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Abstract

The theory of S2(δ) family of probability distributions is used to give a derivation of the
functional equation of the Riemann xi function. The δ deformation of the xi function is
formulated in terms of the S2(δ) distribution and shown to satisfy Riemann’s functional
equation. Criteria for simplicity of roots of the xi function and for its simple roots to
satisfy the Riemann hypothesis are formulated in terms of a differentiability property
of the S2(δ) family. For application, the values of the Riemann zeta function at the
integers and of the Riemann xi function in the complex plane are represented as
integrals involving the Laplace transform of S2.
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In this paper we contribute to the field of probabilistic studies of values of the
Riemann zeta function. This field was pioneered by [4] and [12] and greatly advanced by
[1] and [17], which serve as primary references as well as motivation for our results. The
field is comprised of roughly two streams of works. The first stream as represented by
[2], [9], [10], [13], [14], [15], [16], [22] for example, relates values of the Riemann zeta
and other functions of analytic number theory (Riemann xi, Barnes gamma functions,
Selberg integral) directly to various probabilistic notions (infinite divisibility, independent
product/sum representations, Lévy processes). The second stream as represented by [3],
[5], [7], [13] for example, develops random matrix theoretic machinery that is necessary
to fully understand the celebrated conjecture of [8] on the moments of the Riemann zeta
function on the critical line.

In this paper we continue to study the family of S2(δ) probability distributions that
we introduced in [16] as a means of approximating the Riemann xi function by a limit
of Barnes beta distributions, see [15]. Our contribution is three-fold. First, we give a
derivation of the celebrated functional equation of the Riemann xi function using the
theory of S2(δ) distributions. While this equation has many known proofs, see [20] for
example, the novelty of our approach is that our proof is probabilistic in nature and
mainly relies on a computation of moments of S2(δ) in a way that does not require Jacobi’s
theta identity or complex integration but rather only uses the Laplace transform of S2. As
an application of our approach, we show that the values of the Riemann zeta function at
the integers as well as the values of the Riemann xi function in the complex plane can be
represented as simple integrals involving the Laplace transform of S2. We also show that
the functional equation itself is equivalent to a symmetry of a certain integral transform
of the Laplace transform. Second, we formulate a functional equation and a generalized
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On S2(δ) Distribution

xi function that correspond to the S2(δ) distribution thereby obtaining a one-parameter
deformation of Riemann’s xi function that satisfies the functional equation of the xi
function. Finally, we show that the behavior of roots of the Mellin transform of S2(δ) as a
function of δ gives us elementary criteria for the simplicity of roots of the xi function and
validity of the Riemann hypothesis for simple roots.

1 Introduction

The theory of the S2 and related distributions was developed in [1] and [17]. In this
section we will review some of the key points of this theory following [1] so as to motivate
our generalization of S2 in the next section.

S2 is an infinitely divisible, absolutely continuous probability distribution on (0, ∞)

that is defined by

S2 ,
2

π2

∞∑
n=1

Γ2,n

n2
, (1.1)

and {Γ2,n} denotes an iid family of gamma distributions on (0, ∞) with the density xe−x.
Its Laplace transform is given by1

E
[
e−qS2

]
=
[ √

2q

sinh
√

2q

]2
, (1.2)

= exp
( ∞∫
0

(e−qt − 1)
(
θ(
πt

2
)− 1

)dt
t

)
, q > 0, (1.3)

where θ(t) is a special case of Jacobi’s θ3 function

θ(t) , 1 + 2

∞∑
n=1

e−πtn
2

, t > 0, (1.4)

hence the Lévy density of S2 is ρS2
(x) =

(
θ(πx/2)− 1

)
/x. The theta function identity

√
t θ(t) = θ(1/t), t > 0, (1.5)

implies that, up to exponentially small terms, θ(t) ∼ t−1/2 as t → +0 and θ(t) ∼ 1 as
t→ +∞ so that ρS2

(x) is a valid Lévy density, see Theorem 4.3 in Chapter 3 of [19]. The
cumulative distribution function of S2 is2

P
(
S2 < x

)
=
∑
n∈Z

(1− n2π2x)e−n
2π2x/2. (1.6)

Denote the probability density of S2 by fS2
(x). Then, it is easy to see from (1.4) and

(1.6) that it is related to the Lévy density by

fS2
(x) =

d

dx

(
1 + 2x

d

dx

)
xρS2(x). (1.7)

S2 satisfies a remarkable functional equation as a corollary of (1.5).

E
[
g
( 4

π2S2

)]
=

√
π

2
E
[
S
1/2
2 g(S2)

]
(1.8)

1We mention in passing that S2 as defined by (1.2) appears also in a model of Anderson localization in the
context of statistics of eigenvectors of random banded matrices, see [6].

2It is quite non-trivial that the right-hand side of (1.6) is a valid distribution function on (0, ∞). The
interested reader is referred to [4], Theorem 7, for a probabilistic proof and to the discussion following it for a
direct analytic proof.

ECP 19 (2014), paper 85.
Page 2/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v19-3608
http://ecp.ejpecp.org/


On S2(δ) Distribution

that holds for arbitrary test functions g, for which the equation makes sense. It is
equivalent to

fS2
(x) =

( 2

πx

)5/2
fS2

( 4

π2x

)
. (1.9)

It follows from (1.6) and (1.9) that fS2(x) is exponentially small in the limits x→ +0 and
x→ +∞, and we have, up to polynomial prefactors,

fS2
(x) ∼ e−2/x, x→ +0, (1.10)

fS2
(x) ∼ e−π

2x/2, x→ +∞. (1.11)

In particular, the Mellin transform E
[
Sq2
]

is entire in q. The relationship between S2 and
the Riemann xi function is equally remarkable.( 2

π

)q
2ξ(2q) = E

[
Sq2
]
, q ∈ C, (1.12)

where the entire function ξ(q) is defined in terms of the Riemann zeta function by3

ξ(q) ,
1

2
q(q − 1)π−q/2Γ(q/2)ζ(q), <(q) > 1, (1.13)

and the Riemann zeta function is defined by

ζ(q) ,
∞∑
m=0

(m+ 1)−q, <(q) > 1. (1.14)

The Mellin transform in (1.12) is crucial for our purposes so we briefly remind the reader
how it can be derived for <(q) > 1/2 by double integration by parts. One starts with the
representation of the density of S2 in (1.7) and evaluates the resulting Mellin transform
by elementary means (boundary terms vanishing by the asymptotics of theta).

E
[
Sq2
]

=

∞∫
0

xq
d

dx

(
1 + 2x

d

dx

)(
θ(πx/2)− 1

)
dx,

= (2q2 − q)
∞∫
0

xq−1
(
θ(πx/2)− 1

)
dx,

= (2q2 − q)Γ(q)
( 2

π2

)q
2ζ(2q), (1.15)

which is equivalent to (1.12) by (1.13). Using (1.12) and the functional equation (1.8)
with g(x) = xq, one sees that the xi function satisfies

ξ(q) = ξ(1− q) (1.16)

for q ∈ C, which is Riemann’s functional equation. We finally note that many important
problems in number theory hinge on the location of roots of the xi function, which are
known to lie in the critical strip 0 < <(q) < 1. We refer the reader to [20] as a reference
on the xi function.

3Contrary to the commonly accepted usage, we use q as opposed to s as the generic complex variable to
avoid confusion with S2 and use

∫∞
0 xq f(x) dx to define the Mellin transform as it is natural for our purposes.
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On S2(δ) Distribution

2 A Review of S2(δ)

In this section we will remind the reader of our construction of the S2(δ) family of
probability distributions and their basic properties established in [16].

Definition 2.1. Let δ ≥ 0 and {Γ2,n} be as in (1.1).

S2(δ) ,
∞∑
n=1

Γ2,n

π2n2/2 + δ
. (2.1)

The main properties of S2(δ) are summarized in the following theorem, which we
give here with additional details and proof for completeness.

Theorem 2.2 (Properties of S2(δ)). S2(δ) is infinitely divisible and absolutely continuous.
Denote its density by fS2(δ)(x). Then, its Laplace transform, density, and Mellin transform
satisfy

E
[
e−qS2(δ)

]
=
[ sinh

√
2δ√

2δ

]2
E
[
e−(q+δ)S2

]
, (2.2)

= exp
( ∞∫
0

(e−qt − 1)e−δt
(
θ(
πt

2
)− 1

)dt
t

)
, q > 0, (2.3)

fS2(δ)(x) =
[ sinh

√
2δ√

2δ

]2
e−δxfS2

(x), x > 0, (2.4)

E[S2(δ)q] =
[ sinh

√
2δ√

2δ

]2 ( 2

π

)q ∞∑
n=0

1

n!

(−2δ

π

)n
2ξ(2q + 2n), q ∈ C, δ < π2/2. (2.5)

Given a test function g(x), S2(δ) satisfies the general identity

E
[
exp
(
−δS2

)]
E
[
g
(
S2(δ)

)]
= E

[
exp
(
−δS2

)
g(S2)

]
. (2.6)

Let δ > 0 and β be an independent exponential distribution with the density δ exp(−δx).

Define the distribution
T (δ) , S2(δ) + β. (2.7)

Then, T (δ) is infinitely divisible and absolutely continuous on (0, ∞) and its density and
Laplace transform are

fT (δ)(x) = δe−δx
[ sinh

√
2δ√

2δ

]2
P(S2 < x), x > 0, (2.8)

E
[
e−qT (δ)

]
= exp

( ∞∫
0

(e−qt − 1)e−δtθ(
πt

2
)
dt

t

)
, q > 0. (2.9)

The Mellin transforms E[S2(δ)q] and E[T (δ)q] are entire functions of q.

Proof. The starting point is the formula given in [1], Section 3.2, for the Lévy density
ρX(t) of the weighted sum of positive, independent, infinitely divisible distributions of
the form X =

∑
n cnXn, where cn > 0 and Xn has Lévy density ρ(t) for all n.

ρX(t) =
∑
n

1

cn
ρ(t/cn). (2.10)

The Lévy density of Γ2,n is 2e−t/t so that the Lévy density ρS2(δ)(t) of S2(δ) is

ρS2(δ)(t) =
e−δt

t

(
θ(πt/2)− 1

)
. (2.11)
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Then, the Laplace transform of S2(δ) can be written as

E
[
e−qS2(δ)

]
= exp

( ∞∫
0

(e−qt − 1)ρS2(δ)(t) dt
)
, (2.12)

=
[ ∞∏
n=1

δ + π2n2/2

q + δ + π2n2/2

]2
, (2.13)

=
[ sinh

√
2δ√

2δ

]2
E
[
e−(q+δ)S2

]
, (2.14)

where we used Frullani’s formula for log(x) to evaluate the integral in (2.12) and the
infinite product representation of sinh(x) and (1.2) to obtain (2.14). This proves (2.2)
and (2.3). The density of S2(δ) follows from (2.2) so that the Mellin transform is

E[S2(δ)q] =
[ sinh

√
2δ√

2δ

]2 ∞∫
0

xqe−δxfS2(x) dx. (2.15)

Expanding the exponential and making use of (1.12), we obtain (2.5), provided that the
integral can be computed term by term. The partial sums of exp(−δx) are bounded by
exp(δx). If δ < π2/2, then exp(δx)fS2(x) is exponentially small as x→ +∞, see (1.11), so
that the result follows by dominated convergence. The series is absolutely convergent if
δ < π2/2 as is clear from (1.13) since ζ(q)→ 1 (uniformly in =(q)) as <(q)→ +∞. (2.6)
is immediate from (2.4). The density of T (δ) in (2.8) is the convolution of the density
of S2(δ) in (2.4) and the density of β. Since the density and cumulative distribution
functions of S2 are exponentially small as x→ 0, the Mellin transforms of S2(δ) and T (δ)

are entire in q.

We mention in passing that our construction of S2(δ) in [16] was primarily motivated
by T (δ). There we used Jacobi’s triple product to relate T (δ) to a limit of Barnes beta
distributions, which we introduced in a special case in [14] and in general in [15] in
the context of the Selberg integral. We will not dwell on this connection here short of
pointing out that the Barnes beta distribution approach provides an altogether different
way of looking at S2, see also Corollary 3.5 and Remark 3.6 below.

3 Results

We begin by formulating our result on the functional equation of the xi function, see
(1.16). As the equation per se is well-known, we must first explain what we assume to
be given. Our main assumption is that the relationship of the Mellin transform of S2 and
the xi function in (1.12) is known for all q ∈ C (or, equivalently, that the xi function is
defined by (1.12), the Mellin transform of S2 is entire, and (1.13) is known).

Theorem 3.1 (Functional equation of ξ(q)). Let q ∈ C. Then,

( 4

π2

)q
E
[
S−q2

]
=

√
π

2
E
[
S
q+1/2
2

]
. (3.1)

Proof. It is sufficient to show that (3.1) holds for any domain of the form <(q) ∈ (n−1, n),

n = 1, 2, 3, · · · because an entire function that is identically zero on such a domain must
necessarily be identically zero on the whole complex plane, see Theorem 1.2 in Chapter
III of [11]. Let <(p) ∈ (0, 1) and q = n − p. The starting point and key element of the
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proof is the identity that is satisfied by the Mellin transform of S2(δ).

d

dδ
E
[
e−δS2

]
E
[
S2(δ)q

]
=

d

dδ
E
[
e−δS2Sq2

]
,

= −E
[
e−δS2

]
E
[
S2(δ)q+1

]
, q ∈ C, (3.2)

which is an elementary corollary of (2.6). It follows by induction that we can write for
any δ ≥ 0, q ∈ C, and n = 1, 2, 3 · · ·

E
[
e−δS2

]
E
[
S2(δ)−q

]
=

∞∫
δ

dδ1 · · ·
∞∫

δn−2

dδn−1

∞∫
δn−1

dδnE
[
e−δnS2

]
E
[
S2(δn)−q+n

]
,

=
1

(n− 1)!

∞∫
δ

(z − δ)n−1E
[
e−zS2

]
E
[
S2(z)−q+n

]
dz. (3.3)

Let q = n− p, then the expectation on the right-hand side of (3.3) can be computed4 in
terms of the Laplace transform of S2 using the Cauchy-Saalschütz formula for the gamma
function, see Section 12-21 of [21], which holds for <(p) ∈ (k, k + 1), k = 0, 1, 2, 3 · · · .

xp = − 1

Γ(−p)

∞∫
0

du

u1+p

( k∑
l=0

(−ux)l

l!
− e−ux

)
, x > 0. (3.4)

In our case, <(p) ∈ (0, 1). Hence, by Fubini’s theorem and (2.6),

E
[
e−zS2

]
E
[
S2(z)p

]
= E

[
e−zS2Sp2

]
,

= − 1

Γ(−p)

∞∫
0

du

u1+p

[
E
[
e−zS2

]
−E

[
e−(z+u)S2

]]
. (3.5)

The second element of the proof is the following expansion of the Laplace transform that
is immediate from (1.2).

E
[
e−zS2

]
= 8z

∞∑
m=0

(m+ 1)e−
√
8z(m+1), z > 0. (3.6)

Unlike the expansion in the moments, it is singular at z = 0 but is globally convergent.
Substituting this expansion into (3.5) and changing variables u′ = u/z, we obtain

E
[
e−zS2Sp2

]
= − 8z1−p

Γ(−p)

∞∫
0

du

u1+p

[ ∞∑
m=0

(m+1)e−
√
8z(m+1)−(1+u)

∞∑
m=0

(m+1)e−
√
8z
√
1+u(m+1)

]
.

(3.7)
Substituting this equation into (3.3) with δ = 0 and applying Fubini’s theorem, it is not
difficult to evaluate the resulting z integral at any fixed u > 0 using the definitions of the
gamma and Riemann zeta functions as <(n− p+ 1/2) > 1/2.

E
[
S−n+p2

]
= −23p−3n+1 Γ(2n− 2p+ 2)

Γ(n)Γ(−p)
ζ(2n− 2p+ 1)

∞∫
0

du

u1+p

[
1− (1 + u)p−n

]
. (3.8)

The remaining integral can computed using the identity

∞∫
0

du

u1+p

[
1− (1 + u)−q

]
= −Γ(p+ q)Γ(−p)

Γ(q)
, <(p) ∈ (0, 1), <(q) > 0, (3.9)

4We note that (2.5) cannot be used here as we need the Mellin transform for arbitrary z > 0.
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which easily follows from the standard properties of the gamma and beta functions and
integration by parts. Thus, we have shown

E
[
S−n+p2

]
= 23p−3n+1 Γ(2n− 2p+ 2)

Γ(n− p)
ζ(2n− 2p+ 1). (3.10)

On the other hand, the right-hand side of (3.1) can be computed by (1.12) and (1.13) as
<(n− p+ 1/2) > 1/2. Using the doubling formula of the gamma function in the form

Γ(2n− 2p) = Γ(n− p)Γ(n− p+ 1/2)(2π)−1/222n−2p−1/2, (3.11)

we obtain after several lines of straightforward algebra( 4

π2

)p−n√π

2
E
[
S
n−p+1/2
2

]
= 23p−3n+1 Γ(2n− 2p+ 2)

Γ(n− p)
ζ(2n− 2p+ 1). (3.12)

Recalling (1.12), we have checked that ξ(−2q) = ξ(1 + 2q) for <(q) ∈ (n, n− 1). As ξ(q) is
entire, this must be true for all q ∈ C.

Corollary 3.2 (Some explicit formulas). Let n = 1, 2, 3, · · · .

23n−1

Γ(2n+ 2)

∞∫
0

un−1
[ √

2u

sinh
√

2u

]2
du = ζ(2n+ 1), (3.13)

23n−5/2

Γ(2n+ 1)

∞∫
0

un−3/2
[ √

2u

sinh
√

2u

]2
du = ζ(2n). (3.14)

Let <(p) ∈ (0, 1/2). Then, (3.1) in the critical strip is equivalent to

2ξ(2p) = 2ξ(1− 2p) =
( 2

π

)−p 1

Γ(−p)

∞∫
0

du

u1+p

[[ √
2u

sinh
√

2u

]2
− 1

]
,

=
( 2

π

)p−1/2 1

Γ(p− 1/2)

∞∫
0

du

u3/2−p

[[ √
2u

sinh
√

2u

]2
− 1

]
. (3.15)

Let <(p) ∈ (k, k + 1), k = 0, 1, 2, 3 · · · (and <(p) > 1/2 in the case of k = 0). Then, (3.1)
outside of the critical strip is equivalent to

2ξ(2p) = 2ξ(1− 2p) =
( 2

π

)−p 1

Γ(−p)

∞∫
0

du

u1+p

[[ √
2u

sinh
√

2u

]2
−

k∑
l=0

ul

l!

dl

dδl
|δ=0

[ √
2δ

sinh
√

2δ

]2]
,

=
( 2

π

)p−1/2 1

Γ(p− 1/2)

∞∫
0

du

u3/2−p

[ √
2u

sinh
√

2u

]2
. (3.16)

Proof. The formulas for the values of the Riemann zeta at the integers in (3.13) and
(3.14) are special cases of (3.16) ((3.13) also follows by letting p→ 0 in (3.10) and then
using (3.3)). If <(p) ∈ (0, 1/2), then <(1/2− p) ∈ (0, 1/2) so that both the left- and right-
hand sides of (3.1) with q = −p can be computed by means of (3.4). In the remaining
cases, we use the standard definition of the gamma function to compute E

[
S
1/2−p
2

]
and

(3.4) to compute E
[
Sp2
]
.

We now proceed to our result on the δ deformation of the Riemann xi function.
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Theorem 3.3 (Functional equation of S2(δ)). Let δ ≥ 0.

E
[
exp
(
− 4δ

π2S2(δ)

)
g
( 4

π2S2(δ)

)]
=

√
π

2
E
[
S2(δ)1/2 exp

(
− 4δ

π2S2(δ)

)
g
(
S2(δ)

)]
. (3.17)

The generalized xi function defined by( 2

π

)q
2ξδ(2q) , E

[
exp
(
−δS2

)]
E
[
exp
(
− 4δ

π2S2(δ)

)
S2(δ)q

]
, q ∈ C, (3.18)

is entire in q, ξδ=0(q) = ξ(q), and

ξδ(q) = ξδ(1− q). (3.19)

Proof. This result is a corollary of (1.8) and (2.6). The function x→ exp
(
−δ(x+ 4/π2x)

)
is symmetric under x→ 4/π2x so that we have by (1.8)

E
[
exp
(
−δS2 −

4δ

π2S2

)
g
( 4

π2S2

)]
=

√
π

2
E
[
S
1/2
2 exp

(
−δS2 −

4δ

π2S2

)
g
(
S2

)]
. (3.20)

By (2.6) this is equivalent to (3.17). (3.19) follows by letting g(x) = xq.

Remark 3.4. It is not difficult to see that the same approach gives us also a two-
parameter deformation of the xi function by defining for κ, δ ≥ 0 the entire function( 2

π

)q
2ξδ,κ(2q) , E

[
exp
(
−δS2

)]
E
[
exp
(
− 4κ

π2S2(δ)

)
S2(δ)q

]
, (3.21)

Clearly, ξδ,δ(q) = ξδ(q) and, moreover,

ξδ,κ(q) = ξκ,δ(1− q), (3.22)

which follows from the more general identity

E
[
exp
(
−δS2 −

4κ

π2S2

)
g
( 4

π2S2

)]
=

√
π

2
E
[
S
1/2
2 exp

(
−κS2 −

4δ

π2S2

)
g
(
S2

)]
. (3.23)

In particular, by letting g(x) = 1 and using (3.4), we obtain from (3.23)

E
[
e−δS2−4κ/π2S2

]
=

1

2
√

2

∞∫
0

dz

z3/2

[
E
[
e−κS2−4δ/π2S2

]
−E

[
e−(κ+z)S2−4δ/π2S2

]]
. (3.24)

This shows that the functional equation of S2 is equivalent to a functional equation for
the joint Laplace transform of (S2, 4/π2S2).

Corollary 3.5 (Functional equation of T (δ)). Let δ > 0 and define the entire function

χδ(q) , E
[
exp
(
−δS2

)]
E
[
exp
(
− 4δ

π2T (δ)

)
T (δ)q

]
, q ∈ C. (3.25)

Then, (3.19) is equivalent to( 4

π2

)−q(
χδ(q)−

q

δ
χδ(q − 1)− 4

π2
χδ(q − 2)

)
=

√
π

2

(
χδ
(1

2
− q
)
−

1
2 − q
δ

χδ
(
−1

2
− q
)

− 4

π2
χδ
(
−3

2
− q
))
. (3.26)
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Proof. It is easy to see from (2.4) and (2.8) that the density of T (δ) satisfies

fS2(δ)(x) = fT (δ)(x) +
1

δ
f ′T (δ)(x). (3.27)

Hence,

E
[
exp
(
−δS2

)]
E
[
exp
(
− 4δ

π2S2(δ)

)
S2(δ)q

]
= χδ(q)−

q

δ
χδ(q − 1)− 4

π2
χδ(q − 2), (3.28)

and the result is equivalent to (3.19).

Remark 3.6. We note that it is also possible to re-formulate (3.17) in terms of T (δ) using

E
[
g
(
S2(δ)

)]
= E

[
g
(
T (δ)

)]
− 1

δ
E
[
g′
(
T (δ)

)]
. (3.29)

The interest in (3.26) is that it gives us an equivalent formulation of the functional
equation directly in terms of the T (δ) distribution. We showed in [16] that T (δ) can be
obtained as a limit of Barnes beta distributions. This leads to the interesting problem of
deriving the functional equation by the Barnes beta distribution route, which, however,
is beyond the scope of this paper.

Finally, we will consider the roots of the Mellin transform of S2, i.e. of ξ(2q), see
(1.12). Before we can state our result, we need an auxiliary lemma.

Lemma 3.7. Let δ ∈ C, |δ| < π2/2, and q ∈ C. Define the functions

M1(δ, q) ,E
[
e−δS2Sq2

]
, (3.30)

M2(δ, q) ,E
[
e−4δ/π

2S2Sq2

]
. (3.31)

They satisfy the identities

M1(δ, q) =
( 2

π

)q ∞∑
n=0

1

n!

(−2δ

π

)n
2ξ(2q + 2n), (3.32)

M2(δ, q) =
( 2

π

)q ∞∑
n=0

1

n!

(−2δ

π

)n
2ξ(1 + 2n− 2q). (3.33)

M1(δ, q) and M2(δ, q) are holomorphic in δ over the domain |δ| < π2/2 for any fixed q and
are entire functions of q of order 1 with infinitely many zeroes for any fixed |δ| < π2/2.

M1(δ, q) and M2(δ, q) are related to each other by( 4

π2

)q
M2(δ,−q) =

√
π

2
M1(δ, q + 1/2). (3.34)

Proof. The first equation is a slight extension of (2.5). Both (3.32) and (3.33) are verified
in the same way as (2.5) by expanding the functional in the moments of S2 (and using the
functional equation in the case of (3.33)). The tail behavior of the series at any fixed q is
easily estimated by Stirling’s formula and the fact that ζ(q)→ 1 (uniformly in =(q)) as
<(q)→ +∞. The stated restriction on the domain of δ is immediate from the asymptotics
of fS2(x) given in (1.10) and (1.11). Hence, M1(δ, q) and M2(δ, q) are holomorphic in δ
and entire in q. The identity in (3.34) follows from (1.8). To prove that M1(δ, q) is an
entire function of order 1 in q and has infinitely many roots, we use the theory of entire
functions of finite order and classical estimate of the growth of ξ(q) at infinity. It is not
difficult to show that M1(δ, q) has the same asymptotic bound as ξ(2q),

log |M1(δ, q)| = O
(
|q| log |q|

)
, |q| → ∞, (3.35)
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see (2.12.3) in [20], so that M1(δ, q) is of at most order 1. It is exactly of order 1 due to
its behavior along the positive real axis

M1(δ, q) ∼ eq log q, q → +∞, (3.36)

which follows by Stirling’s formula, and, therefore, has infinitely many roots by the
Hadamard product formula, see Theorem 3.5 in Section XIII.3 of [11].

We will now study the roots of Mi(δ, q) i = 1, 2 as a deformation of those of the xi
function. Specifically, given a δ, Mi(δ, q) has infinitely many roots as a function of q by
Lemma 3.7. We are interested in how these roots depend on δ. For simplicity, we will
restrict ourselves to δ ∈ (−π2/2, π2/2). Let q0 be a root of the Mellin transform of S2 so
that ξ(2q0) = 0, necessarily 0 < <(2q0) < 1, and ξ(1− 2q0) = 0 by the functional equation.
Define q1(δ | q0) and q2(δ | q0) to be functions of δ having value q0 at δ = 0 that are defined
implicitly as curves of roots of M1(δ, q) and M2(δ, q).

Definition 3.8. Let ξ(2q0) = 0, δ ∈ (−π2/2, π2/2), and q1(0 | q0) = q2(0 | q0) = q0.

M1

(
δ, q1(δ | q0)

)
= 0, (3.37)

M2

(
δ, q2(δ | q0)

)
= 0. (3.38)

Clearly,
q2(δ | q0) = 1/2− q1(δ | 1/2− q0) (3.39)

by (3.34), and (3.37) is equivalent to E
[
S2(δ)q1(δ | q0)

]
= 0 for δ ≥ 0 by (2.6). If q0 is a

simple root of ξ(2q), then q1(δ | q0) and q2(δ | q0) are differentiable at δ = 0 by the implicit
function theorem. The following result establishes the converse.

Theorem 3.9 (Criterion for simplicity of roots of ξ(q)). If the function qi(δ | q0), i = 1, 2 is
differentiable at δ = 0, then q0 is a simple root of ξ(2q) and

ξ′(2q0)
dq1
dδ

(δ | q0)|δ=0 =
1

π
ξ(2q0 + 2), (3.40)

ξ′(2q0)
dq2
dδ

(δ | q0)|δ=0 =
1

π
ξ(2q0 − 2). (3.41)

Proof. We will give proof for q1(δ | q0), the proof for q2(δ | q0) goes through verbatim.
Assume that q1(δ | q0) is differentiable at δ = 0. Consider the composite function δ →
E
[
e−δS2S

q1(δ | q0)
2

]
E
[
e−δS2S

q1(δ | q0)
2

]
= 0, (3.42)

which is identically zero by construction, hence

d

dδ
|δ=0E

[
e−δS2S

q1(δ | q0)
2

]
= 0. (3.43)

Since q1(δ | q0) is assumed to be differentiable, by the chain rule we have

d

dδ
|δ=0E

[
e−δS2S

q1(δ | q0)
2

]
=

∂

∂δ
|δ=0E

[
e−δS2S

q1(δ | q0)
2

]
+

∂

∂q
E
[
Sq2
]
|q=q0

dq1
dδ

(δ | q0)|δ=0.

(3.44)
The calculation of the partial derivatives is elementary. Using that ξ(2q0) = 0 by con-
struction, we have by (1.12) and (3.2), respectively,

∂

∂q
E
[
Sq2
]
|q=q0 =

( 2

π

)q0
4ξ′(2q0), (3.45)

∂

∂δ
|δ=0E

[
e−δS2S

q1(δ | q0)
2

]
= −E

[
Sq0+1
2

]
=
( 2

π

)q0+1
2ξ(2q0 + 2). (3.46)
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Thus, we have proved (3.40). It remains to notice that ξ(2q0 + 2) 6= 0 as <(2q0 + 2) > 2 so
that

ξ′(2q0)
dq1
dδ

(δ | q0)|δ=0 6= 0. (3.47)

Corollary 3.10 (Criterion for simple roots of ξ(q) to satisfy the Riemann hypothesis).
Assume q0 to be a simple root of ξ(2q). Then, <(2q0) = 1/2 iff

ξ′(2q0)
dq1
dδ

(δ | q0)|δ=0 = ξ′(2q0)
dq2
dδ

(δ | q0)|δ=0, (3.48)

= ξ′(1− 2q0)
dq1
dδ

(δ | 1/2− q0)|δ=0. (3.49)

The proof requires the following auxiliary result.

Lemma 3.11. Let p > 1 and 0 < Re(s) < 1. Then,

ξ(s+ p) = ξ(s− p)⇔ <(s) = 1/2. (3.50)

Proof. If ξ(s+ p) = ξ(s− p), then

ξ(s+ p) = ξ(1 + p− s) (3.51)

by the functional equation. Obviously,

=(s+ p) = =(1 + p− s) (3.52)

and
<(s+ p), <(1 + p− s) > 1 (3.53)

by construction. By Theorem 1 of [18], the modulus of ξ(q) is strictly increasing along
any horizontal half-line that is located to the right of the critical strip. Hence,

s+ p = 1 + p− s (3.54)

so that <(s) = 1/2. Conversely, if <(s) = 1/2, the result is immediate.

We can now complete the proof of Corollary 3.10.

Proof. By Theorem 3.9, (3.48) is equivalent to

ξ(2q0 + 2) = ξ(2q0 − 2), (3.55)

which is equivalent to <(2q0) = 1/2 by Lemma 3.11. To verify (3.49), it is sufficient to
note the identities

ξ′(2q0) = −ξ′(1− 2q0), (3.56)

q1(δ | q0) = q1(δ | q0), (3.57)

and recall (3.39).

Remark 3.12. We believe that the differentiability condition in Theorem 3.9 is quite
natural as M1(δ, q) and M2(δ, q) are “smooth” deformations of the Mellin transform of
S2, which suggests that their roots should also generate a “smooth” deformation of the
roots of the Mellin transform. In this sense, Theorem 3.9 “explains” why the roots of the
xi function might be expected to be simple.
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4 Conclusions

We have given a derivation of the functional equation of the Riemann xi function
that is based on the theory of S2(δ) probability distributions. Using this theory, we
have reduced the functional equation to a simple integral relation involving the Laplace
transform of S2 and then verified it using elementary means. Our approach has shown
that the Laplace transform of S2 is fundamental to the structure of the xi function, for
in addition to the functional equation itself, we have given a probabilistic derivation
of explicit formulas for the values of the xi function in the complex plane and of the
Riemann zeta at the integers in terms of simple integrals involving the Laplace transform
of S2.

We have shown that a particular transform of the S2(δ) distribution gives rise to a
one-parameter family ξδ(q) of entire functions, which extend the Riemann xi function
and satisfy its functional equation. In particular, this construction opens up a possibility
of approaching the functional equation from the viewpoint of the theory of Barnes beta
distributions.

We have introduced a class of transforms of the S2 distribution that naturally extend
the Mellin transform of S2(δ) to holomorphic functions M1(δ, q) and M2(δ, q) of two
variables. We have noted that the differentiability of their roots as functions of q with
respect to δ is equivalent to the simplicity of roots of the xi function and, assuming
simplicity, we have formulated a criterion for the validity of the Riemann hypothesis.

Acknowledgments. The author gratefully acknowledges that the problem of finding a
probabilistic derivation of the functional equation was posed to the author by Ashkan
Nikeghbali at the Twelfth Northeast Probability Seminar. The author also wishes to
thank Jay Rosen for the invitation to attend the Seminar.
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