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Abstract

Kingman’s coalescent is a random tree that arises from classical population genetic
models such as the Moran model. Concerning the structure of the tree-top there
are two well-known laws of large numbers: (i) The (shortest) distance, denoted
by Tn, from the tree-top to the level when there are n lines in the tree satisfies
nTn

n→∞−−−−→ 2 almost surely; (ii) At time Tn, the population is naturally partitioned in
exactly n families where individuals belong to the same family if they have a common
ancestor at time Tn in the past. If Fi,n denotes the relative size of the ith family, then

n(F 2
1,n + · · ·+ F 2

n,n)
n→∞−−−−→ 2 almost surely. For both laws of large numbers we prove

corresponding large deviations results. For (i), the rate of the large deviations is n and
we can give the rate function explicitly. For (ii), the rate is n for downwards deviations
and
√
n for upwards deviations. In both cases we give exact rate functions.
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1 Introduction

Kingman’s coalescent is a random tree introduced in [9] as the genealogy arising in
large population genetic models. It has infinitely many leaves and is usually constructed
from leaves to the root as follows: given that there are k lines in the tree, after some
exponential time with rate

(
k
2

)
, two lines are chosen uniformly and merged to one line,

leaving the tree with k − 1 lines. Due to the quadratic rate
(
k
2

)
the tree immediately

comes down from infinitely to finitely many leaves [6]. Since Pitman’s seminal paper
[10] this random tree has been generalized to other infinite trees arising in population
genetics models.

For the Kingman coalescent some laws of large numbers and central limit theorems
have been proved. They are nicely summarized in [1], Chapter 4.2; see also Proposi-
tion 2.1 below. For ε > 0 let Nε denote the number of lines time ε in the past. Then,
since the Kingman coalescent immediately comes down from infinity, Nε is finite. Fur-
thermore it is approximately 2/ε. Equivalently, the time Tn it takes the coalescent to go
from infinitely many lines to n lines is approximately 2/n for large n. Going to the fine
structure, at time Tn the infinite population is decomposed in n families (whose joint
distribution is exchangeable) and every leaf in the tree belongs to exactly one of the n
families whose frequencies are denoted by F1,n, . . . , Fn,n. It is known that for large n
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Large deviations in Kingman’s coalescent

a randomly chosen nFi,n is approximately exponentially distributed with mean 1. This
translates into several laws of large numbers; see e.g. (35) in [1]. In particular the
probability of picking (from the initial infinite population) two leaves that belong to the
same family, given by F 2

1,n + · · ·+ F 2
n,n, is approximately 2/n.

The main goal of the present paper is to study the corresponding large deviations
results. To the best of our knowledge, except for [2], cf. Remark 2.7 below, results
in this direction are not present in the literature. We formulate our results in the
next section. Theorem 2.3 gives a full large deviation principle for the distributions
of nTn. The proof, given in Section 3, is an application of the Gärtner-Ellis Theorem.
As a byproduct, we derive a large deviation principle for the distributions of εNε in
Corollary 2.5. Large deviations of n(F 2

1,n + · · · + F 2
n,n) are considered in Theorem 2.8

and exact rate functions for downwards and upwards deviations are given. The proof is
given in Section 4.2. For the upward deviations we use a variant of Cramér’s theorem
for heavy-tailed random variables; see e.g. [8]. For the downward deviations we use a
connection to self-normalized large deviations; see [12]. This connection was pointed
out to us by Alain Rouault and Nina Gantert. Since the rate function for downward
deviations is hard to treat analytically we provide in Theorem 2.10 a simple lower bound.
The proof of that bound is given in Section 4.3.

2 Main results

The Kingman coalescent can be seen as a discrete graph, more precisely a discrete
tree with infinitely many leaves. Let S2, S3, . . . be independent exponentially distributed
variables with mean 1. Then the Kingman coalescent tree can be constructed from the
root to the leaves as follows.

1. Start the tree with two lines from the root.

2. For k ≥ 2 the tree stays with k lines for the amount of time Sk/
(
k
2

)
. After that time

one of the k lines is randomly chosen. This line splits in two so that the number of
lines jumps from k to k + 1.

3. Stop upon reaching infinitely many lines, which happens after (the almost surely
finite) time T1 :=

∑∞
k=2 Sk/

(
k
2

)
.

The random variable T1 is the total tree height. Alternatively, T1 is the time to the most
recent common ancestor (MRCA) of the infinite population (of leaves). Counted from the
top of the tree at time ε > 0 a random number Nε of active lines in the Kingman tree is
present, i.e.

Nε := inf{n : Tn < ε} for Tn :=

∞∑
k=n+1

Sk(
k
2

) . (2.1)

At time Tn every leaf belongs to one of n disjoint families and all members of each
such family stem from the same line at time Tn. Let us denote the frequencies of these
families (which exist due to exchangeability by de Finetti’s Theorem) by F1,n, . . . , Fn,n.
The following results are well known (see [1] for (2.2) and (2.3) and [7] for (2.4); proofs
can also be found in [5].)

Proposition 2.1 (Laws of large numbers).
Let (Tn)n=1,2,..., (Nε)ε>0 and (F1,n, . . . , Fn,n)n=1,2,... be as above. Then

nTn
n→∞−−−−→ 2 almost surely, (2.2)

εNε
ε→0−−−→ 2 almost surely, (2.3)
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Large deviations in Kingman’s coalescent

and

n

n∑
k=1

F 2
k,n

n→∞−−−−→ 2 almost surely. (2.4)

Remark 2.2 (Interpretation of (2.4)). We note that the left hand side of (2.4) has the
interpretation of a homozygosity by descent in the following sense: when picking two
leaves from the tree at time 0, the probability that both share a common ancestor at time
Tn is

∑n
k=1 F

2
k,n. Then, the law of large number states that the homozygosity by descent

at time Tn is approximately 2/n for large n.

In the present paper we are interested in large deviations results corresponding to
the statements of Proposition 2.1. We start with large deviations connected with (2.2).
First we introduce some notation. For n = 1, 2, . . . let µn denote the distribution of nTn,
i.e. µn( · ) = P(nTn ∈ · ). Furthermore we denote by B(R) the Borel σ-algebra on R and
for Γ ∈ B(R) we denote by Γ◦ the interior and by Γ the closure of Γ. For x > 0, let tx < 1

be the unique solution of the equation x = f(t), where the continuous and increasing
function f : (−∞, 1)→ (0,∞) is defined by (see Figure 1 for a plot)

f(t) :=



1√
t

log
1 +
√
t

1−
√
t

: 0 < t < 1,

2 : t = 0,

2√
|t|

arctan
√
|t| : t < 0.

(2.5)

The proof of the following theorem is given in Section 3.1.

Theorem 2.3 (LDP for (µn)n=1,2,...). The sequence (µn)n=1,2,... satisfies a large deviation
principle with scale n and good rate function I given by

I(x) :=


tx
2
x+

∫ ∞
1

log
(

1− tx
y2

)
dy : x > 0,

∞ : x ≤ 0.

(2.6)

In other words, for any Γ ∈ B(R) we have

− inf
x∈Γ◦

I(x) ≤ lim inf
n→∞

1

n
logµn(Γ) ≤ lim sup

n→∞

1

n
logµn(Γ) ≤ − inf

x∈Γ
I(x).

Remark 2.4 (Interpretation). Both, the function f from (2.5) and I from (2.6) are plotted
in Figure 1. The minimum of the rate function is attained at x = 2. This fact is clear from
the law of large numbers, (2.2). In addition, I(x) =∞ for x ≤ 0 because nTn > 0 almost
surely.

Let us now have a closer look at the behaviour of I(x) for x near 0 and for large x.

Since 2 arctan(t)
t→∞−−−→ π, we have that

√
|tx|x

x↓0−−→ π, and hence, tx
x↓0
≈ −π

2

x2 . In this case,

xI(x)
x↓0
≈ −π

2

2
+ x

∫ ∞
1

log
(

1 +
π2

x2y2

)
dy

x↓0
≈ −π

2

2
+ π

∫ ∞
0

log
(

1 +
1

z2

)
dz =

π2

2
,

(2.7)

where the last equality follows from
∫∞

0
log(1+1/z2)dz = π. To understand the behaviour

for large x, note that since

f(t)
t↑1
≈ log 2− log(1−

√
t),
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Figure 1: This figure displays the functions f and I from (2.5) and (2.6), respectively.

for x→∞ we have 2/(1−
√
tx) ≈ ex and in particular tx ≈ (1− 2e−x)2 ≈ 1. It follows

I(x)

x

x→∞
≈ 1

2
+

1

x

∫ ∞
1

log(1− 1/y2) dy
x→∞
≈ 1

2
.

Note that (2.2) and (2.3) are equivalent. Indeed, {Tn ≥ ε} = {Nε ≥ n} (this also
holds with ≥ replaced by ≤) by construction, and Tn ↓ 0 as n→∞ and Nε ↑ ∞ as ε→ 0.
Hence, Theorem 2.3 translates into a large deviation principle for εNε. In the following
we denote by νε the distribution of εNε, i.e. νε( · ) = P(εNε ∈ · ). The proof of the next
result is given in Section 3.2; see Figure 2 for a plot of the rate function Î.

Corollary 2.5 (LDP for (νε)ε>0). For ε ↓ 0 the family (νε)ε>0 satisfies a large deviation
principle with scale 1/ε and good rate function Î given by

Î(x) =


xI(x) : x > 0,

π2

2
: x = 0,

∞ : x < 0,

(2.8)

with I from (2.6). In particular, for Γ ∈ B(R) we have

− inf
x∈Γ◦

Î(x) ≤ lim inf
ε→0

ε log νε(Γ) ≤ lim sup
ε→0

ε log νε(Γ) ≤ − inf
x∈Γ

Î(x).

Remark 2.6 (The full distribution of Nε). The distributions νε, ε > 0 (as well as µn, n =

1, 2, . . . ) have been described explicitly in the literature. In Section 6 in [13] it is shown

P(Nε = n) =

∞∑
k=n

e−(k
2)ε (−1)k−n(2k − 1) · n · · · (n+ k − 2)

n!(k − n)!
.

In principle, this formula must also give the large deviations for the measures νε, but
this does not seem straight-forward.

Remark 2.7 (The rate function Î and comparison with [2]). Although the main goal
in [2] was the analysis of spatial Λ-coalescents, also some large deviations bounds for
Kingman’s coalescent are provided. These bounds are mainly based on Markov inequality.
Precisely, in Lemma 2.2 in [2] it is shown that for 0 < x < 1

2

P(|εNε − 2| > x) < e−
x2

4ε
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Figure 2: The figure on the left shows the rate function Î from Corollary 2.5. The figure
on the right is a comparison of Î with the lower bound obtained from [2].

and therefore

lim sup
ε→0

ε log P(|εNε − 2| > x) ≤ −x
2

4
.

In the neighbourhood of 2 the last inequality translates easily into a bound for the rate
function Î from (2.8); see Figure 2. Namely, for x ∈ (1.5, 2.5) we have

Î(x) ≥ (x− 2)2

4
.

Next, we state some large deviations results connected to (2.4). For

Wn := n

n∑
k=1

F 2
k,n

we know from (2.4) that Wn
n→∞−−−−→ 2 holds almost surely. The proof of this result is

based on the well-known fact (see e.g. Section 5 in [9]) that the distribution of Wn can be
derived using uniform order statistics: Let U1, . . . , Un−1 be independent and uniformly
distributed on [0, 1], and 0 < U(1) < · · · < U(n−1) < 1 be their order statistics. Additionally,
let R1, . . . , Rn be independent exponentially distributed random variables with mean 1.
Then,

(F1,n, . . . , Fn,n)
d
=
(
U(1), U(2) − U(1), . . . , U(n−1) − U(n−2), 1− U(n−1)

)
d
=
( R1∑n

j=1Rj
, . . . ,

Rn∑n
j=1Rj

)
.

(2.9)

Here the second equality in distribution is one of the well known representations of
uniform spacings; see e.g. Section 4.1 in [11]. It follows

Wn
d
= n

∑n
k=1R

2
k(∑n

j=1Rj

)2 =
1
n

∑n
k=1R

2
k(

1
n

∑n
j=1Rj

)2 . (2.10)

We will use this representation to obtain large deviations results for Wn. In particular we
show that upwards large deviations of Wn are on the scale

√
n while downwards large

deviations are on the scale n. The proof is given in Section 4.2.

Theorem 2.8 (Large deviations ofWn). For each x ≥ 2, we have

lim
n→∞

1√
n

log P (Wn ≥ x) = −
√
x− 2. (2.11)
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Furthermore P(Wn < 1) = 0 and for each 1 < x < 2, we have

lim
n→∞

1

n
log P (Wn ≤ x) = −Ĩ(x). (2.12)

The function Ĩ(x) is positive for 1 < x < 2 and is given by

Ĩ(x) := sup
c≥0

inf
t≥0

M(x, c, t). (2.13)

Here M : (1, 2)× [0,∞)× [0,∞)→ R is a function of the form M := M1 +M2 +M3 with

M1(x, c, t) :=
1

2
log(2π) +

1

4
log x− 1

2
log t

M2(x, c, t) :=
(tc− 1)2x− t2c2

2t
√
x

M3(x, c, t) := log Φ

(
(tc− 1)x1/4

√
t

)
where Φ denotes the distribution function of the one dimensional standard Gaussian
distribution.

Though the rate function in (2.12) is exact it is hard to treat analytically. For this
reason we provide in Theorem 2.10 a much simpler lower bound for downwards large
deviations of Wn. For the proof we use the following lemma which provides another
representation of Wn in terms of exponential random variables (see Section 4 for proofs).

Lemma 2.9 (Representation of Wn). Let R1, . . . , Rn be independent exponentially dis-
tributed random variables with mean 1. Then,

Wn
d
=

1
n

(
2
∑n
l=1

∑l
k=1

RkRl

l −
∑n
k=1

R2
k

k

)
(

1
n

∑n
k=1Rk

)2 . (2.14)

Theorem 2.10 (Lower bound on downwards large deviations ofWn). For 1 < x < 2 we
have

lim inf
n→∞

1

n
log P (Wn ≤ x) ≥ 1− 1√

x− 1
. (2.15)

Remark 2.11 (Rationale and use of the representation in Lemma 2.9). The main point in
the proof of Lemma 2.9 is that Wn does not depend on the order of the Rk and hence we
can as well order them according to their size.

Let us briefly explain how we will use (2.14) in the proof of in (2.15). Since Wn is
minimal if R1 = · · · = Rn (whence Wn = 1), we have to look for possibilities that all
Rk’s are of about the same size in order to obtain a large deviations result for Wn. Let
R(1), . . . , R(n) denote the above exponential random variables ordered in increasing order,
i.e. R(i) is the ith smallest value. Using “competing exponential clocks” arguments (see
also the proof of the lemma) one can see that R(i) −R(i−1) is exponentially distributed
with mean 1/(n− i+ 1). Hence, one way of obtaining similar values for all Rk’s arises if
R(1) is particularly large, which then leads to a large deviations result for Wn.

Remark 2.12 (Interpretation, uniform spacings and the Poisson-Dirichlet distribution).
1. Let us give some heuristics about the rates arising in Theorem 2.8. For (2.11), we
have to ask ourselves about the easiest way Wn becomes too large. From (2.9), we
see that this is the case if one of the Rk’s is too large, making this kind of deviations
a local property in the sense that only a single of the Rk’s has to show some untypical
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Figure 3: Numerical comparison of the exact rate function for downwards large devia-
tions of Wn from (2.12) in Theorem 2.8 and the lower bound from (2.15) in Theorem 2.10.

behavior. This is different when looking at (2.12), i.e. too small values of Wn. First,
observe that Wn is small only if all (or many) families have about equal sizes (extreme
case F1,n = · · · = Fn,n = 1

n gives the minimal value Wn = 1). Hence, such downward
deviations require to study a global property of the random variable Wn, which is
significantly harder. For the proof of (2.12) we will interpret Wn as a self-normalised
sum and use a result on large deviations result for such sums from [12].

2. From (2.9), we see that in fact Wn is a function of uniform order statistics, which, for
instance, have been studied in detail (although no large deviations results were given)
in [11]. Hence, Theorem 2.8 may as well be interpreted as a large deviations result for
uniform order statistics.

3. As stated in Remark 2.2, Wn/n can be interpreted as homozygosity at time Tn. Using
a Poisson process along the tree with intensity θ/2, we can ask for the probability of
picking two leaves from the tree which are not separated by a Poisson mark, denoted
by homozygosity in state, abbreviated by Hθ/θ. This quantity is closely related to the
Poisson-Dirichlet distribution and some large deviations (in the limit of large θ) were

derived in [3]. It is shown there in Theorem 5.1 that Hθ/θ
θ→∞−−−→ 0 and that

P(Hθ > θx) = e−θ(I(
√
x)+o(1))

for I(x) = − log(1− x). However, a large deviation principle for the quantity Hθ (noting

that Hθ
θ→∞−−−→ 1), which corresponds to the results from Theorem 2.8, could not be

obtained in [3]. At least, it was shown that its scale cannot be larger than
√
θ.

3 Proof of Theorem 2.3 and Corollary 2.5

3.1 Proof of Theorem 2.3

The proof of Theorem 2.3 is an application of the Gärtner-Ellis theorem; see for
instance Section 2.3 in [4].

Let Λn(t) := log E[etnTn ] and µn( · ) = P(nTn ∈ · ). To show that the sequence
µ1, µ2, . . . satisfies a large deviation principle with scale n and a good rate function we
need to check the following three conditions.

GE1 Λ(t) := limn→∞
1
nΛn(nt) exists for all t as a limit in R = R ∪ {±∞}. Furthermore

t→ Λ(t) is lower-semicontinuous, 0 ∈ D◦Λ, where DΛ := {t : Λ(t) <∞}.
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GE2 Λ is differentiable on D◦Λ.

GE3 Λ is steep, i.e. Λ′(tn)
n→∞−−−−→∞ whenever t1, t2, · · · ∈ D◦Λ and tn

n→∞−−−−→ t ∈ ∂DΛ.

Then the good rate function is given by

x 7→ I(x) = sup
t∈R

(tx− Λ(t)). (3.1)

We proceed in three steps. First, we compute Λ(t) := limn→∞
1
nΛn(nt). Second, we

check the further assumptions of the Gärtner-Ellis theorem and obtain I as the Fenchel-
Legendre transform of Λ. In the third step, for the rate function I from (3.1) we obtain
its simplified form given in Theorem 2.3.

Step 1. The limit of 1
n

Λn(nt): We will show that

Λ(t) = lim
n→∞

1

n
Λn(nt) =

{
−
∫∞

1
log
(
1− 2t

x2

)
dx : t ≤ 1

2 ,

∞ : t > 1
2 .

(3.2)

For this, recall from (2.1) that Tn =
∑∞
k=n+1 Sk/

(
k
2

)
where Sk/

(
k
2

)
is exponentially dis-

tributed with rate
(
k
2

)
as well as independent of S` for all ` 6= k. Furthermore recall that

the moment generating function of an exponentially distributed random variable R with
rate λ > 0 is given by

E
[
etR
]

=

{
λ
λ−t , if t < λ,

∞, if t ≥ λ.
(3.3)

Hence, for each n ∈ N and t ∈ R we obtain by the monotone convergence theorem

ϕn(nt) := E
[
etn

2Tn

]
= E

[
etn

2∑∞
k=n+1 Sk/(k

2)
]

=

∞∏
k=n+1

E
[
etn

2Sk/(k
2)
]
. (3.4)

We have to consider two cases t > 1
2 and t ≤ 1

2 separately. First suppose that t > 1
2 . Then

there exists n0 ∈ N so that for all n ≥ n0 we have

2t ≥ n+ 1

n
, i.e.

tn2(
n+1

2

) = 2t
n

n+ 1
> 1.

Consequently, using (3.3), we obtain E[etn
2Tn ] =∞ for each n ≥ n0. Hence, ϕn(nt) =∞

and Λn(nt) = logϕn(nt) =∞ for n large enough. Thus, we have

Λ(t) = lim
n→∞

1

n
Λn(nt) =∞ for all t >

1

2
.

Now suppose that t ≤ 1
2 . For n ∈ N and k ≥ n+ 1 we have

(
k
2

)
≥ tn2. Furthermore using

(3.4) and (3.3) we can write

ϕn(nt) =

∞∏
k=n+1

1

1− 2tn2

k(k−1)

.

Using this we can rewrite 1
nΛn(nt) for t ≤ 1

2 as

1

n
Λn(nt) =

1

n
log

( ∞∏
k=n+1

1

1− 2tn2

k(k−1)

)
= − 1

n

∞∑
k=n

log

(
1− 2t

k
n
k+1
n

)

= − 1

n

∑
x∈{1,1+ 1

n ,1+ 2
n ,...}

log

(
1− 2t

x
(
x+ 1

n

)) = −
∫ ∞

1

log

(
1− 2t

bxnc
n
bxnc+1

n

)
dx
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and by the dominated convergence theorem we obtain

1

n
Λn(nt)

n→∞−−−−→ −
∫ ∞

1

log

(
1− 2t

x2

)
dx.

Hence, GE1 is shown with Λ as in (3.2). Moreover, we have DΛ = (−∞, 1
2 ], Λ( 1

2 ) =∫∞
1

log(1− 1
x2 , dx = π and Λ is lower-semi-continuous.

Step 2. Further assumptions of the Gärtner-Ellis theorem: We proceed by check-
ing the assumptions GE2 and GE3. For differentiability of Λ for t < 1

2 consider for
−∞ < r < 0 < s < 1

2 the function

f : (1,∞)× (r, s)→ R

(x, t) 7→ − log

(
1− 2t

x2

)
.

We have
∫∞

1
|f(x, t)| dx <∞ for t ∈ (r, s) and the derivative

d

dt
f(x, t) =

2

x2 − 2t

exists for each x ∈ (1,∞) and is continuous in t. Hence, we can interchange differentia-
tion and integration and obtain

Λ′(t) =

∫ ∞
1

2

x2 − 2t
dx.

Furthermore, for a sequence t1, t2, . . . with tn ↑ 1
2 we obtain

lim
n→∞

Λ′(tn) = lim
n→∞

∫ ∞
1

2

x2 − 2tn
dx

= lim
n→∞

1√
2tn

(
log
(
1 +
√

2tn
)
− log

(
1−
√

2tn
))

=∞,

i.e. condition GE3 is also satisfied.

Step 3. Properties of I: Applying the Gärtner-Ellis theorem reveals that the sequence
of distributions of nTn, n = 1, 2, . . . satisfies a large deviation principle with good rate
function

I(x) = sup
t≤ 1

2

[
tx+

∫ ∞
1

log

(
1− 2t

y2

)
dy

]
= sup

t≤1

[
t

2
x+

∫ ∞
1

log

(
1− t

y2

)
dy

]
.

In order to compute that supremum, we write for t ≥ 0

2
∂

∂t

[
t

2
x+

∫ ∞
1

log

(
1− t

y2

)
dy

]
= x− 2

∫ ∞
1

1

y2 − t
dy

= x+
1√
t

∫ ∞
1

1

y +
√
t
− 1

y −
√
t
dy

= x− 1√
t

log
1 +
√
t

1−
√
t

while for t ≤ 0

2
∂

∂t

[
t

2
x+

∫ ∞
1

log

(
1− t

y2

)
dy

]
= x− 2

∫ ∞
1

1

y2 + |t|
dy

= x− 2√
|t|

arctan
√
|t|.
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It is easy to see that the second derivative is negative throughout, such that the supre-
mum is attained at tx given by the solution of f(tx) = x for f as in (2.5). Finally we note

that for t ∈ [0, 1) the range of t 7→ 1√
t

log 1+
√
t

1−
√
t

is [2,∞) and for t ∈ (−∞, 0] the range of

t 7→ 2√
|t|

arctan
√
|t| is (0, 2]. Hence, the scale function I is of the form given in (2.6).

3.2 Proof of Corollary 2.5

The proof is based on the fact that {Tn ≥ ε} = {Nε ≥ n}. Thus, for x ≥ 2 we have

xI(x) = x lim
n→∞

1

n
log P(nTn ≥ x) = lim

n→∞

x

n
log P(

x

n
Nx/n ≥ x) = lim

ε→0
ε log P(εNε ≥ x)

and for 0 < x ≤ 2

xI(x) = x lim
n→∞

1

n
log P(nTn ≤ x) = lim

n→∞

x

n
log P(

x

n
Nx/n ≤ x) = lim

ε→0
ε log P(εNε ≤ x).

The value Î(0) follows from (2.7). Since the rate function I attains its minimum at x = 2,
is decreasing below and increasing above 2, the result follows.

4 Proof of Lemma 2.9, Theorem 2.8 and Theorem 2.10

4.1 Proof of Lemma 2.9

When looking at (2.10), note that Wn does not depend on the order of the Rk’s.
Therefore, it is possible to order them according to their size. Precisely, let 0 < R(1) <

· · · < R(n) be their order statistics. Then it is well-known that

(R(n), R(n−1), . . . , R(1))
d
=

(
n∑
k=1

Rk
k
,

n∑
k=2

Rk
k
, . . . ,

Rn
n

)
, i.e. R(n−k+1)

d
=

n∑
i=k

Ri
i
.

Indeed, the smallest of n independent exponentially distributed mean 1 random variables
is exponentially distributed with mean 1

n (as does Rn

n ), and the second smallest then has

the same distribution as Rn

n + Rn−1

n−1 etc. Now, we obtain (2.14) as follows

Wn
d
=

1
n

∑n
k=1R

2
(n−k+1)(

1
n

∑n
j=1R(n−j+1)

)2

d
=

1
n

∑n
k=1

(∑n
i=k

Ri

i

)2

(
1
n

∑n
j=1

∑n
i=j

Ri

i

)2

=

1
n

(
2
∑n
k=1

∑n
i=k

∑n
j=i

RiRj

ij −
∑n
k=1

∑n
i=k

R2
i

i2

)
(

1
n

∑n
i=1

∑i
j=1

Ri

i

)2

=

1
n

(
2
∑n
j=1

∑j
i=1

∑i
k=1

RiRj

ij −
∑n
i=1

∑i
k=1

R2
i

i2

)
(

1
n

∑n
i=1Ri

)2

=

1
n

(
2
∑n
j=1

∑j
i=1

RiRj

j −
∑n
i=1

R2
i

i

)
(

1
n

∑n
i=1Ri

)2 .

4.2 Proof of Theorem 2.8

We start by proving (2.11). Let x ≥ 2 and let R1, R2, . . . be independent exponential
random variables with mean 1. In what follows we set

Xn :=
1

n

n∑
k=1

Rk and Zn :=
1

n

n∑
k=1

R2
k. (4.1)
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According to (2.10), it suffices to show that

lim
n→∞

1√
n

log P

(
Zn
X2
n

≥ x
)

= −
√
x− 2. (4.2)

To this end we will show that for all 0 < ε < 1,

lim sup
n→∞

1√
n

log P

(
Zn
X2
n

≥ x

1− ε

)
≤ −
√
x− 2 (4.3)

as well as

lim inf
n→∞

1√
n

log P

(
Zn
X2
n

≥ x
)
≥ −

√
(1 + ε)x− 2 (4.4)

and obtain (4.2) by letting ε→ 0. For (4.3) we have

P

(
Zn
X2
n

≥ x

1− ε

)
≤ P (Zn ≥ x) + P

(
Xn ≤

√
1− ε

)
. (4.5)

We consider the two terms on the right hand side of the last display separately and start
with the first one. Observe that E[eλR

2
1 ] =∞ for λ > 0, E[R2

1] = 2 and P
(
R2

1 ≥ t
)

= e−
√
t

for t ≥ 0. We use a variant of Cramér’s theorem for heavy-tailed random variables from
[8]. In particular, we refer to the statement around equation (1.2) there (the assumption
there is fulfilled with X1 replaced by R2

1 and r = 1
2 , m = 2 and c = 1). We obtain

P (Zn ≥ x) = e−
√
n(
√
x−2+o(1)) as n→∞. (4.6)

For the second term on the right hand side of (4.5) by the (classical) Cramér theorem we
obtain

P
(
Xn ≤

√
1− ε

)
= e−nIexp(

√
1−ε)(1+o(1)), as n→∞, (4.7)

where

Iexp(y) := y − 1− log(y) (4.8)

is the Fenchel-Legendre transform of the function t 7→ log E[eλR1 ]. Now, using (4.5), (4.6)
and (4.7) we obtain

lim sup
n→∞

1√
n

log P

(
Zn
X2
n

≥ x

1− ε

)
≤ lim sup

n→∞

1√
n

log
(
e−
√
n(
√
x−2+o(1)) + e−nIexp(

√
1−ε)(1+o(1))

)
= −
√
x− 2,

which shows (4.3). For the proof of (4.4) we write

P

(
Zn
X2
n

≥ x
)
≥ P

(
Zn
X2
n

≥ x,X2
n ≤ 1 + ε

)
≥ P

(
Zn ≥ x(1 + ε), X2

n ≤ 1 + ε
)

≥ P (Zn ≥ x(1 + ε))−P
(
Xn ≥

√
1 + ε

)
.

(4.9)

Again we consider both terms in the last line separately. For the first term, as in (4.6)
we obtain

P (Zn ≥ x(1 + ε)) = e
−
√
n
(√

x(1+ε)−2+o(1)
)
, as n→∞. (4.10)
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For the second term, we use the same argument as for (4.7) and get

P
(
Xn ≥

√
1 + ε

)
≤ e−nIexp(

√
1+ε)(1+o(1)), as n→∞. (4.11)

Combining (4.10) and (4.11) with (4.9) now gives (4.4) which proves (2.11).

Since the minimum of Wn is 1 (when Fk,n = 1/n for all k) the assertion P(Wn < 1) = 0

is clear. It remains to prove (2.12), show that the rate function is of the form (2.13) and
justify the positivity of Ĩ(x) for x ∈ (1, 2).

For x ∈ (1, 2) using (2.10) we obtain

P(Wn ≤ x) = P

( ∑n
j=1Rj√

n
√∑n

k=1R
2
k

≥ 1√
x

)
. (4.12)

Furthermore, for x ∈ (1, 2) we have 1/
√
x > 1/

√
2 = E[R1]/

√
E[R2

1]. Thus, we can use
Theorem 1.1 from [12] and obtain

P(Wn ≤ x)1/n = sup
c≥0

inf
t≥0

E

[
exp
(
t(cR1 −

1

2
√
x

(R2
1 + c2))

)]
. (4.13)

Now we have

E

[
exp
(
t(cR1 −

1

2
√
x

(R2
1 + c2))

)]
=

∫ ∞
0

exp
(
−y + t(cy − 1

2
√
x

(y2 + c2))
)
dy

and elementary integration yields

=

√
2πx1/4

√
t

exp

(
(tc− 1)2x− t2c2

2t
√
x

)
Φ

(
(tc− 1)x1/4

√
t

)
,

where Φ denotes the distribution function of the one dimensional standard Gaussian
distribution. Taking log of the last term we obtain (2.13).

Now we fix x ∈ (1, 2) and show that Ĩ(x) is positive. In the sequel we write

h(r, c) := cr − 1
2
√
x

(r2 + c2).

We have

inf
t≥0

E
[
exp
(
th(R1, c)

)]
≥ E

[
inf
t≥0

exp
(
th(R1, c)

)]
= E

[
1{h(R1,c)<0} inf

t≥0
exp
(
th(R1, c)

)]
+ E

[
1{h(R1,c)≥0} inf

t≥0
exp
(
th(R1, c)

)]
= P

(
h(R1, c) ≥ 0

)
.

The function r 7→ h(r, c) is non-negative on the interval [r1, r2] where r1/2 = r1/2(c) :=

c(
√
x±
√
x− 1) are the zeros of the function. It follows

E

[
inf
t≥0

exp
(
th(R1, c)

)]
= P (r1 ≤ R1 ≤ r2) = e−c(

√
x−
√
x−1) − e−c(

√
x+
√
x−1).

Finally, by elementary calculation we obtain

sup
c≥0

(
e−c(

√
x−
√
x−1) − e−c(

√
x+
√
x−1)

)
=

2
√
x− 1

√
x+
√
x− 1

(√
x−
√
x− 1

√
x+
√
x− 1

)√x−
√

x−1

2
√

x−1

.

This expression (and therefore also Ĩ(x)) is positive for x ∈ (1, 2). Thus, the proof of
Theorem 2.8 is concluded.
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4.3 Proof of Theorem 2.10

We prove the inequality (2.15) using Lemma 2.9. Let 1 < x < 2 and set y = 1√
x−1
− 1.

For ε > 0 we have

1

n
log P

(
Wn ≤ x+ ε

)
=

1

n
log P

(
n

2
∑n
l=1

∑l
k=1

RkRl

l −
∑n
k=1

R2
k

k

(
∑n
k=1Rk)

2 ≤ x+ ε

)

≥ 1

n
log P

(
n

2
∑n
l=1

∑l
k=1

RkRl

l −
∑n
k=1

R2
k

k

(
∑n
k=1Rk)

2 ≤ x+ ε,Rn > ny

)

=
1

n
log

{
P
(
Rn > ny

)
P

(
n

2
∑n
l=1

∑l
k=1

RkRl

l −
∑n
k=1

R2
k

k

(
∑n
k=1Rk)

2 ≤ x+ ε

∣∣∣∣∣Rn > ny

)}
.

Now 1
n log P

(
Rn > ny

)
= −y, and conditioning in the second factor in the curly braces

can be removed by using the fact that conditioned on Rn > ny the exponential random
variable Rn has the same distribution as ny +Rn. After some elementary calculations
we see that the last line of the above display equals

−y +
1

n
log P

( 1
n

(
2
∑n
l=1

∑l
k=1

RkRl

l −
∑n
k=1

R2
k

k

)
+ 2y 1

n

∑n
k=1Rk + y2(

1
n

∑n
k=1Rk

)2
+ 2y 1

n

∑n
k=1Rk + y2

≤ x+ ε

)
.

From the strong law of large numbers and (2.4) with Lemma 2.9 we know that

1

n

n∑
k=1

Rk
n→∞−−−−→ 1, and

1

n

(
2

n∑
l=1

l∑
k=1

RkRl
l
−

n∑
k=1

R2
k

k

)
n→∞−−−−→ 2 almost surely.

It follows that almost surely

1
n

(
2
∑n
l=1

∑l
k=1

RkRl

l −
∑n
k=1

R2
k

k

)
+ 2y 1

n

∑n
k=1Rk + y2(

1
n

∑n
k=1Rk

)2
+ 2y 1

n

∑n
k=1Rk + y2

n→∞−−−−→ 2 + 2y + y2

1 + 2y + y2
= x.

Thus,

lim inf
n→∞

1

n
log P

(
Wn ≤ 2− x+ ε

)
≥ −y = 1− 1√

x− 1
.

The rest follows by letting ε ↓ 0.
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