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Abstract

The aim of this paper is to investigate the Gibbs sampling that’s used for computing
the mean of observables with respect to some function f depending on a very small
number of variables. For this type of observable, by using the dl2 -metric one obtains
the sharp concentration estimate for the empirical mean, which in particular yields
the correct speed in the concentration for f depending on a single observable.
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1 Introduction

Let µ be a Gibbs probability measure on EN with dimension N large, i.e.,

µ(dx1, · · · , dxN ) =
e−V (x1,··· ,xN )∫

·· ·
∫
EN e−V (x1,··· ,xN )π(dx1) · · ·π(dxN )

π(dx1) · · ·π(dxN ),

where π is some σ-finite reference measure on E. Our purpose is to study the Gibbs
sampling–a Markov Chain Monte-Carlo method (MCMC in short) for approximating µ.
Gibbs sampling is also called Glauber dynamics with systematic scan(see [6]).

Let µi(·|x) (x = (x1, · · · , xN ) ∈ EN ) be the regular conditional distribution of xi

knowing (xj , j 6= i) under µ, i.e.,

µi(dx
i|x) =

e−V (x1,··· ,xN )∫
E
e−V (x1,··· ,xN )π(dxi)

π(dxi),

which is a one-dimensional measure, easy to simulate in practice.
By iterations of the one-dimensional conditional distributions (µi, i = 1, · · · , N), the

Gibbs sampling is the time-homogeneous Markov chain (Zk, k = 0, 1, · · · ), where each
Zk is the random vector on EN after the dynamics has been sequentially applied to all
sites. (For details see Section 2.) In [6], Dyer, Goldberg and Jerrum study mixing time of
Gibbs sampling on finite spin systems by Dobrushin uniqueness conditions. But we will
study concentration inequalities for Gibbs sampling on the general space by Dobrushin
conditions such as [17].
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Concentration inequalities for Gibbs sampling

In [17], Wu and the author obtain some sharp concentration estimate for

P(
1

n

n∑
k=1

f(Zk)− µ(f) ≥ t), t > 0, n ≥ 1.

That result in particular yields the correct speed in the concentration of functions of
type f(x) = 1

N

∑N
i=1 g(xi), but not for f depending on a very small number of vari-

ables(for example f(x) = g(x1)).

So the purpose of this paper is to solve the problem above, i.e., to establish a new
sharp concentration estimate for P( 1

n

∑n
k=1 f(Zk) − µ(f) ≥ t), t > 0, n ≥ 1, where the

function f depends on a small number of variables. Our method is to prove Talagrand’s
T2-transport inequality with respect to (w.r.t. in short) the dlN2 -metric (see later the
definition of (2.1)), which is much stronger than the T1-transport inequality w.r.t. dlN1 -
metric. The main new feature of our T2-transport inequality is dimension free, now. As
well known the T2-transport inequality is much more difficult than the T1-transport in-
equality (see [3, 7, 8]). Technically this obliges us to introduce a new type of Dobrushin
interdependence coefficients and complicates much the process of tensorization.

This paper is organized as follows. The next section contains some preliminaries
about transport inequality and Gibbs sampling. We present the main results in Section
3, and prove them in Section 4.

2 Some preliminaries

2.1 Transport inequality

Throughout the paper E is a Polish space with the Borel σ-field B, and d is a metric
onE such that d(x, y) is lower semi-continuous onE2 (so d does not necessarily generate
the topology of E). On the product space EN , we consider the lNp (p = 1, 2)-metric

dlNp (x, y) :=

(
N∑
i=1

dp(xi, yi)

)1/p

, x, y ∈ EN . (2.1)

Later sometimes dlp is short for dlNp (or dlnp ) when the index N (or n respectively) is

obvious from the context. EN is endowed with the dlNp -metric unless otherwise stated.

LetM1(E) be the space of Borel probability measures on E, and

Md
p(E) :=

{
ν ∈M1(E);

∫
E

dp(x0, x)ν(dx) <∞
}
, p = 1, 2.

(x0 ∈ E is some fixed point, but the definition above does not depend on x0 by the
triangle inequality). Given ν1, ν2 ∈ Md

p(E), the Lp-Wasserstein distance between ν1, ν2

is given by

Wp,d(ν1, ν2) :=

(
inf
π

∫∫
E×E

dp(x, y)π(dx, dy)

)1/p

, (2.2)

where the infimum is taken over all probability measures π on E × E such that its
marginal distributions are respectively ν1 and ν2 (called a coupling of ν1 and ν2).

When µ, ν are probability measures, the Kullback information (or relative entropy)
of ν with respect to µ is defined as

H(ν|µ) =

{∫
log dν

dµdν, if ν � µ,

+∞, otherwise.
(2.3)
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Concentration inequalities for Gibbs sampling

For p = 1, 2, we say that the probability measure µ satisfies the Lp-transport-entropy
inequality on (E, d) with some constant c > 0, if

Wp,d(µ, ν) ≤
√

2cH(ν|µ), for every ν ∈M1(E). (2.4)

To be short, we write µ ∈ Tp(c) (or Tp,d(c)) for this relation. This inequality, related
to the phenomenon of measure concentration, was introduced and studied by Marton
[11, 12], developed subsequently by Talagrand [15], Bobkov-Götze [1], Otto-Villani [14],
Djellout et al. [3] and amply explored by Ledoux [10, 9], Villani [16] and Gozlan-Léonard
[8].

2.2 Gibbs sampling

Let µi(dxi|x)(x = (x1, · · · , xN ) ∈ EN ) be the given regular conditional distribution of
xi knowing (xj , j 6= i) under µ, and µ̄i(dy|x) be the lift of µi to EN .

Gibbs sampling is described as follows. Given a initial point x0 = (x1
0, · · · , xN0 ) ∈ EN ,

let (Xn, n ≥ 0) be a non-homogeneous Markov chain starting from x0 defined on some
probability space (Ω, ,F,Px0), and given XkN+i−1 = x = (x1, · · · , xN ) ∈ EN , (k ∈ N, 1 ≤
i ≤ N), then Xj

kN+i = xj for j 6= i and the conditional law of Xi
kN+i is µi(·|x).

In other words, the transition probability at step kN + i is P(XkN+i ∈ dy|XkN+i−1 =

x) = µ̄i(dy|x). Therefore for ∀k ≥ 1,

P(XkN ∈ dy|X(k−1)N = x) =

∫
EN

µ̄1(dx1|x) · · ·
∫
EN

µ̄N−1(dxN−1|xN−2)µ̄N (dy|xN−1)

=: P (x, dy),

and the Gibbs sampling is the time-homogeneous Markov chain (Zk = XkN , k =

0, 1, · · · ), whose transition probability is P .

3 Main results

Throughout the paper we assume that
∫
EN d

2(yi, xi0)dµ(y) < ∞, µi(·|x) ∈ Md
2(E) for

all i = 1, · · · , N and x ∈ EN , where x0 is some fixed point of EN , and x → µi(·|x) is
Lipschitzian from (EN , dlN2 ) to (Md

2(E),W2,d).

For p = 1, 2, define the matrix of the d-Dobrushin interdependence coefficients
C(p) := (c

(p)
ij )i,j=1,··· ,N as

c
(p)
ij := sup

x=y offj

Wp,d(µi(·|x), µi(·|y))

d(xj , yj)
, i, j = 1, · · · , N. (3.1)

Obviously c(p)ii = 0. Denote by ‖A‖p the operator norm of a general N by N matrix A
acting as an operator from lNp to itself. Then the well known Dobrushin uniqueness
condition (see [4, 5]) is

‖C(1)‖1 = max
1≤j≤N

N∑
i=1

c
(1)
ij < 1.

So the generalization of Dobrushin uniqueness condition is read as

(H1) C(2) : lN2 → lN2 with ‖C(2)‖2 < 1.

Let r∞ := ‖C(2)‖∞ = max1≤i≤N
∑N
j=1 c

(2)
ij and r1 := ‖C(2)‖1 = max1≤j≤N

∑N
i=1 c

(2)
ij .

For any function f : EN → R, let ‖f‖Lip(dlNp ) := supx6=y
|f(x)−f(y)|
dlNp

(x,y) , p = 1, 2.

Our main results are the following:
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Theorem 3.1. Assume

r∞r1 <
1

2
,

and for some constant c > 0,

(H2) ∀i = 1, · · ·N, ∀x ∈ EN , µi(·|x) ∈ T2(c).

Then for any Lipschitzian function f on EN with ‖f‖Lip(d
lN2

) ≤ α, for any starting point

of the chain x = (x1, · · · , xN ) ∈ EN , we have

(a)

P (x, ·) ∈ T2,d
lN2

(
c

(1− ‖C(2)‖2)2

)
; (3.2)

(b) for ∀t > 0, n ≥ 1,

Px
(

1
n

∑n
k=1 f(Zk)− 1

n

∑n
k=1 Ex(f(Zk)) ≥ t

)
≤ exp

{
−nt

2(1−
√
r∞r1/(1−r∞r1))2(1−‖C(2)‖2)2

2cα2

}
; (3.3)

(c) for ∀t > 0, n ≥ 1,

Px
(

1
n

∑n
k=1 f(Zk)− µ(f) ≥ αMx

n + t
)

≤ exp

{
−nt

2(1−
√
r∞r1/(1−r∞r1))2(1−‖C(2)‖2)2

2cα2

}
, (3.4)

where

Mx =

√
r∞r1√

1− r∞r1 −
√
r∞r1

√√√√∫
EN

N∑
i=1

d(xi, yi)2µ(dy).

Remark 3.2. Under the assumption of r∞r1 < 1, by the Riesz interpolation inequality,

‖C(2)‖2 ≤
√
r∞r1 <

√
1
2 , which implies (H1) holds.

Remark 3.3. Recall some results from [17, Lemma 3.4 and Theorem 2.7]: assume that
‖C(1)‖1 < 1

2 , and for some constant c > 0,

∀i = 1, · · ·N, ∀x ∈ EN , µi(·|x) ∈ T1(c),

Then for any Lipschitzian function f on EN with ‖f‖Lip(d
lN1

) ≤ α, one has

(a) (from [17, Lemma 3.4])

P (x, ·) ∈ T1,d
lN1

(
Nc

(1− ‖C(1)‖1)2

)
,∀x = (x1, · · · , xN ) ∈ EN ; (3.5)

(b) (from [17, Theorem 2.7])

Px
(

1
n

∑n
k=1 f(Zk)− 1

n

∑n
k=1 Exf(Zk) ≥ t

)
≤ exp

{
− n
N ·

t2(1−2‖C(1)‖1)2

2cα2

}
, ∀t > 0, n ≥ 1. (3.6)

So in Theorem 3.1, the present transport inequality (3.2) (and concentration inequal-
ity (3.3)), contrary to previous results (3.5) (and (3.6) respectively), are dimension-free
in the sense that N does not explicitly appear in the quantitative estimates. But also

note that the quantity L :=
√∫

EN

∑N
i=1 d(xi, yi)2µ(dy) = W2,d

lN2

(δx, µ) appearing in the

bias Mx in (3.4) is dimension-dependent.
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Remark 3.4. By a result of Gozlan (for details see [8]): T2(c) is equivalent to dimension-
free concentration on product spaces, which is one main difference between T2 and T1.

Remark 3.5. It’s easy to show that the concentration inequality (3.3) is sharp: in fact,
take EN = RN , µ = γ

⊗
N where γ is the Gaussian law N (0, 1), then (Zk, k ≥ 1) is an

independent identically distributed sequence, C(2) = 0, c = 1, r1 = r∞ = 0, and so the
inequality (3.3) becomes sharp for f(x) = x1 : in this case, the inequality (3.3) is read
as:

Px

(
1

n

n∑
k=1

Z1
k −

1

n

n∑
k=1

ExZ1
k ≥ t

)
≤ exp

{
−nt

2

2

}
;

however, it’s well known that limn→∞
1
n logPx

(
1
n

∑n
k=1 Z

1
k − 1

n

∑n
k=1 ExZ1

k ≥ t
)

= − t
2

2 .

Next we emphasize differences and improvements of this theorem compared with
[17, Theorem 2.7](see (3.6)). Take f(x) =

∑l
i=1 g(xi), x = (x1, · · · , xN ), 1 ≤ l ≤ N,

where g : (E, d) → R is d-Lipschitzian with ‖g‖Lip(d) = α. Since ‖f‖Lip(d
lN2

) ≤ α
√
l, the

inequality (3.3) implies for all t > 0, n ≥ 1,

Px

(
1

n

n∑
k=1

l∑
i=1

g(Zik)− Ex
1

n

n∑
k=1

l∑
i=1

g(Zik) ≥ t

)

≤ exp

{
−n
l
·
t2(1−

√
r∞r1/(1− r∞r1))2(1− ‖C(2)‖2)2

2cα2

}
, (3.7)

which is of speed n/l. However if one applies [17, Theorem 2.7](see (3.6)), one obtains
only the concentration inequality of speed n/N . In other words, for functions depending
on a small number of variables (in particular, the case l = 1), this current theorem
improves essentially those in [17, Theorem 2.7].

Remark 3.6. Let E is a Riemannian manifold. The assumption (H2) can be verified
by Bakry-Emery’s Γ2-criterion ([10, Theorem 5.2]) or the more general criterion of F.Y.
Wang (see [9]) for the log-Sobolev inequality (which is stronger than T2(c) by Otto-Villani
[14]), or the very general sufficient condition of Lyapunov function method for T2(c) by
Cattiaux et al. [2].

4 Proofs of the main results

4.1 The construction of the coupling.

Given any two initial distributions ν1 and ν2 on E
N , we begin by constructing our

coupled non-homogeneous Markov chain (Xi, Yi)i≥0, which is similar to the coupling in
[17] or [13].

Let (X0, Y0) be a coupling of (ν1, ν2). And given

(XkN+i−1, YkN+i−1) = (x, y) ∈ EN × EN , k ∈ N, 1 ≤ i ≤ N,

then
Xj
kN+i = xj , Y jkN+i = yj , j 6= i,

and
P((Xi

kN+i, Y
i
kN+i) ∈ ·|(XkN+i−1, YkN+i−1) = (x, y)) = π(·|x, y),

where π(·|x, y) is an optimal coupling of µi(·|x) and µi(·|y) such that(∫∫
E2

d2(x̃, ỹ)π(dx̃, dỹ|x, y)

)1/2

= W2,d(µi(·|x), µi(·|y)).
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(For the existence of such a coupling, refer to Villani [16].) Define the partial order on
RN by a ≤ b if and only if ai ≤ bi, i = 1, · · · , N. Then, by the triangle inequality for the
metric W2,d,

W2,d(µi(·|x), µi(·|y)) ≤
N∑
j=1

c
(2)
ij d(xj , yj), 1 ≤ i ≤ N. (4.1)

We have for ∀k ∈ N, 1 ≤ i ≤ N,

E[d2(Xi
i , Y

i
i )|(Xi−1, Yi−1)] ≤

 N∑
j=1

c
(2)
ij d(Xj

i−1, Y
j
i−1)

2

≤

 N∑
j=1

c
(2)
ij

 N∑
j=1

c
(2)
ij d

2(Xj
i−1, Y

j
i−1)

 ,

and so
E[d2(X1

kN+i, Y
1
kN+i)|XkN+i−1, YkN+i−1]

...

...
E[d2(XN

kN+i, Y
N
kN+i)|XkN+i−1, YkN+i−1]

 ≤ Ai


d2(X1
kN+i−1, Y

1
kN+i−1)

...

...
d2(XN

kN+i−1, Y
N
kN+i−1)

 ,

where

Ai =



1
. . .

1

sic
(2)
i1 sic

(2)
i2 · · · · · · · · · sic

(2)
iN

1
. . .

1


(the blank in the matrix means 0),

and

si :=

N∑
j=1

c
(2)
ij .

Therefore by iterations, we have
Ed2(X1

N , Y
1
N )

...

...
Ed2(XN

N , Y
N
N )

 ≤ ANAN−1 · · ·A1


Ed2(X1

0 , Y
1
0 )

...

...
Ed2(XN

0 , Y
N
0 )

 . (4.2)

Let

B := ANAN−1 · · ·A1. (4.3)

By (4.2) above, Markov property and iterations,
Ed2(X1

kN , Y
1
kN )

...

...
Ed2(XN

kN , Y
N
kN )

 ≤ Bk


Ed2(X1
0 , Y

1
0 )

...

...
Ed2(XN

0 , Y
N
0 )

 . (4.4)
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4.2 Proof of the main results

For prove Theorem 3.1, we first need to prove a few lemmas.

Let c̃ij = sic
(2)
ij , i, j = 1, · · · , N, C̃ = (c̃ij)N×N , then

‖C̃‖1 := max
1≤j≤N

N∑
i=1

c̃ij = max
1≤j≤N

N∑
i=1

sic
(2)
ij = max

1≤j≤N

N∑
i=1

N∑
k=1

c
(2)
ik c

(2)
ij

= max
1≤j≤N

N∑
k=1

((C(2))TC(2))kj = ‖(C(2))TC(2)‖1

≤ ‖(C(2))T ‖1‖C(2)‖1 = r∞r1,

where (C(2))T denotes the transposition of the matrix (C(2)).

Lemma 4.1. Assume r∞r1 < 1, then for the matrix B given in (4.3),

‖B‖1 := max
1≤j≤N

N∑
k=1

Bkj ≤
r∞r1

1− r∞r1
. (4.5)

In particular

W2,d
lN2

(P (x, ·), P (y, ·)) ≤
√

r∞r1

1− r∞r1
dlN2 (x, y), ∀x, y ∈ EN . (4.6)

Proof. The last conclusion (4.6) follows from (4.5) and (4.2). We only need to show (4.5).
Just take the matrix C̃ in place of the matrix C in [17, Lemma 3.2](i.e., c̃ij takes place
of cij , i, j = 1, · · · , N ). Here we give a sketch of the proof (for details refer to the proof
of [17, Lemma 3.2]): first we obtain for 1 ≤ k ≤ N,

Bkj =

{
0, if j = 1,∑j−1
h=1

(∑k−1
l=1

∑
k>il>···>i2>i1=h c̃k,il c̃il,il−1

· · · c̃i2,i1=hc̃h,j + c̃h,j1h=k

)
, if 2 ≤ j ≤ N.

(4.7)
And then for fixed j : 2 ≤ j ≤ N, when l : 1 ≤ l ≤ N − 1 and h : 1 ≤ h ≤ j − 1,

N∑
k=1

∑
k>il>···>i2>i1=h

c̃k,il c̃il,il−1
· · · c̃i2,i1=h ≤

N∑
k=1

(C̃l)kh ≤ ‖C̃l‖1 ≤ (r∞r1)l,

thus by calculation we can show for 2 ≤ j ≤ N,
∑N
k=1Bkj ≤ r∞r1 + · · · + (r∞r1)N ≤

r∞r1
1−r∞r1 .

Lemma 4.2. Assume (H1) and (H2), then

P (x0, ·) ∈ T2,d
lN2

(
c

(1− ‖C(2)‖2)2

)
,∀x0 = (x1

0, · · · , xN0 ) ∈ EN .

Proof. The proof is similar to the one used by [3, Theorem 2.5] or [17, Lemma 3.4].
First for simplicity denote P (x0, ·) by P and note that for 1 ≤ i ≤ N,

X1
N = X1

1 , · · · , Xi
N = Xi

i ,

P (Xi
N ∈ ·|X1

N , · · · , Xi−1
N ) = µi(·|X1

N , · · · , Xi−1
N , xi+1

0 , · · · , xN0 ),
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and thus

W2,d(P (Xi
N ∈ ·|X1

N = x1, · · · , Xi−1
N = xi−1), P (Xi

N ∈ ·|X1
N = y1, · · · , Xi−1

N = yi−1))

≤
i−1∑
j=1

c
(2)
ij d(xj , yj).

For any probability measure Q on EN such that H(Q|P ) < ∞, let Qi(·|x[1,i−1]) be the
regular conditional law of xi knowing x[1,i−1], where i ≥ 2, x[1,i−1] = (x1, · · · , xi−1), and
Qi(·|x[1,i−1]) the law of x1 for i = 1, all under law Q. Define Pi(·|x[1,i−1]) similarly but
under P . We shall use the Kullback information between conditional distributions,

Hi(y
[1,i−1]) = H(Qi(·|y[1,i−1])|Pi(·|y[1,i−1])),

and exploit the following important identity:

H(Q|P ) =

N∑
i=1

∫
EN

Hi(y
[1,i−1])dQ(y).

The key is to construct an appropriate coupling of Q and P, that is, two random se-
quences Y [1,N ] andX [1,N ] taking values on EN distributed according toQ and P, respec-
tively, on some probability space (Ω,F,P). We define a joint distribution L(Y [1,N ], X [1,N ])

by induction as follows (the Marton coupling).
At first the law of (Y 1, X1) is the optimal coupling of Q(x1 ∈ ·) and P (x1 ∈ ·) (=

µ1(·|x0)) such that
E(d2(Y 1, X1)) = W 2

2,d(Q(x1 ∈ ·), P (x1 ∈ ·)).

Assume that for some i, 2 ≤ i ≤ N, (Y [1,i−1], X [1,i−1]) = (y[1,i−1], x[1,i−1]) is given. Then
the joint conditional distribution L(Y i, Xi|Y [1,i−1] = y[1,i−1], X [1,i−1] = x[1,i−1]) is the
optimal coupling of Qi(·|y[1,i−1]) and Pi(·|x[1,i−1]), that is

E(d2(Y i, Xi)|Y [1,i−1] = y[1,i−1], X [1,i−1] = x[1,i−1]) = W 2
2,d(Qi(·|y[1,i−1]), Pi(·|x[1,i−1])).

Obviously, Y [1,N ], X [1,N ] are of law Q,P respectively. By the triangle inequality for the
W2,d distance,

E(d2(Y i, Xi)|Y [1,i−1] = y[1,i−1], X [1,i−1] = x[1,i−1])

≤
[
W2,d(Qi(·|y[1,i−1]), Pi(·|y[1,i−1])) +W2,d(Pi(·|y[1,i−1]), Pi(·|x[1,i−1]))

]2
≤

W2,d(Qi(·|y[1,i−1]), Pi(·|y[1,i−1])) +

i−1∑
j=1

c
(2)
ij d(xj , yj)

2

.

The above inequality gives us

N∑
i=1

Ed2(Y i, Xi) ≤
N∑
i=1

E

W2,d(Qi(·|Y [1,i−1]), Pi(·|Y [1,i−1])) +

i−1∑
j=1

c
(2)
ij d(Xj , Y j)

2

.

Let ξ =
(
d(Y i, Xi)

)
i=1,··· ,N , η =

(
W2,d(Qi(·|Y [1,i−1]), Pi(·|Y [1,i−1]))

)
i=1,··· ,N , and note

that the norm of a general random vector a = (ai)i=1,··· ,N is defined to be
√∑N

i=1 E(ai)2(=:

‖a‖2), then
‖ξ‖2 ≤ ‖η + C(2)ξ‖2 ≤ ‖η‖2 + ‖C(2)‖2‖ξ‖2.
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So

‖ξ‖2 ≤
‖η‖2

1− ‖C(2)‖2
≤

√∑N
i=1 E[2cHi(Y [1,i−1])]

1− ‖C(2)‖2
=

√
2cH(Q|P )

1− ‖C(2)‖2
.

Hence

W2,d
lN2

(Q,P ) ≤

√
2cH(Q|P )

(1− ‖C(2)‖2)2
,

i.e., P = P (x0, ·) ∈ T2,d
lN2

(
c

(1−‖C(2)‖2)2

)
.

In order to prove Theorem 3.1, we need the following dependent tensorization of
T2(from the result of Djellout-Guillin-Wu [3, Theorem 2.5]).

Lemma 4.3. ([3, Theorem 2.5] ) Let P be a probability measure on the product space
(En,Bn), n ≥ 2. For any x = (x1, · · · , xn) ∈ En, x[1,i] := (x1, · · · , xi). Let Pi(·|x[1,i−1])

denote the regular conditional law of xi given x[1,i−1] under P for 2 ≤ i ≤ n, and
Pi(·|x[1,i−1]) be the distribution of x1 for i = 1 where x[1,0] denotes some fixed point
x0 on E.

Assume that

(1) For some metric d on E, there is a constant κ > 0 such that Pi(·|x[1,i−1]) ∈ T2(κ)

on (E, d) for all i ≥ 1, x[1,i−1] in Ei−1(E0 := {x0});
(2) there exist aj ≥ 0 with r2 :=

∑∞
j=1 a

2
j < 1 such that

[W2,d(Pi(·|x[1,i−1]),Pi(·|x̃[1,i−1]))]
2 ≤

i−1∑
j=1

(aj)
2d2(xi−j , x̃i−j), (4.8)

for all i ≥ 1, x[1,i−1], x̃[1,i−1] in Ei−1.

Then for any probability measure Q on En,

W2,dln2
(Q,P) ≤

√
2κH(Q|P)

1− r
.

By Lemma 4.3 above, we can obtain the following key lemma, which can be consid-
ered as the main theoretical result of this paper.

Lemma 4.4. On the path space (EN )n, consider the following (dl2)l2 -metric

(dl2)l2(ω, ω̃) :=

 n∑
k=1

N∑
j=1

d2(ωjk, ω̃
j
k)

1/2

, ω, ω̃ ∈ (EN )n.

Let Px be the distribution of our Gibbs sampling (Z1, · · · , Zn) on (EN )n equipped with
the Borel-σ algebra, where the starting point x ∈ EN is arbitrary. Assume r∞r1 <

1
2 and

(H2). Then for any probability measure Q on ((EN )n, (dl2)l2), we have

W2,(dl2 )l2
(Q,Px) ≤

√
2cH(Q|Px)/(1− ‖C(2)‖2)2

1−
√
r∞r1/(1− r∞r1)

,

In other words

Px ∈ T2,(dl2 )l2

(
c

[1−
√
r∞r1/(1− r∞r1)]2(1− ‖C(2)‖2)2

)
.
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Proof. We will apply Lemma 4.3 with (E, d) (and Pi(·|x[1,i−1])) being (EN , dlN2 ) (and
(P (x, ·)) respectively. By the Remark 3.2, (H1) holds. By (H2) and Lemma 4.2, P (x, ·)
satisfies Talagrand’s T2-transport inequality uniformly on x ∈ EN ,i.e., the first assump-
tion of Lemma 4.3 holds. Since r∞r1 < 1

2 , by (4.6) of Lemma 4.1, the contraction

constant r in Lemma 4.3 satisfies r ≤
√

r∞r1
1−r∞r1 (< 1). So Lemma 4.3 yields the desired

result.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. By the Remark 3.2, r∞r1 <
1
2 implies (H1), and because of as-

sumption (H2), Lemma 4.2 yields part (a) of Theorem 3.1.
Let F (Z1, · · · , Zn) = 1

n

∑n
k=1 f(Zk), then the Lipschitzian norm ‖F‖Lip of F with

respect to the metric (dl2)l2 is not greater than ‖f‖Lip(d
lN2

)/
√
n ≤ α/

√
n. Let Px be

the law of (Z1, · · · , Zn) on (EN )n, then by Lemma 4.4 and the famous Bobkov-Götze’s
criterion (see [17, Lemma 2.1]), we obtain the desired part (b) in Theorem 3.1.

For any x ∈ EN , let (Zk = XkN , Z
′
k = YkN ) be the coupled Markov chain with initial

condition (X0 = x, Y0) as a coupling of (δx, µ), constructed at the beginning of this
section. we have

| 1
n

n∑
k=1

Ex(f(Zk))− µ(f)| ≤ 1

n

n∑
k=1

|Ex(f(Zk))− µ(f)| ≤ 1

n

n∑
k=1

E|f(Zk)− f(Z
′

k)|

≤ 1

n

n∑
k=1

‖f‖Lip(d
lN2

)EdlN2 (Zk, Z
′

k) ≤ 1

n

n∑
k=1

‖f‖Lip(d
lN2

)

√
Ed2

lN2
(Zk, Z

′
k),

the last inequality holds because of Jensen’s inequality.
By (4.4) and Lemma 4.1, the last term is bounded from above by

1

n

n∑
k=1

‖f‖Lip(d
lN2

)

√
‖Bk‖1Ed2

lN2
(X0, Y0) ≤ 1

n

n∑
k=1

‖f‖Lip(d
lN2

)

√
(

r∞r1

1− r∞r1
)kEd2

lN2
(X0, Y0)

≤ α

n

√
r∞r1√

1− r∞r1 −
√
r∞r1

√√√√∫
EN

N∑
i=1

d(xi, yi)2µ(dy).

Thus we obtain part (c) in Theorem 3.1 from its part (b).
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