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Abstract

We use the Malliavin calculus to prove a new abstract concentration inequality result
for zero mean, Malliavin differentiable random variables which admit densities. We
demonstrate the applicability of the result by deriving two new concrete concentration
inequalities, one relating to an integral functional of a fractional Brownian motion
process, and the other relating to the centered maximum of a finite sum of Normal
random variables. These concentration inequalities are, to the best of our knowledge,
largely unattainable via existing methods other than those which are the subject of
this paper.
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1 Introduction

Concentration inequalities characterize the rate of decay of the tail distribution of a
random variable. More specifically, if Z is a random variable, concentration inequalities
are typically some variant of an upper or lower bound on the quantity P (Z ≥ z). Some
classical concentration inequalities (see [2]) are Markov’s inequality:

P (|Z| ≥ z) ≤ E[|Z|]
z

,

where Z is any random variable and z > 0, and Bernstein’s inequality:

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi

∣∣∣∣∣ > z

)
≤ 2 exp

(
− nz2

2(1 + z/3)

)
,

where Z1, ..., Zn are independent Bernoulli random variables uniformly distributed on
the set {−1,+1}.

In this work, we derive new abstract concentration inequalities for Malliavin differ-
entiable random variables. Our approach is inspired by [5], and applies the Malliavin
integration by parts formula to obtain upper and lower bounds on P (Z ≥ z) which extend
those currently in existence in the literature.

This paper is organized as follows: in Section 2 we derive and present concentration
inequalities which are the main result of the paper; and in Section 3 we apply the main
result to compute new bounds on the tail distributions of concrete random variables.
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2 Main Result

We will briefly introduce some of the relevant elements of the Malliavin calculus; for
further details, we refer the reader to [6]. Let H be a separable Hilbert space, equipped
with an inner product denoted by 〈·, ·〉H. Then an isonormal Gaussian process is defined
as a Gaussian family X = {X(h), h ∈ H} where each X(h) is a centered Gaussian
random variable, and such that for all h, g ∈ H, we have: E[X(h)X(g)] = 〈h, g〉H.
We assume that these random variables are defined on a common probability space
(Ω,F , P ), and that F is the sigma-field generated by X. If we denote by {Hn}∞n=0 the
family of Hermite polynomials, and Hn = {Hn(X(h)) : h ∈ H, ||h||H = 1}, it follows that
L2(Ω,F , P} = ⊕∞n=0Hn - this is known as the Wiener chaos decomposition. Finally if we
denote by Jn(F ) the projection of F onto Hn, for any F ∈ L2(Ω,F , P ), then we define
the Ornstein-Uhlenbeck semi-group as the family of parametrized contraction operators
{Tt, t ≥ 0} on L2(Ω), whose action is given by:

Tt(F ) =

∞∑
n=0

e−ntJn(F ).

There are several well known integration by parts formulae associated with the
Malliavin calculus. We generalize an existing such formula to obtain (2.1). Let Z ∈ D1,2

with E[Z] = 0, let h : R→ R be globally Lipschitz and satisfy E[h(Z)] = 0, h(z) > 0 for
z > 0, h(z) < 0 for z < 0, and let f : R→ R be of class C1 with bounded derivative. We
have

E[h(Z)f(Z)] = E[LL−1h(Z)f(Z)] (where LL−1h(Z) = h(Z) since E[h(Z)] = 0)

= E[(−δDL−1h(Z))f(Z)]

= E[〈Df(Z),−DL−1h(Z)〉]
= E[f ′(Z)〈DZ,−DL−1h(Z)〉].

Relating the first and last terms in this chain of equalities, we conclude that

E[h(Z)f(Z)] = E[f ′(Z)〈DZ,−DL−1h(Z)〉]. (2.1)

Consider the random variable E[〈DZ,−DL−1h(Z)〉H |Z]. Since this random variable
is measurable with respect to σ(Z), there exists a measurable function g : R → R so
that:

g(Z) = E[〈DZ,−DL−1h(Z)〉H |Z].

Notationally, we write

g(z) = E[〈DZ,−DL−1h(Z)〉H |Z = z].

Assume now that the random variable Z induces an absolutely continuous measure
on (R,B(R)) with respect to the Lebesgue measure. We denote the density of Z by ρ.
The calculations which follow (until the statement and proof of Theorem 2.1) mirror
those in [5]. Let now f : R→ R be a continuous function with compact support, and let
F denote any antiderivative of f . Note that F is bounded. We see that:
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E[f(Z)〈DZ,−DL−1h(Z)〉H ] = E[F (Z)h(Z)] (by (2.1))

=

∫
R

F (z)h(z)ρ(z)dz

=

∫
R

f(z)

(∫ ∞
z

h(y)ρ(y)dy

)
dz (via integration by parts)

= E

[
f(Z)

∫∞
Z
h(y)ρ(y)dy

ρ(Z)

]
.

Since the previous calculation holds for arbitrary f continuous with compact support,
we have shown

g(Z) = E[〈DZ,−DL−1h(Z)〉H |Z]

=

∫∞
Z
h(y)ρ(y)dy

ρ(Z)
almost surely.

(2.2)

Since Z ∈ D1,2, it is known (e.g. [6]) that the support of ρ, denoted by supp(ρ),
is a closed interval of the form [α, β], where −∞ ≤ α < β ≤ +∞. Let now φ(z) =∫∞
z
h(y)ρ(y)dy. From (2.2), we have

g(z)ρ(z) = φ(z) almost surely on (α, β). (2.3)

Note that φ′(z) = −h(z)ρ(z). Thus multiplying (2.3) on both sides by −h(z) and rearrang-
ing, we get

φ′(z)

φ(z)
= −h(z)

g(z)
almost surely on (α, β).

Dividing by g(z) is well-defined since g(z) > 0 almost surely for z ∈ (α, β) (c.f. (2.2)).
Note that 0 = E[h(Z)] = E[h(Z)+]−E[h(Z)−] so that E[|h(Z)|] = E[h(Z)+] +E[h(Z)−] =

2E[h(Z)+] = 2φ(0), so integrating the above relation we obtain

φ(z) =
E[|h(Z)|]

2
exp

(
−
∫ z

0

h(y)

g(y)
dy

)
, (2.4)

almost surely on (α, β) = supp(ρ).

Theorem 4.1 in [5] is a special case of part of the following theorem; the proof was
partially inspired by this result.

Theorem 2.1. Let Z ∈ D1,2 with E[Z] = 0, and assume Z admits a density ρ. Let
g(Z) = E[〈DZ,−DL−1(h(Z))〉|Z], where h : R→ R is globally Lipschitz, non-decreasing
on [0,∞), h(0) ≥ 0, and satisfies E[h(Z)] = 0. Then the following two results hold:

1. For z ∈ (0,∞) ∩ supp(ρ):

E[|h(Z)|]
2

1

h(∞)
exp

(
−
∫ z

0

h(y)

g(y)
dy

)
≤ P (Z ≥ z) ≤ E[|h(Z)|]

2

1

h(z)
exp

(
−
∫ z

0

h(y)

g(y)
dy

)
,

where the lower bound term is understood to be zero if h(∞) =∞.
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2. Let α ≥ 0 and β > 0. If g(Z)h′(Z) ≤ αh(Z) + β almost surely, then for all z > 0 we
have

P (Z ≥ z) ≤ exp

(
− h(z)2

2αh(z) + 2β

)
∧
(
E[|h(Z)|]

2

1

h(z)
exp

(
−
∫ z

0

h(y)

g(y)
dy

))
,

where ∧ denotes the minimum of the two quantities for every z > 0.

Proof. We will apply the discussion preceding the theorem. Let φ(z) =
∫∞
z
h(y)ρ(y)dy.

From (2.4) we have for every z ∈ supp(ρ):

φ(z) =
E[|h(Z)|]

2
exp

(
−
∫ z

0

h(y)

g(y)
dy

)
. (2.5)

We can integrate the expression
∫∞
z
h(y)ρ(y)dy by parts to obtain

φ(z) =

∫ ∞
z

h(y)ρ(y)dy

= −
[
h(y)

∫ ∞
y

ρ(x)dx

]∞
y=z

+

∫ ∞
z

h′(y)

(∫ ∞
y

ρ(x)dx

)
dy

= h(z)P (Z ≥ z) +

∫ ∞
z

h′(y)P (Z ≥ y)dy.

(2.6)

Hence we have P (Z ≥ z) ≤ φ(z)
h(z) , and plugging in the expression for φ(z) from (2.5), we

obtain the upper bound on P (Z ≥ z) in Theorem 2.1 Part 1. Note now that, from (2.6),
we have:

φ(z) = h(z)P (Z ≥ z) +

∫ ∞
z

h′(y)P (Z ≥ y)dy

≤ h(z)P (Z ≥ z) +

∫ ∞
z

h′(y)dyP (Z ≥ z),

from which we obtain φ(z) ≤ P (Z ≥ z)(h(∞)) by the fundamental theorem of calculus;
rearranging, we obtain the lower bound in Theorem 2.1 Part 1.

We now set about proving Theorem 2.1 Part 2. For any A > 0, define mA(θ) =

E[eθh(Z)1[Z≤A]]. Then m′A(θ) = E[h(Z)eθh(Z)1[Z≤A]]. We have:

m′A(θ) =

∫ A

−∞
h(z)ρ(z)eθh(z)dz

= −eθh(A)

∫ ∞
A

h(y)ρ(y)dy +

∫ A

−∞

(∫ ∞
z

h(y)ρ(y)dy

)
eθh(z)θh′(z)dz

≤
∫ A

−∞
θh′(z)eθh(z)g(z)ρ(z)dz

= E[g(Z)1[Z≤A]θh
′(Z)eθh(Z)],

where the inequality follows from dropping a negative term and invoking relation (2.3).
Thus m′A(θ) ≤ E[g(Z)1[Z≤A]θh

′(Z)eθh(Z)]. Now applying the assumption g(Z)h′(Z) ≤
αh(Z) + β almost surely, we get:

m′A(θ) ≤ θαm′A(θ) + θβmA(θ).
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That is, for any θ ∈ (0, 1/α):

m′A(θ)

mA(θ)
≤ θβ

1− θα
.

By integration and since mA(0) = P (Z ≤ A) ≤ 1, this gives, for any θ ∈ (0, 1/α) :

mA(θ) ≤ exp

(∫ θ

0

βu

1− αu
du

)
≤ exp

(
βθ2

2(1− θα)

)
.

Using Fatou’s inequality (as A→∞) in the previous relation implies:

E[eθh(Z)] ≤ exp

(
βθ2

2(1− θα)

)
for all θ ∈ (0, 1/α). Therefore, for all θ ∈ (0, 1/α), we have

P (Z ≥ z) ≤ P (eθh(Z) ≥ eθh(z)) ≤ e−θh(z)E[eθh(Z)] ≤ exp

(
βθ2

2(1− θα)
− θh(z)

)
.

Choosing θ = h(z)
αh(z)+β ∈ (0, 1/α) gives the desired result (noting that Theorem 2.1 Part 1

is applicable here as well).

Remark 2.2. Note that Theorem 2.1 Part 1 holds only for the case where z ∈ (0,∞) ∩
supp(ρ). However, it can still be applied to estimate the left hand tail distribution of Z.
Consider for example the case that there exists a Borel measurable function t : R→ R

satisfying

〈DZ,−DL−1Z〉 ≤ t(Z).

If we define now Y := −Z, then the linearity of the inner product and the Malliavin
operators L and D imply that:

〈DY,−DL−1Y 〉 = 〈D(−Z),−DL−1(−Z)〉
= 〈DZ,−DL−1Z〉
≤ t(Z) = t(−Y ).

Therefore we have for z ∈ (0,∞) ∩ −supp(ρ):

P (Z ≤ −z) = P (Y ≥ z) ≤ E[|Z|]
2

1

z
exp

(
−
∫ z

0

x

t(−x)
dx

)
.

The next proposition (which is the generalized analog of Proposition 3.7 in [5], whose
proof is similar) gives an alternate method for computing the function g(Z).

Proposition 2.3. Let Z ∈ D1,2 with E[Z] = 0. Let h : R → R be Lipschitz with
E[h(Z)] = 0. Write DZ = ΦZ(X) with a measurable function ΦZ : RH → R and
D(h(Z)) = Φh(Z)(X) with a measurable function Φh(Z) : RH → R. We have
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g(Z) =

∫ ∞
0

e−uE[〈ΦZ(X),Φh(Z)(e
−uX +

√
1− e−2uX ′)〉H |Z]du

where X ′ stands for an independent copy of X, and is such that X and X ′ are defined on
the product probability space (Ω×Ω′,F ⊗F ′, P ×P ′). Here, E denotes the mathematical
expectation with respect to P × P ′.

Proof. Without loss of generality, we can assume that H = L2(T,B, µ), where (T,B) is
a measurable space and µ is a σ-finite measure without atoms. Let us consider the
chaos expansion of h(Z), given by h(Z) =

∑∞
m=1 Im(fm), with fm ∈ L2

s(T
m). Therefore

−L−1(h(Z)) =
∑∞
m=1

1
mIm(fm) and

−DtL
−1(h(Z)) =

∞∑
m=1

Im−1(fm(·, t)), t ∈ T.

On the other hand, we have Dt(h(Z)) =
∑∞
m=1mIm−1(fm(·, t)). Thus

∫ ∞
0

e−uTu(Dth(Z))du =

∫ ∞
0

e−u

( ∞∑
m=1

me−(m−1)uIm−1(fm(·, t))

)
du =

∞∑
m=1

Im−1(fm(·, t)).

Consequently,

−DL−1h(Z) =

∫ ∞
0

e−uTu(D(h(Z)))du.

By Mehler’s formula, and since D(h(Z)) = Φh(Z)(X) by assumption, we deduce that

−DL−1(h(Z)) =

∫ ∞
0

e−uE′[Φh(Z)(e
−uX +

√
1− e−2uX ′)]du.

Using E[E′[...]|Z] = E[...|Z], the desired conclusion follows.

3 Applications

In Section 3.1, we apply Theorem 2.1 Part 1 (with h equal to the identity) to derive
Theorem 3.1, a concentration inequality for an integral functional of a fractional Brown-
ian motion process. The upper bound we derived is, as far as we know, the first such
bound in the literature, and tractable only in the context of Theorem 2.1. In Section
3.2, we apply Theorem 2.1 Part 2 to derive Theorem 3.2, a new concentration inequality
for the centered maximum of a family of Normally distributed random variables. The
inequality is not expressed entirely in closed form, and we don’t attempt to compare its
relative sharpness with the sharpest known bounds. Rather, Theorem 3.2 is a ‘proof-of-
concept’ result, showing that by informed choice of the function h, Theorem 2.1 can be
applied to compute novel concentration inequalities.

We emphasize that the effectiveness and utility of Theorem 2.1 can be greatly en-
hanced by an apt choice of the function h in the theorem statement, informed by the
particular nature of the random variable Z under consideration and the specific form of
the desired concentration inequality.
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3.1 Integral functional of fractional Brownian motion

The theory of fBm was initially introduced by Kolmogorov and considered further
by Mandelbrot and Van Ness [3]; fBm has become a ubiquitous modeling tool in the
sciences (for example [1]), engineering (for example [4]), and finance fields (for example
[8]), among others.For details regarding the definition and construction of fractional
Brownian motion, we refer the reader to [7]. Let now (Bt, t ∈ [0, 1]) denote a fractional
Brownian motion process with Hurst index H ∈ (0, 1). Note that such a process can be
realized as an isonormal Gaussian process. In particular, we can consider the Hilbert
space H defined as the closure of the space of step functions on the set R≥0 with respect
to the inner product given by:

〈1[0,t],1[0,s]〉 = E[BtBs] =
1

2
(t2H + s2H − |t− s|2H).

In this case we have that Bt := B(1[0,t]). We will consider obtaining concentration

inequalities on the random variable Z = ZT :=
∫ T

0
B4
sds− E[

∫ T
0
B4
sds]. We can without

loss of generality assume that T = 1 by the scaling property of fractional Brownian
motion. Hence we will consider the random variable Z =

∫ 1

0
B4
sds− 3

4H+1 . We wish to
upper bound the expression 〈DZ,−DL−1Z〉 in order to apply Theorem 2.1 with h equal
to the identity function. Since we must compute L−1Z, we must first compute the Wiener
chaos expansion of the random variable Z. To this end, for every n ≥ 1, let Πn = {ti}ni=0

where 0 = t0 < t1 < ... < tn = 1. Define ||Πn|| = max{ti − ti−1, i = 1, ..., n}. Assume that
limn→∞ ||Πn|| = 0. Then we have:

Z =

∫ 1

0

B4
sds−

3

4H + 1

= lim
n→∞

n∑
i=1

(ti − ti−1)B4
ti −

3

4H + 1

= lim
n→∞

n∑
i=1

(ti − ti−1)||1[0,ti]||
4B

(
1[0,ti]

||1[0,ti]||

)4

− 3

4H + 1

= lim
n→∞

n∑
i=1

(ti − ti−1)||1[0,ti]||
4

(
B

(
1[0,ti]

||1[0,ti]||

)4

− 6B

(
1[0,ti]

||1[0,ti]||

)2

+ 3 + 6B

(
1[0,ti]

||1[0,ti]||

)2

− 3− 6 + 6

)
− 3

4H + 1

= lim
n→∞

n∑
i=1

(ti − ti−1)||1[0,ti]||
4H4

(
B

(
1[0,ti]

||1[0,ti]||

))
︸ ︷︷ ︸

∈H4

+

lim
n→∞

n∑
i=1

(ti − ti−1)||1[0,ti]||
46H2

(
B

(
1[0,ti]

||1[0,ti]||

))
︸ ︷︷ ︸

∈H2

+ lim
n→∞

n∑
i=1

(ti − ti−1)||1[0,ti]||
43− 3

4H + 1︸ ︷︷ ︸
=0

We have decomposed Z into a sum of two components, belonging to the fourth and
second Wiener chaos spaces respectively. Having expressed the integral defining Z in an
equivalent limit form, in order to unravel the Wiener chaos expansion, we now repackage
the resulting sum of limits back into integral form - for example, the H4 component of Z
can be expressed as follows:
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lim
n→∞

n∑
i=1

(ti − ti−1)||1[0,ti]||
4H4

(
B

(
1[0,ti]

||1[0,ti]||

))

= lim
n→∞

n∑
i=1

(ti − ti−1)||1[0,ti]||
4

(
B

(
1[0,ti]

||1[0,ti]||

)4

− 6B

(
1[0,ti]

||1[0,ti]||

)2

+ 3

)

=

∫ 1

0

t4H
(
B4
t

t4H
− 6

B2
t

t2H
+ 3

)
dt

=

∫ 1

0

(
B4
t − 6t2HB2

t + 3t4H
)
dt.

Repeating this repackaging process with the H2 part of Z, we can write Z as:

Z = 6

∫ 1

0

(
t2HB2

t − t4H
)
dt+

∫ 1

0

(
B4
t − 6t2HB2

t + 3t4H
)
dt,

where the first and second components of the sum belong to H2 and H4 respectively. We
now compute the L−1Z:

L−1Z = −1

4

∫ 1

0

(
B4
t − 6t2HB2

t + 3t4Hdt
)
− 1

2
6

∫ 1

0

(
t2HB2

t − t4H
)
dt.

We compute also the Malliavin derivative of Z:

DZ = D

(∫ 1

0

B4
t dt−

3

4H + 1

)
=

∫ 1

0

4B3
t 1[0,t]dt.

We compute DL−1Z in an analogous manner, and finally we see that:

〈DZ,−DL−1Z〉 = 〈
∫ 1

0

4B3
t 1[0,t]dt,

∫ 1

0

(B3
s + 3s2HBs)1[0,s]ds〉

=

∫ ∫
[0,1]2

(4B3
t )(B3

s + 3s2HBs)E[BtBs]dtds.

We now upper bound this expression in terms of Z:

〈DZ,−DL−1Z〉 ≤

∣∣∣∣∣
∫ ∫

[0,1]2
(4B3

t )(B3
s + 3s2HBs)E[BtBs]dtds

∣∣∣∣∣
≤ 4

∫ ∫
[0,1]2

|Bt|3|B3
s + 3s2HBs|

3

2
dtds

≤ 6

∫ 1

0

|Bt|3dt
(∫ 1

0

|Bs|3ds+ 3

∫ 1

0

|Bs|ds
)

= 6

[(∫ 1

0

|Bt|3dt
)2

+ 3

∫ 1

0

|Bt|3dt
∫ 1

0

|Bt|dt

]

= 6

[(∫ 1

0

(|Bt|4)
3
4 dt

)2

+ 3

∫ 1

0

(|Bt|4)
3
4 dt

∫ 1

0

(|Bt|4)
1
4 dt

]

≤ 6

[
(Z +

3

4H + 1
)

3
2 + 3(Z +

3

4H + 1
)

3
4 (Z +

3

4H + 1
)

1
4

]
(by Jensen’s inequality)

= 6

[
(Z +

3

4H + 1
)

3
2 + 3(Z +

3

4H + 1
)

]
.
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Once we show that Z admits a density, we will be in a position to apply Theorem 2.1 -
in particular, Theorem 2.1 Part 1 with h equal to the identity function. We could apply
the result from [9], which states that an element of D1,2 admitting a finite Wiener chaos
expansion has a density. Since we showed that Z ∈ H2 ⊕H4, it has a density. We could
alternately take a more hands-on approach and apply the Bouleau-Hirsch criterion from
[6], which says that for any Z ∈ D1,2, the almost sure positivity of ||DZ|| is a sufficient
condition for Z to admit a density. Adapted from a calculation in [5], we compute:

||DZ||2 = 〈DZ,DZ〉

= 〈4
∫ 1

0

B3
sds, 4

∫ 1

0

B3
t dt〉

= 16

∫ ∫
[0,1]2

B3
sB

3
tE[BsBt]dsdt

= 16

∫ ∫
[0,1]2

B3
sB

3
t Ẽ[B̃sB̃t]dsdt

= 16Ẽ

[(∫ 1

0

B3
t B̃tdt

)2
]
,

where B̃ is a fractional Brownian motion with Hurst parameter H which is independent
of B. The above calculation shows that ||DZ|| = 0 if and only if

∫ 1

0
B3
t B̃tdt = 0 for almost

every path of B̃. This is equivalent to the condition that the path (B3
t , t ∈ [0, 1]) be

identically zero, which of course has probability zero. Hence Z does admit a density, and
we can apply Theorem 2.1 Part 1 with h equal to the identity to say that for z > 0:

P (Z ≥ z) ≤ E[|Z|]
2

1

z
exp

−∫ z

0

y

6
[
(y + 3

4H+1 )
3
2 + 3(y + 3

4H+1 )
]dy

 .

Upper bounding E[|Z|] by 6
4H+1 , and evaluating the integral inside the exponential, we

can simplify this expression to conclude that for z > 0:

P (Z ≥ z) ≤ K

(√
c+ z + 3

)1− 1
9 c
(
c+ z)

1
18 c
)

z
e−

1
3

√
c+z,

where K = c
2 (
√
c + 3)−1+ c

9 c−
c
18 e

√
c

3 , and c = 3
4H+1 . In this case the lower bound from

Theorem 2.1 Part 1 is trivial, since h is assumed to be the identity function in this case
and hence h(∞) =∞. However, we can also use direct Malliavin methods to get a lower
bound on P (Z ≥ z). First note that:

P (Z ≥ z) = P

(∫ 1

0

B4
sds−

3

4H + 1
≥ z
)

= P

(∫ 1

0

B4
sds ≥ z +

3

4H + 1

)
≥ P

(∣∣∣∣∫ 1

0

Bsds

∣∣∣∣4 ≥ z +
3

4H + 1

)

= P

(∣∣∣∣∫ 1

0

Bsds

∣∣∣∣ ≥ (z +
3

4H + 1

) 1
4

)
.
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Note now that N :=
∫ 1

0
Bsds is a Normally distributed random variable - this follows

from expressing N as the almost sure limit of its Riemann sum approximation, or
from Corollary 3.4 in [5], which says that N is normally distributed if and only if
f(N) = E[〈DN,−DL−1N |N ] is a constant. Since we can immediately compute that
〈DN,−DL−1N〉 is constant, we conclude that N is normally distributed. By Fubini we
see that N has zero mean, and we compute it’s variance as follows:

E[N2] =

∫ ∫
[0,1]2

E[BsBt]dsdt

=

∫ 1

0

(∫ t

0

(
s2H + t2H + (t− s)2H

)
ds

)
dt

=
1

2H + 2
.

We can now use the classical inequality
∫∞
z
e−y

2/2dy ≥ z
1+z2 e

−z2/2 for z > 0, to deduce
that for z > 0:

P (Z ≥ z) ≥
√

2

π

(
r(z)

1 + r(z)2

)
e−r(z)

2/2,

where r(z) =
√

2H + 2
(
z + 3

4H+1

) 1
4

. Hence we have the following theorem, which

characterizes both upper and lower bounds on the rate of decay of the right-hand tail
distribution of Z.

Theorem 3.1. Let (Bt, t ∈ [0, 1]) be a fractional Brownian motion with Hurst parameter
H ∈ (0, 1). Let Z =

∫ 1

0
B4
t dt− 3

4H+1 . Then Z admits a density and for z > 0:

√
2

π

( √
2H + 2 (c+ z)

1
4

1 + (2H + 2) (c+ z)
1
2

)
e−(H+1)

√
c+z ≤ P (Z ≥ z)

≤ K

(√
c+ z + 3

)1− 1
9 c
(
c+ z)

1
18 c
)

z
e−

1
3

√
c+z

where K = c
2 (
√
c+ 3)−1+ c

9 c−
c
18 e

√
c

3 , and c = 3
4H+1 .

We could apply Remark 2.2 to obtain a bound for the left-hand tail distribution of Z,
but this is less interesting since P (Z ≤ 3

4H+1 ) = 0.

3.2 Maximum of Normal random variables

Let N = (N1, ..., Nn) be an n-dimensional jointly Normal random vector, with positive
definite covariance matrix K. We assume that each Ni has the form X(hi), for a certain
centered isonormal process X (over some Hilbert space H) and certain functions hi ∈ H.
Let Z = maxi=1,...,nNi − E[maxi=1,...,nNi], and set

Iu = argmax1≤i≤n(e−uX(hi) +
√

1− e−2uX ′(hi)) for u ≥ 0,

where X ′ is an independent copy of X. Then for any u ≥ 0, Iu is a well-defined random
element of {1, ..., n}; moreover, Z ∈ D1,2 and we have DZ = ΦZ(N) = hI0 (we refer the
reader to [5] for the proof). We mention also the well known Borel-Sudakov inequality
([10]), which bounds the rate of decay of the tail distribution of Z; in particular, for z > 0:
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P (|Z| ≥ z) ≤ 2 exp

(
− z2

2σ2

)
, (3.1)

where σ2 = maxi=1,...,nKi,i.

Consider the function

h(z) =


−γ : z < −1

γz : z ∈ [−1, 0)

z + z2 : z ∈ [0, C)

C + C2 : z ≥ C

(3.2)

where γ > 0 is a constant to be chosen later, and C > 0 is arbitrary. Note that h is
Lipschitz and that h′ is given almost everywhere by

h′(z) =


0 : z < −1

γ : z ∈ [−1, 0)

2z + 1 : z ∈ [0, C)

0 : z ≥ C

In order to apply Theorem 2.1, we must have that E[h(Z)] = 0. Note that Z admits a
density under assumption that K is positive definite (see [5]) - call it ρ. We have

E[h(Z)] =

∫
R

h(x)ρ(x)dx

= −γ
∫ −1

−∞
ρ(x)dx+ γ

∫ 0

−1

xρ(x)dx+

∫ C

0

(x+ x2)ρ(x)dx+ (C + C2)

∫ ∞
C

ρ(x)dx.

Therefore picking

γ =

∫ C
0

(x+ x2)ρ(x)dx+ (C + C2)P (Z ≥ C)

P (Z ≤ −1)−
∫ 0

−1
xρ(x)dx

, (3.3)

we get E[h(Z)] = 0. By the remarks at the beginning of this section, we have again
that DZ = ΦZ(X) = hI0 . Also, Φh(Z)(X) = D(h(Z)); we can apply the chain rule for the
Malliavin derivative since h is a Lipschitz function. Then we get D(h(Z)) = h′(Z)DZ.
Therefore

Φh(Z)(e
−uX +

√
1− e−2uX ′)

= h′
((

max
1≤i≤n

e−uX(hi) +
√

1− e−2uX ′(hi)

)
− E

[
max

1≤i≤n
e−uX(hi) +

√
1− e−2uX ′(hi)

])
hIu

Hence we have

〈ΦZ(X),Φh(Z)(e
−uX +

√
1− e−2uX ′)〉H = KI0,Iuh

′(A− E[A]),

whereA = max1≤i≤n
(
e−uX(hi) +

√
1− e−2uX ′(hi)

)
. Hence defining σ2

max = max1≤i,j≤nKi,j ,
we have
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E
[
〈ΦZ(X),Φh(Z)(e

−uX +
√

1− e−2uX ′)〉H |Z
]
≤ σ2

max

(
1 + γ + 2E[(A− E[A])1([A−E[A])∈[0,B]]|Z]

)
≤ σ2

max

(
(1 + γ + 2 |E[A]|)+

2E

[(
max

1≤i≤n
e−uX(hi) + max

1≤i≤n

√
1− e−2uX ′(hi)

)
1[(A−E[A])∈[0,B]]

∣∣∣∣Z])
≤ σ2

max

(
(1 + γ + 2|E[A]|) + 2e−u|Z|

+ 2e−u
∣∣∣∣E [ max

1≤i≤n
X(hi)

]∣∣∣∣+ 2
√

1− e−2u

∣∣∣∣∣∣∣∣( max
1≤i≤n

X(hi)

)∣∣∣∣∣∣∣∣
L2(Ω)

)
,

where the second inequality follows from splitting the expectation, applying the Cauchy-
Schwarz inequality to each piece, and using the independence of X ′ and X. Applying
now Proposition 2.3 we get

g(Z) ≤ σ2
max|Z|+ k

where

k = σ2
max

(
1 + γ + 2|E[A]|+

∣∣∣∣E [ max
1≤i≤n

X(hi)

]∣∣∣∣+ 2

∫ ∞
0

e−u
√

1− e−2udu

∣∣∣∣∣∣∣∣( max
1≤i≤n

X(hi)

)∣∣∣∣∣∣∣∣
L2(Ω)

)
.

Hence we have

g(z)h′(z) ≤


0 : z < −1

(γσ2
max)|z|+ γk : z ∈ [−1, 0)

(2σ2
max)z2 + (σ2

max + 2k)z + k : z ∈ [0, C)

0 : z ≥ C

and

αh(z) + β =


−αγ + β : z < −1

αγz + β : z ∈ [−1, 0)

αz2 + αz + β : z ∈ [0, C)

α(B +B2) + β : z ≥ C

We can pick α > 0 and β > 0 to satisfy the requirement of Theorem 2.1 that g(Z)h′(Z) ≤
αh(Z) + β almost surely; for example, α = max{2σ2

max, 2k + σ2
max} and β = max{k, γ(k +

σ2
max +α), αγ}. Thus for these particular choices of α and β, all the conditions of Theorem

2.1 are satisfied, and in particular we have that for z ∈ [0, C]:

P (Z ≥ z) ≤ exp

(
− (z + z2)2

2α(z + z2) + 2β

)
∧
(
E[|h(Z)|]

2

1

z + z2
exp

(
−
∫ z

0

y + y2

σ2
maxy + k

dy

))
= exp

(
− (z + z2)2

2α(z + z2) + 2β

)
∧ E[|h(Z)|]

2

(
σ2

maxz + k
)k(k−σ2

max)/σ6
max exp

(
k

σ6
max

)
exp

(
− 1

2σ2
max

z(z + 2)

)
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We would like this bound to hold asymptotically - in other words, we wish it to hold for
z ∈ [0,∞), rather than z ∈ [0, C). This is still achievable however, by noting first the Borel-
Sudakov inequality (3.1), which concerns the distribution of the same random variable
Z. As C increases, γ and E[|h(Z)|] correspondingly increase as well, but referring
to (3.3) and (3.2), the Borel-Sudakov inequality guarantees that limC→∞ γ < ∞ and
limC→∞E[|h(Z)|] <∞. In particular, it can be easily shown that

lim
C→∞

γ < |σ|(
√

2π + 4|σ|).

Call these limits γ∞ and E[|h∞(Z)|] respectively. Picking α∞ and β∞ in terms of γ∞, we
see that for z > 0:

P (Z ≥ z) ≤ exp

(
− (z + z2)2

2α∞(z + z2) + 2β∞

)
∧ E[|h∞(Z)|]

2

(
σ2

maxz + k
)k(k−σ2

max)/σ6
max exp

(
k

σ6
max

)
exp

(
− 1

2σ2
max

z(z + 2)

)
Hence we can state the following theorem, in the context of the notation just estab-

lished.

Theorem 3.2. Let N = (N1, ..., Nn) be an n-dimensional jointly Normal random vector,
with positive definite covariance matrix K. Then for every z > 0 we have

P (Z ≥ z) ≤ exp

(
− (z + z2)2

2α∞(z + z2) + 2β∞

)
∧ E[|h∞(Z)|]

2

(
σ2

maxz + k
)k(k−σ2

max)/σ6
max exp

(
k

σ6
max

)
exp

(
− 1

2σ2
max

z(z + 2)

)
4 Conclusion

We have presented a new concentration inequality (i.e. Theorem 2.1) derived using
the Malliavin calculus, and demonstrated its originality and applicability by computing
several concrete new bounds, which are unattainable using existing techniques. A
crucial aspect of Theorem 2.1 is its dependence on the function h. The arbitrariness
in the choice of h presents the opportunity to pick an h tailor-made to the random
variable under consideration, informed by the desire to obtain the tightest possible
bounds on the tail-distribution, or potentially to obtain bounds of a particular form. A
future research direction could revolve around developing a method for optimizing the
function h appearing in Theorem 2.1, for a given random variable Z, with the objective of
obtaining the sharpest possible bounds on P (Z ≥ z) in some (potentially non-asymptotic)
region.
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