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Abstract

For the class of stochastic partial differential equations studied in [2], we prove
the existence of density of the probability law of the solution at a given point (t, x),
and that the density belongs to some Besov space. The proof relies on the method
developed in [6]. The result can be applied to the solution of the stochastic wave
equation with multiplicative noise, Lipschitz coefficients and any spatial dimension
d ≥ 1, and also to the heat equation. This provides an extension of the results proved
in [15].

Keywords: Stochastic partial differential equations; stochastic wave equation; densities.
AMS MSC 2010: Primary 60H15; 60H07, Secondary 60H20; 60H05.
Submitted to ECP on October 1, 2014, final version accepted on January 26, 2015.
Supersedes arXiv:1409.8031v2.

1 Introduction

The seminal article [8] begins with a criterion for the absolute continuity with respect
to the Lebesgue measure for nonnegative finite measures onRm. Using tools of harmonic
analysis, it is proved that if κ is such a measure and there exist a constant c such that
for every Φ with compact support, we have

∣∣∫ ∂kΦdκ
∣∣ ≤ c‖Φ‖∞, for 1 ≤ k ≤ m, then

κ(dx) = k(x)dx and k ∈ L1. By iteration, it is possible to strengthen this criterion and
obtain the existence of an infinitely differentiable density. In the same article, Malliavin
sets up the grounds of a stochastic calculus of variation with the purpose to be able
to apply this criterion to the probability law of Gaussian functionals. It was coined as
Malliavin Calculus. The book [9] contains an extensive list of references on applications
of this calculus which is still continuing to grow. Among them, the study of the law of
random field solutions to stochastic partial differential equations, in the sequel referred
to as SPDEs (see [13] for an introduction).

The use of Malliavin calculus for the analysis of densities requires some regularity
properties that are not met by all SPDEs and neither by stochastic differential equations
with non-smooth coefficients. This problem has motivated the search for alternatives to
Malliavin’s criterion, quite similar in spirit, but giving weaker conclusions, applicable to
cases that exhibit irregularities. For the sake of brevity, we only mention the references
[7, 5, 6] where the approach used in this paper is developed, and the recent related
article [1].
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Absolute continuity for SPDEs

Ů i les hipŸtesis Throughout the paper we consider the setting of [2, 15]. More
explicitly, we deal with an SPDE

Lu(t, x) = b(u(t, x)) + σ(u(t, x))Ḟ (t, x),

with suitable initial conditions, that we express in its mild formulation as

u(t, x) =

∫ t

0

∫
Rd

Λ(t− s, x− y)σ(u(s, y))M(ds, dy)

+

∫ t

0

∫
Rd

Λ(t− s, x− y)b(u(s, y))dyds, (1.1)

(t, x) ∈ [0, T ] × Rd. Here Λ denotes the fundamental solution to Lu = 0 and M is the
martingale measure derived from a random noise F white in time and with a stationary
covariance measure in space. The spectral measure of the covariance (its inverse Fourier
transform) will be denoted by µ.

Let {u(t, x), (t, x) ∈ [0, T ] × Rd} be the random field solution to (1.1). Assume that
the function σ in (1.1) is constant, and fix (t, x) ∈ (0, T ] × Rd. In [15], using Malliavin
Calculus, it is proved that the probability law of u(t, x) has a density. The purpose of this
article is to extend this result allowing σ to be a nonlinear Lipschitz continuous function.
Moreover, we prove that the density belongs to some Besov space.

In [15], the restriction on σ is forced by the method of the proof. Indeed, in the
examples where the fundamental solution Λ is a nonnegative distribution, σ and b are
differentiable, and σ is bounded away from zero, we can prove that the Malliavin matrix
is invertible. However, for more general Λ, for example the fundamental solution to the
wave equation in dimension d ≥ 4, this does not seem to be feasible, except for constant
σ. In contrast, the method of [6], based on Lemma 2.2 of Section 2, can be successfully
applied, and also the regularity of the coefficients σ and b can be relaxed.

The paper is structured in the following way. In Section 2 we prove the main result
on existence of density, and find the Besov space that contains this density. In Section
3, we study the example of stochastic wave equations in any spatial dimension d ≥ 1,
the interesting and novel case being d ≥ 4 (see [11], [12] for related results). We
consider two cases of spectral measures µ: with densities given by a Riesz kernel, and
finite measures. We also provide a comment about the stochastic heat equation. The
existence of a density for this equation is well-known, see [10]; however, with this
different approach we can allow for less smooth coefficients.

We end this section by fixing some notation. Throughout the article we write C for
any positive constant, which may change from line to line. The set of Schwartz functions
on Rd is denoted by S(Rd), S ′r(Rd) is the space of tempered distributions with rapid
decrease, and F the Fourier transform operator on Rd. We denote by {Ft, t ∈ [0, T ]} the
filtration generated by the martingale measure {Mt, t ∈ [0, T ]}.

2 Statement and proof of the main result

The objective of this section is to prove Theorem 2.1. We begin by introducing a first
set of relevant assumptions:

(A1) t 7→ Λ(t) is a deterministic function with values in S ′r(Rd); the mapping (t, ξ) 7→
FΛ(t)(ξ) is measurable and∫ T

0

sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds <∞,∫ T

0

sup
η∈Rd

|FΛ(s)(η)|2ds <∞.
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Absolute continuity for SPDEs

(A2) Let φ denote a nonnegative function in C∞0 (Rd), with support included in the unit
ball of Rd, satisfying

∫
Rd
φ(x)dx = 1. For all such φ and all 0 ≤ a ≤ b ≤ T , we have∫ b

a

(Λ(s) ∗ φ)(x)ds ∈ S(Rd)

and ∫
Rd

∫ b

a

|(Λ(s) ∗ φ)(x)|dsdx <∞.

(A3) t 7→ FΛ(t) is as in (A1) and

lim
h↓0

∫ T

0

sup
η∈Rd

∫
Rd

sup
s<r<s+h

|FΛ(r)(ξ + η)−FΛ(s)(ξ + η)|2µ(dξ) ds = 0,

lim
h↓0

∫ T

0

sup
η∈Rd

sup
s<r<s+h

|FΛ(r)(η)−FΛ(s)(η)|2ds = 0.

Under the assumptions (A1) and either (A2) or (A3), [2, Theorem 3.1] assures
that the integrals in (1.1) are well-defined and the equation has a unique random field
solution. Moreover, for all t ∈ [0, T ], u(t, x) has the same distribution as u(t, 0), for all
x ∈ Rd. The solution {u(t, x)), (t, x) ∈ [0, T ] × Rd} is L2-continuous and has uniformly
bounded second moments. We also recall the following estimates:

E

[(∫ t

0

∫
Rd

Λ(t− s, x− y)σ(u(s, y))M(ds, dy)

)2]
≤
∫ t

0

E
[
σ(u(s, 0))2

]
sup
η∈Rd

∫
Rd
|FΛ(t− s)(ξ + η)|2µ(dξ)ds, (2.1)

and

E

[(∫ t

0

∫
Rd

Λ(t− s, x− y)b(u(s, y))dyds

)2]
≤
∫ t

0

E
[
b(u(s, 0))2

]
sup
η∈Rd

|FΛ(t− s)(η)|2ds (2.2)

(see [2] for the details).
The proof of the existence of density for the law of the solution requires the following

second set of assumptions.

(A4) There exists C, δ > 0 such that E[(u(t, 0)− u(s, 0))2] ≤ C|t− s|δ, for all s, t ∈ [0, T ].
(A5) There exists σ0 > 0 such that infx∈R |σ(x)| = σ0.
(A6) There exist positive constants C, γ, γ1, γ2 > 0 and t0 ∈ (0, T ] such that

Ctγ ≤ g(t) :=

∫ t

0

∫
Rd
|FΛ(s)(ξ)|2µ(dξ)ds, for all t ∈ [0, t0], (2.3)

g1(t) :=

∫ t

0

sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds ≤ Ctγ1 , (2.4)

g2(t) :=

∫ t

0

sup
η∈Rd

|FΛ(s)(η)|2ds ≤ Ctγ2 , (2.5)

for all t ∈ [0, T ].

The assumption (A5) (strong ellipticity) appears frequently when studying the abso-
lute continuity of probability measures induced by solutions to SDEs and SPDEs, while
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(A6) (or similar ones) has been usually required to prove regularity properties of the
density.

This is the main result of the paper.

Theorem 2.1. Fix (t, x) ∈ (0, T ] × Rd. We assume that the coefficients σ and b are
Lipschitz continuous functions. Moreover, suppose that (A1), either (A2) or (A3), (A4),
(A5) and (A6) hold, and that

γ̄ :=
min{γ1, γ2}+ δ

γ
> 1. (2.6)

Then, the probability law of u(t, x) is absolutely continuous and its density belongs to all
Besov spaces Bs1,∞, with

s < 1− γ̄−1. (2.7)

The spaces Bs1,∞, s > 0, can be defined as follows. Let f : Rd → R. For x, h ∈ Rd set
(∆1

hf)(x) = f(x+ h)− f(x). Then, for any n ∈ N, n ≥ 2, let

(∆n
hf)(x) =

(
∆1
h(∆n−1

h f)
)
(x) =

n∑
j=0

(−1)n−j
(
n

j

)
f(x+ jh).

For any 0 < s < n, we define the norm

‖f‖Bs1,∞ = ‖f‖L1 + sup
|h|≤1

|h|−s‖∆n
hf‖L1 .

It can be proved that for two distinct n, n′ > s the norms obtained using n or n′ are
equivalent. Then we define Bs1,∞ to be the set of L1-functions with ‖f‖Bs1,∞ < ∞. We
refer the reader to [16] for more details.

The proof of Theorem 2.1 is based on the following lemma from [5] (based on [6]). In
the following, we denote by Cαb the set of bounded Hölder continuous functions of degree
α.

Lemma 2.2. Let κ be a finite nonnegative measure. Assume that there exist 0 < α ≤
a < 1, n ∈ N and a constant Cn such that for all φ ∈ Cαb , and all h ∈ R with |h| ≤ 1,∣∣∣∣ ∫

R

∆n
hφ(y)κ(dy)

∣∣∣∣ ≤ Cn‖φ‖Cαb |h|a. (2.8)

Then κ has a density with respect to the Lebesgue measure, and this density belongs to
the Besov space Ba−α1,∞ (R).

We will apply this lemma to κ = P ◦ u(t, x)−1, where u is the solution to the SPDE
(1.1) at some fixed point (t, x) ∈ (0, T ]×Rd. We prove the claim in Theorem 2.1 for x = 0.
Since the probability distribution of u(t, x) does not depend on x ∈ Rd, this yields the
result.

Note that in this application the constant Cn in (2.8) may depend on n, on the elements
defining the SPDE (1.1) and on the assumptions. In particular, on σ, σ0, b, β, T, d, γ, γ1, γ2

or the total mass |µ| if the measure µ is finite, and also on t ∈ (0, T ].
In order to apply Lemma 2.2, we rely on the three next lemmas.

Lemma 2.3. The density ϕ of a one-dimensional normal distribution N (0, σ2) satisfies∥∥ϕ(n)
∥∥
L1 = Cn

(
σ2
)−n/2

,

for all n ∈ N, where ϕ(n)(y) = dnϕ
dyn (y), y ∈ R.
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Absolute continuity for SPDEs

Proof. Let Hn denote the n-th Hermite polynomial. It is well-known that

ϕ(n)(y) = n!

(
−1

(2σ2)1/2

)n
Hn

(
y

(2σ2)1/2

)
1

(2σ2)1/2
exp

(
− y2

2σ2

)
,

With a change of variables we obtain

‖ϕ(n)‖L1 =
n!

(2σ2)n/2

∫
R

∣∣Hn(y)
∣∣ exp(−y2)dy.

Since the last integral is finite, we have the result.

For 0 < ε < t, define

uε(t, 0) =

∫ t−ε

0

∫
Rd

Λ(t− s,−y)σ(u(s, y))M(ds, dy)

+

∫ t−ε

0

∫
Rd

Λ(t− s,−y)b(u(s, y))dyds

+ σ(u(t− ε, 0))

∫ t

t−ε

∫
Rd

Λ(t− s,−y)M(ds, dy)

+ b(u(t− ε, 0))

∫ t

t−ε

∫
Rd

Λ(t− s,−y)dyds. (2.9)

The following lemma gives a first bound for the expected values of the iterated
differences of functions of the solution to the SPDE (1.1).

Lemma 2.4. Under the assumptions in Theorem 2.1, we have for every α ∈ (0, 1), φ ∈ Cαb ,
h ∈ R, t ∈ [0, T ] and 0 < ε < t,∣∣E[∆n

hφ(u(t, 0))
]∣∣ ≤ Cn‖φ‖Cαb (|h|ng(ε)−n/2 +

(
E
[
|uε(t, 0)− u(t, 0)|2

])α/2)
, (2.10)

where uε and g are defined in (2.9) and (2.3), respectively.

Proof. The left-hand side of (2.10) satisfies∣∣E[∆n
hφ(u(t, 0))

]∣∣ ≤ I1(h, n, φ, ε, t) + I2(h, n, φ, ε, t),

where

I1(h, n, φ, ε, t) :=
∣∣E[∆n

hφ(u(t, 0))−∆n
hφ(uε(t, 0))

]∣∣,
I2(h, n, φ, ε, t) :=

∣∣E[∆n
hφ(uε(t, 0))

]∣∣.
For the first term, the property ‖∆n

hφ‖Cαb ≤ Cn‖φ‖Cαb , the spatial stationarity of the
solution and Hölder’s inequality yield

I1(h, n, φ, ε, t) ≤ Cn‖φ‖Cαb E
[
|uε(t, 0)− u(t, 0)|α

]
≤ Cn‖φ‖Cαb

(
E
[
|uε(t, 0)− u(t, 0)|2

])α/2
. (2.11)

For the study of the term I2(h, n, φ, ε, t), we consider the decomposition

uε(t, 0) = Uεt + σ(u(t− ε, 0))

∫ t

t−ε

∫
Rd

Λ(t− s,−y)M(ds, dy), (2.12)

where

Uεt =

∫ t−ε

0

∫
Rd

Λ(t− s,−y)σ(u(s, y))M(ds, dy)
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Absolute continuity for SPDEs

+

∫ t−ε

0

∫
Rd

Λ(t− s,−y)b(u(s, y))dyds

+ b(u(t− ε, 0))

∫ t

t−ε

∫
Rd

Λ(t− s,−y)dyds.

Notice that Uεt is Ft−ε-measurable, and conditionally to Ft−ε,

V εt := σ(u(t− ε, 0))

∫ t

0

∫
Rd

Λ(t− s,−y)M(ds, dy)

is a Gaussian random variable with zero mean and independent of Uεt . The conditional
variance of V εt is computed as follows:

σ2
Λ(ε) := E

[(
σ(u(t− ε, 0))

∫ t

t−ε

∫
Rd

Λ(t− s,−y)M(ds, dy)

)2∣∣∣∣Ft−ε

]
= σ(u(t− ε, 0))2E

[(∫ t

t−ε

∫
Rd

Λ(t− s,−y)M(ds, dy)

)2]
= σ(u(t− ε, 0))2

∫ ε

0

∫
Rd
|FΛ(s)(ξ)|2µ(dξ)ds,

≥ σ2
0g(ε). (2.13)

where in the last step we have used (A5). Therefore the conditional law of V εt with
respect to Ft−ε has a C∞b -density, which we denote by ϕt,Λ,ε.

For any f ∈ Cm, we have

‖∆n
hf‖L1(R) ≤ Cn|h|n‖f (n)‖L1(R). (2.14)

Indeed, this inequality holds since ∆n
hf(x) =

∫ n
0
ln(v)f (n)(x+ hv)hndv, for some bounded

function ln which is independent of f .
Therefore, by conditioning with respect to Ft−ε, and applying a discrete integration

by parts, (2.14), Lemma 2.3 and (2.13), we obtain

I2(h, n, φ, ε, t) =

∣∣∣∣E[ ∫
R

∆n
hφ(Uεt + y)ϕt,Λ,ε(y)dy

]∣∣∣∣
=

∣∣∣∣E[ ∫
R

φ(Uεt + y)∆n
−hϕt,Λ,ε(y)dy

]∣∣∣∣
≤ ‖φ‖∞

∫
R

∣∣∆n
−hϕt,Λ,ε(y)

∣∣dy
≤ Cn‖φ‖∞|h|n‖ϕ(n)

t,Λ,ε‖L1(R)

= Cn‖φ‖∞|h|n(σ2
Λ(ε))−n/2

≤ Cn,σ0
‖φ‖∞|h|ng(ε)−n/2,

which together with (2.11) yields (2.10), since ‖φ‖∞ ≤ ‖φ‖Cαb .

Lemma 2.5. Under the assumptions in Theorem 2.1 we have for all t ∈ [0, T ] and all
ε ∈ (0, t),

E
[
(u(t, 0)− uε(t, 0))2

]
≤ Cεδ

(
g1(ε) + g2(ε)

)
, (2.15)

with δ as in (A4), and g1, g2 are defined in (2.4), (2.5), respectively.

Proof. Using (2.1), (2.2) and the Lipschitz continuity of σ and b, we have
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E
[
(u(t, 0)− uε(t, 0))2

]
≤ 2E

[(∫ t

t−ε

∫
Rd

Λ(t− s,−y)
(
σ(u(s, y))− σ(u(t− ε, 0))

)
M(ds, dy)

)2]
+ 2E

[(∫ t

t−ε

∫
Rd

Λ(t− s,−y)
(
b(u(s, y))− b(u(t− ε, 0))

)
dyds

)2]
≤
∫ t

t−ε
E
[
|σ(u(s, 0))− σ(u(t− ε, 0))|2

]
sup
η∈Rd

∫
Rd
|FΛ(t− s)(ξ + η)|2µ(dξ)ds

+

∫ t

t−ε
E
[
|b(u(s, 0))− b(u(t− ε, 0))|2

]
sup
η∈Rd

|FΛ(t− s)(η)|2ds

≤ C sup
s∈[t−ε,t]

E
[
(u(s, 0)− u(t− ε, 0))2

](
g1(ε) + g2(ε)

)
.

Together with (A4), this implies (2.15).

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Fix t ∈ (0, T ], x = 0, and let κ = P ◦ u(t, 0)−1. For all h ∈ R such
that |h| ≤ 1 and all φ ∈ Cαb with α ∈ (0, 1), we set

It,h =

∫
R

∆n
hφ(y)κ(dy) = E

[
∆n
hφ(u(t, 0))

]
.

Applying Lemmas 2.4 and 2.5, and (A6), we get

|It,h| ≤ Cn‖φ‖Cαb
(
|h|ng(ε)−n/2 +

(
εδ(g1(ε) + g2(ε))

)α/2)
≤ Cn‖φ‖Cαb

(
|h|nε−

γn
2 + ε

α(γ1+δ)
2 + ε

α(γ2+δ)
2

)
. (2.16)

In the last inequality, we have used that (x + y)α/2 ≤ 2
α
2−1

(
xα/2 + yα/2

)
≤ xα/2 + yα/2.

Hence, the constant Cn does not depend on α.
Set ε = t

2 |h|
ρ
γ with ρ ∈ (0, 2) to be selected later. Notice that for all h ∈ [−1, 1] we

have 0 < ε < t. For this choice of ε and n sufficiently large,

|It,h| ≤ Cn,t‖φ‖Cαb
(
|h|

αρ
2

min(γ1,γ2)+δ
γ

)
.

Fix ρ ∈
(

2
γ̄ , 2
)

. Since γ̄ > 1, one can choose α ∈ (0, 1) satisfying αργ̄
2 < 1. Summarizing,

we have proved that, for n sufficiently large, there exists α ∈ (0, 1) and ρ ∈
(

2
γ̄ , 2
)

satisfying

|It,h| ≤ Cn,t‖φ‖Cαb |h|
αργ̄

2 ,

and 0 < α < αργ̄
2 < 1. Therefore, from Lemma 2.2 it follows that P ◦ u(t, x)−1 has a

density gt,x with respect to the Lebesgue measure, and gt,x ∈ B
αργ̄

2 −α
1,∞ .

We end the proof by determining the best degree of the Besov space. For this, we
have to find maxα,ρ α

(
ργ̄
2 − 1

)
with the restrictions α ∈ (0, 1), ρ ∈ (0, 2) and αργ̄

2 < 1.
Using Lagrange’s method we can prove that the unique optimal parameters for α and
ρ are γ̄−1 and 2, respectively. Thus, gt,x ∈ Bs1,∞, with s ∈ (0, 1− γ̄−1). This finishes the
proof of the Theorem.
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3 Examples

In this section we consider mainly the stochastic wave equation in any spatial dimen-
sion d ≥ 1, which is studied in [2, Section 4]. In the last part, we will give some remarks
on the heat equation (see Remark 3.4) which complement known results.

Let us consider (1.1) where Λ is the fundamental solution to the wave equation,
whose Fourier transform is

FΛ(t)(ξ) =
sin(t|ξ|)
|ξ|

. (3.1)

We will assume that the spatial covariance of the noise F is a Riesz kernel of parameter
β ∈ (0, 2 ∧ d) and therefore, that the spectral measure µ is

µ(dξ) = |ξ|−d+βdξ, ξ ∈ Rd. (3.2)

This kernel is fairly common in the literature on SPDEs with spatially homogeneous
covariance. For example, it is a particular case of those considered in [4].

Theorem 3.1. Consider the SPDE (1.1) where Λ is the fundamental solution to the wave
equation and the spectral measure of the noise F is given by (3.2), with β ∈ [0, 2 ∧ d).
Suppose that (A5) is satisfied and that the coefficients σ and b are Lipschitz continuous.
Fix (t, x) ∈ (0, T ]×Rd. Then, the probability law of u(t, x) is absolutely continuous with
respect to the Lebesgue measure on R and its density belongs to all Besov spaces Bs1,∞
with s ∈ (0, (2− β)/(5− 2β)).

To prove this theorem it suffices to check that the assumptions of Theorem 2.1 hold
with δ = 2 − β, γ = γ1 = 3 − β and γ2 = 3. The conditions (A1) and (A2) have already
been proved in [2]. The remaining conditions are established in the next result.

Lemma 3.2. The hypotheses are as in Theorem 3.1. Then (A4), (A6) hold with δ = 2−β,
γ = γ1 = 3− β and γ2 = 3.

Proof. We basically follow the same method as in [4, Proposition 4.1]. Using (2.1) and
(2.2), we have

E
[
(u(t, x)− u(s, x))2

]
≤ sup
r∈[0,T ]

E
[
σ(u(r, 0))2

](
I1(s, t) + I2(s, t)

)
+ sup
r∈[0,T ]

E
[
b(u(r, 0))2

](
I3(s, t) + I4(s, t)

)
,

where

I1(s, t) =

∫ s

0

sup
η∈Rd

∫
Rd
|FΛ(t− r)(ξ + η)−FΛ(s− r)(ξ + η)|2µ(dξ)dr,

I2(s, t) =

∫ t

s

sup
η∈Rd

∫
Rd
|FΛ(t− r)(ξ + η)|2µ(dξ)dr,

I3(s, t) =

∫ s

0

sup
η∈Rd

|FΛ(t− r)(η)−FΛ(s− r)(η)|2dr,

I4(s, t) =

∫ t

s

sup
η∈Rd

|FΛ(t− r)(η)|2dr.

Using the identity sinx − sin y = 2 sin x−y
2 cos x+y

2 , and the changes of variable, ζ 7→
t−s

2 (ξ + η) and ξ 7→ ζ − η, we get
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I1(s, t)

=

∫ s

0

sup
η∈Rd

∫
Rd

∣∣∣∣ sin
(
(t− r)|ξ + η|

)
|ξ + η|

−
sin
(
(s− r)|ξ + η|

)
|ξ + η|

∣∣∣∣2|ξ|−d+βdξdr

≤ 4

∫ s

0

sup
η∈Rd

∫
Rd

1

|ξ + η|2|ξ|d−β
sin2

(
(t− s)|ξ + η|

2

)
dξdr

=
4s

2d+2−β (t− s)2−β sup
η∈Rd

∫
Rd

sin2(|ζ|)
|ζ|2|ζ − 2(t− s)−1η|d−β

dζ

=
s

2d−β
(t− s)2−β sup

η∈Rd

∫
Rd

sin2(|ζ|)
|ζ|2|ζ − η|d−β

dζ

≤ T

22−β (t− s)2−β sup
η∈Rd

∫
Rd

sin2(|ξ + η|)
|ξ + η|2|ξ|d−β

dξ

= C(t− s)2−β .

The last step hold because the integral is finite. Indeed, as in [13, Lemma 6.1] we can

show that sin2(|ξ+η|)
|ξ+η|2 ≤ C 1

1+|ξ+η|2 . Therefore,

sup
η∈Rd

∫
Rd

sin2(|ξ + η|)
|ξ + η|2|ξ|d−β

dξ ≤ C sup
η∈Rd

∫
Rd

1

(1 + |ξ + η|2)|ξ|d−β
dξ,

and the integral on the right-hand side is finite (uniformly in η) if and only if β ∈ (0, 2∧ d).
For the term I2(s, t) we argue quite similarly as for I1(s, t). Using the change of

variables ζ 7→ (t− u)(ξ + η) and ξ 7→ ζ − η, we obtain

I2(s, t) =

∫ t

s

(t− u)2−β sup
η∈Rd

∫
Rd

sin2(|ξ + η|)
|ξ + η|2|ξ|d−β

dξdu = C(t− s)3−β , (3.3)

For I3(s, t) we use the Lipschitz continuity of the sin function to get

I3(s, t) ≤
∫ s

0

(t− s)2du ≤ T (t− s)2.

Finally, for I4(s, t) we use the property | sin(x)| ≤ x, for all x ≥ 0, to obtain

I4(s, t) ≤
∫ t

s

sup
η∈Rd

(t− u)2du ≤ C(t− s)3. (3.4)

Hence, we have proved that (A4) holds with δ = 2− β.
Finally, we have to check (A6). With the change of variable η = sξ, we clearly have

g(t) =

∫ t

0

∫
Rd

sin2(s|ξ|)
|ξ|d+2−β dξds = ct3−β

∫
Rd

sin2(|η|)
|η|d+2−β dη.

Thus (2.3) holds with γ = 3− β. Notice that g1(t) = I2(0, t) and g2(t) = I4(0, t). Therefore
(2.4), (2.5) hold with γ1 = 3− β and γ2 = 3, respectively.

The proof of the Lemma is complete.

Remark 3.3. Assume that the spectral measure µ is finite. With the same hypotheses
as in Theorem 3.1 we can prove the existence of density for the law of u(t, x), for
(t, x) ∈ (0, T ]×Rd, and that this density belongs to the spaces Bs1,∞, with s ∈ (0, 2/5).
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Indeed, referring to the notations in Lemma 3.2, for a finite measure µ we have
I1(s, t) ≤ CI3(s, t) and I2(s, t) ≤ CI4(s, t), 0 ≤ s < t ≤ T . Hence, (A4) holds with δ = 2.

Also g1(t) ≤ Cg2(t), which yields (2.4), (2.5) with γ1 = γ2 = 3. Moreover, since∫ t

0

sin2(s|ξ|)
|ξ|2

ds ≥ C(t ∧ t3)
1

1 + |ξ|2
,

(see e.g. [13, Lemma 6.1]), it follows that (2.3) holds with γ = 3.

Remark 3.4. Consider the SPDE (1.1) where Λ is the fundamental solution to the heat
equation with d ≥ 1. We assume that the spectral measure of the noise F is either
given by (3.2), with β ∈ [0, 2 ∧ d) or finite. Suppose that (A5) is satisfied and that the
coefficients σ and b are Lipschitz continuous. Fix (t, x) ∈ (0, T ]×Rd. Then, the probability
law of u(t, x) is absolutely continuous with respect to the Lebesgue measure on R and
its density belongs to all Besov spaces Bs1,∞ with s ∈

(
0, 1

2

)
.

Let µ be given by (3.2). The case µ finite is left to the reader. Under the standing
assumptions, there exists a random field solution to (1.1) (see [3]). In [14] it is proved
that (A4) holds with δ = 1− β/2. Hence, going through the proof of Theorem 2.1 we see
that we only need to check hypotheses (A6).

The Fourier transform of the fundamental solution to the heat equation is given
by FΛ(t)(ξ) = exp(−4π2t|ξ|2). Using this expression, we immediately see that γ2 = 1.
Moreover γ = γ1 = 1− β/2. Indeed, with the changes of variables ξ 7→ ξ− η and ζ =

√
sξ

we get ∫ t

0

sup
η∈Rd

∫
Rd
|FΛ(s)(ξ + η)|2µ(dξ)ds

=

∫ t

0

sup
η∈Rd

∫
Rd

exp(−8π2|
√
sξ|2)

|ξ − η|d−β
dξds

=

∫ t

0

s−β/2ds sup
η∈Rd

∫
Rd

exp(−8π2|ζ|2)

|ζ − η|d−β
dζ

= Ct1−β/2,

because the integral can be shown to be finite. Therefore, γ̄ in Theorem 2.1 is equal to 2,
which implies the claim.

In contrast with [10], with the method of this article, the density for the solution to
the heat equation in any spatial dimension d ≥ 1 is proved under weaker conditions on σ
and b (no differentiability is required).
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