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Abstract

In this note, we construct an example of a sequence of n-fold product chains which
does display cutoff neither for the total-variation distance nor for the separation
distance. In addition we show that this type of product chains necessarily displays
pre-cutoff.
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1 Introduction

Consider a sequence of reversible irreducible continuous Markov chains Xn =

(Xn(t))t≥0, each being defined on a finite state spaces (Ωn)n≥0. Let πn denote the unique
reversible probability measure associated to Xn. It is a classic result of Markov chain
theory that for any initial condition the distribution of Xn(t) converges to πn when t

goes to infinity. We let Pnt denote the Markov semigroup associated to Xn and dn(t) resp.
dsn(t) denote the distance to equilibrium for the total variation distance and separation
distance (they are defined by taking the maximal distance over all initial condition)

dn(t) := max
x∈Ωn

‖Pnt (x, ·)− πn‖TV ,

dsn(t) := 1− min
x,y∈Ωn

Pnt (x, y)

πn(y)
.

(1.1)

When we have to consider only one Markov chain X in Section 2.2, we will use the
same notation without n.

The sequence Xn is said to display cutoff if dn(t) drops abruptly from 1 to 0 on the
appropriate time scale. More precisely, if one defines the mixing time corresponding to
the distance a ∈ (0, 1) to be

tnmix(a) := inf{t | dn(t) < a}. (1.2)

the chain is said to display cutoff if for any ε ∈ (0, 1/2]

lim
n→∞

tnmix(ε)/tnmix(1− ε) = 1. (1.3)
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A product chain without cutoff

We follow the definition given in [5, pp .248] and say displays pre-cutoff if

lim sup
ε→0+

lim sup
n→∞

tnmix(ε)/tnmix(1− ε) <∞. (1.4)

Note that one can replace tnmix by tns the mixing time for the separation distance.

The term cutoff was coined by Aldous and Diaconis [1] and its occurrence for the
transposition shuffle was proved by Diaconis and Shahshahani [4]. It is thought to hold
for many natural sequences of Markov chain as soon as

tnmix(1/4)× gapn =∞ (H)

where gapn corresponds to the spectral gap of the chain Xn (see e.g. [5, Chapter 12
and Chapter 18] for the definition of the spectral gap and an account on the cutoff
phenomenon). More precisely the conditioncis necessary and it is was proposed by Peres
as a natural sufficient condition provided the chain is “nice enough". As (H) is in fact
known to be a necessary condition for pre-cutoff, this would imply in particular than
pre-cutoff implies cutoff for “nice chains”.

Shortly after (H) was proposed as a sufficient condition for cutoff, Aldous constructed
a chain that satisfies (H) and displays pre-cutoff, but for which cutoff does not hold. Pak
also constructed a counter-example (with no pre-cutoff) which is a random walk on a
Cayley graph (see [5, pp 253–256]). Since then it has been a challenge to find a large
class of Markov chain for which the (H) condition is a sufficient one. Note that Chen and
Saloff-Coste have shown that (H) is a sufficient condition in full generality when distance
to equilibrium is measured by the Lp norm [3]. Let us note also that [6, Proposition 7]
establishes that cutoff holds for large product chains provided one has a good-control on
the supremum norm of the relative density of the marginals.

We define Y n the chain corresponding to n independent copies of Xn (its n-th power)

Y n(t) := (Xn
1 (t), . . . , Xn

n (t)). (1.5)

In this note we show that the sequence Y n always displays pre-cutoff, and we
construct construct a sequence of chain X which is such that Y displays no cutoff
(whereas X does), showing that condition (H) is not a sufficient condition for cutoff for
chains that are large powers of a simpler one.

2 Pre-cutoff for product chains

We let Dn, Ds
n, Qnt , Tnmix and Tns , and µn := π⊗nn denote the distances to equilibrium,

semigroup, and mixing time and equilibrium measure for the chain Y n. We have

Proposition 2.1. For any sequence of non-trivial Markov chain Xn one has

lim sup
n→∞

Tnmix(1− ε)
Tnmix(ε)

≤ 2. (2.1)

The result also holds when the total-variation distance is replaced by the separation
distance.

Remark 2.2. In the first draft of this paper, the optimal bound of 2 for the mixing time
ratio was proved to hold only for the separation distance. The idea of using the Hellinger
distance to obtain an optimal bound also for the total-variation distance (developped in
Section 2.2) is due to Yuval Peres.
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A product chain without cutoff

2.1 Proof of Proposition 2.1 for the separation distance

The separation distance to equilibrium for Y n is given by

Ds
n(t) := 1− min

x,y∈Ωn

Qnt (x,y)

µn(y)
= 1− (1− dsn(t))n. (2.2)

Hence for ε ∈ (0, 1/2) fixed and n sufficiently large we have

tns (n−2/3) ≤ Tns (1− ε) ≤ Tns (ε) ≤ tns (n−4/3) ≤ 2tns (n−2/3), (2.3)

where the last inequality is due to the submultiplicativity property for the separation
distance

dsn(a+ b) ≤ dsn(a)dsn(b). (2.4)

Hence the result.

For the total-variation distance, can obtain (2.1) with 4 instead of 2 on the r.h.s. simply
by using the following comparison between the total variation distance and separation
distance for reversible Markov chains initially proved in [2] (see also [5, Lemma 6.13
and Lemma 19.3])

dn(t) ≤ dsn(t) ≤ 4dn(t/2).

2.2 Proof of Proposition 2.1 for the total-variation distance

For an optimal result, we need to use the Hellinger distance which has the property
of behaving nicely for product. This section starts with the introduction of notation and
recalling some classical inequalities.

Given µ and ν two probability measures on a common finite state space Ω, the
Hellinger distance between µ and ν is defined by

dH(µ, ν) :=

√∑
x∈Ω

(√
ν(x)−

√
µ(x)

)2

. (2.5)

We have the following comparisons with the total-variation distance (see for instance [5,
(20.22) and (20.29)])

‖µ− ν‖TV ≤ dH(µ, ν) ≤
√

2‖µ− ν‖TV (2.6)

We set
dHn (t) := sup

x∈Ω
dH(Pnt (x, ·), πn), (2.7)

and let DH
n (t) denote the counterpart of dHn for the chain Yn. Similarly to (2.2), it is easy

to remark (see also [5, Exercice 20.5]) that

1− 1

2

(
DH
n (t)

)2
=

(
1− 1

2
(dHn (t))2

)n
. (2.8)

Hence we know that DH
n (t) is close to

√
2 resp. 0 (and hence by (2.6) that Dn(t) is close

to 1 resp. 0) if and only if
√
ndHn (t) is close to infinity resp. 0. What we need to conclude is

that there is a time window [tn, 2tn] for which the Hellinger distance drops from n−1/2+δ

to n−1/2−δ. We achieve this by proving the following property of the Hellinger distance
for reversible Markov chains

Lemma 2.3. For any reversible irreducible Markov chain and any t ≥ 0,

dH(2t) ≤ 8(dH(t))5/4. (2.9)
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A product chain without cutoff

With this results at hand, it is easy to prove, that similarly to (2.3), for

tn := inf{t | dHn (t) ≤ n−3/7}.

one has for any ε ∈ (0, 1/2), for all n sufficiently large

tn ≤ Tnmix(1− ε) ≤ Tnmix(ε) ≤ 2tn. (2.10)

Proof of Lemma 2.3. We introduce now d̄(t) defined as

d̄(t) := max
x,y∈Ω2

‖Pt(x, ·)− Pt(y, ·)‖TV . (2.11)

Note that, as the chain is assumed to be reversible d̄(t) also correspond to the operator
norm for Pt acting on integrable functions with mean 0, or more precisely

d̄(t) = max
{f∈l1(π) | π(f)=0}

‖Ptf‖l1(π)

‖f‖l1(π)
, (2.12)

where
Ptf(x) :=

∑
y∈Ω

Pt(x, y)f(y).

The function d̄(t) compares well with d(t) and is submultiplicative (see for instance
[5, Chapter 4])

d(t) ≤ d̄(t) ≤ 2d(t)

d̄(t+ s) ≤ d̄(t)d̄(s).
(2.13)

Combining (2.6) and (2.13), we have for every t

d̄(t)/2 ≤ dH(t) ≤
√

2d̄(t). (2.14)

Let us try now to prove the result from (2.14) (inequality on the left) and (2.13) in a
naive way. We have

d̄(2t) ≤ (d̄(t))2 ≤ 4(dH(t))2, (2.15)

and hence using (2.14) again (inequality on the right) we obtain

dH(2t) ≤
√

8dH(t), (2.16)

which is not satisfying.

To find a way out, we have to prove that if the inequality on the left in (2.14) is sharp
for t, the inequality on the right cannot be sharp for 2t.

We set u := dH(t) (note that we can assume u ≤ 1 as the result is trivial for u ≥ 1) Let
x an element of Ω for which dH(2t) = dH(Pt(x, · ), π). Let g denote the density of Pt(x, ·)
with respect to π and g′ denote the density of P2t(x, ·) with respect to π.

We have from our definitions∫ (√
g′(y)− 1

)2

π( dy) = (dH(2t))2,∫ (√
g(y)− 1

)2

π( dy) ≤ u2.

(2.17)

Our first step is the contribution to the total variation distance ‖Pt(x, · )− π‖ of the
set {y | |g(y)− 1| ≥ u1/2} is much smaller than u.
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Lemma 2.4. We have for all u ≤ 1∫
|g(y)− 1|1{|g(y)−1|≥u1/2} dπ( dy) ≤ 10u3/2. (2.18)

Proof. We have to show that∫
|g − 1|1{|g(y)−1|≥u1/2} dπ( dy)

≤ 10

∫ (√
g(y)− 1

)2

u−1/21{|g(y)−1|≥u1/2} dπ( dy), (2.19)

and we conclude by using (2.17). The inequality (2.19) is obtained by noticing that when
g ≥ 2 we have

|g − 1| ≤ (3− 2
√

2)|√g − 1|2, (2.20)

while when g ∈ (0, 2), |g − 1| ≥ u1/2, we have

|g − 1| ≤ u−1/2|g − 1|2 ≤ u−1/2

(
√

2− 1)2
|√g − 1|2. (2.21)

Now we can decompose g − 1 into a sum of two function h1 and h2: one which has a
small l∞ norm, and one which has a small l1 norm.

h1(y) := (g − 1)(y)1{|g(y)−1|<u1/2},

h2(y) := (g − 1)(y)1{|g(y)−1|≥u1/2}.
(2.22)

We have

‖h1‖l∞ ≤ u1/2,

‖h2‖l1(π) ≤ 10u3/2.
(2.23)

Setting h′i := Pthi one has

g′ − 1 = h′1 + h′2. (2.24)

From (2.12) one has (using (2.14) to bound d̄(t))

‖h′2‖l1(π) ≤ d̄(t)‖h2‖l1(π) ≤ 20u5/2,

‖h′1‖l∞ ≤ ‖h1‖l∞ ≤ u1/2.
(2.25)

Moreover
‖g′ − 1‖l1(π) ≤ 2d(2t) ≤ 2d̄(t)2 ≤ 8u2. (2.26)

We are now ready to bound (dH(2t))2. We split it into two parts. The first one is bounded
thanks to (2.26)∫ (√

g′(y)− 1
)2

1{|g′(y)−1|≤2u1/2}π( dy) ≤ 2u1/2

∫
|g′(y)− 1|π( dy) ≤ 16u5/2. (2.27)

For the second part, note that as (
√
g′ − 1)2 ≤ |g′ − 1| we have∫ (√

g′(y)− 1
)2

1{|g′(y)−1|≥2u1/2}π( dy)

≤
∫
|g′(y)− 1|1{|h′

2(y)|≥u1/2}π( dy)

≤
∫

2|h′2(y)|1{|h′
2(y)|≥u1/2}π( dy) ≤ 40u5/2. (2.28)
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A product chain without cutoff

where the last inequality comes from (2.25), and the one before from the fact that

|g′ − 1| ≤ |h′1 + h′2| ≤ |h′2|+ u1/2.

This allows us to conclude.

3 An example without cutoff

3.1 Construction

Let us now define a sequence Xn such that Y n displays no cutoff. The idea build on
the counter example of Aldous displayed on [5, pp 256]. The state-space of Xn is the
vertex set Vn of a graph Gn with 2n+ 1 edges and 2n+ 1 vertices defined as follows:

• There is a segment of 2n edges linking 2n+ 1 vertices. We call A and C its ends.
• There is an extra edge linking the midle point of the segment (which we call B) to
C.

The transition rates are positive on the edges of Gn and are specified in the caption of
Figure 1 .
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Figure 1: The graph Gn together with the transition rates of Xn: the two segments that
are represented in red are of length n. The jump rate are represented in blue above the
arrows. In the direction from A to C the jump rate is always one except at point B where
the jump rate to C (along the green edge) is equal to 1 − 1/n while the probability to
jump towards C on the red path is 1/n. The jumps in the direction of A along red edges
are equal to εn := 2−n

2

. The jump rate from C to B along the green edge is equal to
ε′n := (n− 1)2−n

3

.

With this definition it is not difficult to check that Xn is a reversible Markov chain.
We have chosen εn to be exponentially small but the result we are going to present would
remain valid for εn = 1/2 for all n (or any other value smaller than 1). Note that the
value of ε′n is determined by that of εn in order to have reversibility.

Proposition 3.1. The construction above satisfies the following property

(i) The sequence Xn displays cutoff around time n, both in separation and total-
variation distance.

(ii) The sequence does not Y n display cutoff as

Tnmix(a) =

{
2n(1 + o(1)) for a ∈ (0, 1− e−1),

n(1 + o(1)) for a ∈ (1− e−1, 1).
(3.1)
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(the notation means that for a fixed a 6= (1− e−1), Tnmix(a)/n converges either to 1 or 2.)
The same holds for the separation distance.

Remark 3.2. The above Proposition shows that the inequality (2.1) concerning the ratio
of the mixing time is optimal.

The main idea of the proof is that the total variation distance can be expressed
in terms of the distribution of the time τ or T needed to reach A (for Xn) or C :=

(C,C, . . . , C) (for Y n) starting from A. In particular, there is cutoff if and only if this
time is concentrated around its mean. For Xn we show that τ concentrates around n,
whereas for Y n, T will be about 2n if at least one of the coordinates Xn

1 decides to use
the red path between B and C (which happens with a non-vanishing probability).

3.2 Proof of Proposition 3.1

The equilibrium measure πn gives a weight 1−O(2−n
2

) to the vertex C, and hence the
equilibrium measure µn of Y n, gives weight 1−O(n2−n

2

) to C := (C,C, . . . , C). Because
of this remark we have

dn(t) = 1− min
x∈Vn

Pt(x,C) + o(1) Âăand Dn(t) = 1− min
x∈V n

n

Pt(x,C) + o(1). (3.2)

For x ∈ Vn or x ∈ V nn , let Pn,x resp. Qn,x be the law of Xn(t) starting from x resp.
the law of Y n(t) and let τ , resp. T be the first hitting time of C resp. C.

Lemma 3.3. We have

dn(t) = Pn,A(τ > t) + o(1),

Dn(t) = Qn,A(T > t) + o(1),
(3.3)

meaning that

lim
n→∞

sup
t≥0
|dn(t)− Pn,A(τ > t)| = 0,

lim
n→∞

sup
t≥0
|Dn(t)−Qn,A(T > t)| = 0.

(3.4)

Proof. We provide the proof for dn(t) as the other is identical. First let us prove the
result for t < 3n, and we will check later that for t > 3n both dn(t) and Pn(τ > t) are
o(1). Now the probability that a jump in the direction A (a backtrack) occurs before time
3n is exponentiallty small in n and thus from (3.2) we have

Pt(x,C) = Pn,x(τ ≤ t) + o(1) (3.5)

Hence from (3.2), it is sufficient to check that the minimum of Pn,x(τ ≤ t) is reached for
A (up to some o(1) correction).

From an obvious coupling , we see that A is the point of the segment AB which makes
τ the largest. It remains to check that starting from one of the n− 1 inside points the red
segment B and C cannot make τ larger: by conditioning to the event that Xn does not
backtrack before t (which is an event of almost full probability) we see that τ starting
from A is bounded from below by a sum of n+ 1 IID standard exponentials whereas in
the BC branches it is bounded from above by the sum of n IID standard exponentials.

Finally, for t = 3n, as conditioned on no backtrack, τ starting from A is a bounded
from above by a sum of 2n IID standard exponentials, both Pn(τ > 3n) and dn(t) are o(1)

(and the fact both functions are decreasing allows to conclude for larger values of t).
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From Lemma (3.3) one has

Dn(t) = 1−
[
Pn,A(τ ≤ t)

]n
+ o(1). (3.6)

Hence Dn(t) is in a neighborhood of 1 resp. 0 if and only if nPn,A(τ > t) is in a
neighborhood of infinity resp. 0.

Concerning Xn, one can remark that conditioning to the event that Xn does not
backtrack and uses a short branch to reach C, τ is a sum of 3n + 1 IID standard
exponentials. Hence as the event to which we are conditioning has a probability tending
to one, we have

lim
n→∞

dn(ns) =

{
1 if s < 1,

0 if s > 1.
(3.7)

and Xn exhibits cutoff. However, the slow branch plays a crucial role for the product
chain as the probability to hit C from the longer branch asymptotically behaves like n−1.
As a consequence we have

Lemma 3.4.

lim
n→∞

nPn,A(τ > ns) =


∞ if s < 1,

1 if s ∈ (1, 2),

0 if s > 2.

(3.8)

Proof. Under Pn,A the probability that Xn backtrack before time 3n is exponentially
small in n and thus can be neglected. Conditioned on no backtracking, the probability to
use the red segment BC is equal to n−1. Now conditioned on using the red segment, τ
is a sum of 2n IID standard exponentials whereas conditioned on using the green edge τ
is a sum of n+ 1 IID standard exponentials. Hence the result.

This implies

lim
n→∞

Dn(ns) =


1 if s < 1,

1− e−1 if s ∈ (1, 2),

0 if s > 2.

(3.9)

and hence Y n exhibits no cutoff for total variation distance.

Now let us show that cutoff also holds for the separation distance. This amounts
essentially to prove the following

Lemma 3.5. For all n sufficiently large, for any x, y ∈ Vn \ {C}, for all n/2 ≤ t ≤ 3n one
has

Pnt (x, y) ≥ πn(y) (3.10)

Proof. From reversibility
Pnt (x, y)

πn(y)
=
Pnt (y, x)

πn(x)
(3.11)

so that one can without loss of generality consider that x is the point closer to A on
the red segment. Let d be the number of red edges between x and y. Then Pnt (x, y) is
bounded from below by the probability of the event: in the time interval [0, t] the walk
Xn (starting from x) makes exactly d jumps following the red path from x to y.

As the jump rate for X is always of order 1 (except at point C), the probability of
making exactly d jumps in the time interval [0, t] is larger than e−C1n for some constant
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C1. The probability of not following the red path conditioning to the number of jump is
at least 1/2n (a backtrack is exponentially unlikely, and if the path goes through B the
chance of choosing the right direction there is equivalent to n−1). Hence there exists a
constant C2 such that when n is sufficiently large

∀t ∈ (n/2, 3n), ∀x, y ∈ Vn \ {C}, Pnt (x, y) ≥ e−C2n. (3.12)

As πn(y) ≤ 2−n
2

for all y 6= C, this is sufficient to conclude.

From the previous Lemma (and the definition (1.1) and reversibility), one has for all
t ∈ (n/2, 3n)

dsn(t) := 1− min
x∈Ωn

Pnt (x,C)

πn(C)
, (3.13)

which according to (3.2) shows that the difference between total-variation and separation
distance for this chain is negligible.
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