with the property that
F−1ω (1) = AC(ω) and F−1ω (0) = P (ω), and define:

• ‘Green zone’ Gω = F−1ω (1);

• ‘Yellow zone’ Yω = F−1ω

(
1
2 , 1
)
;
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• ‘Red zone’ Rω = F−1ω

[
0, 12
]
.

Define by induction a sequence of stopping times T , as follows: T 0 = 0, Ti(ω) =

inf {t > T i−1(ω) : t ∈ Rω} and T i(ω) = inf {t > Ti(ω) : t ∈ Gω}.
The sequence T was constructed in a such way that det

∂ϕ̃2
t

∂y (ω) does not vanish. So ϕ̃t
is p-decomposable for all t ≥ 0. For the second part of the statement, if t /∈ A(ω), then:

t /∈
⋃
k∈N

(
Tk(ω), Tk(ω)

)
,

and in this case, ϕt(ω) = ϕ̃t(ω).
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