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Abstract

For a strictly stationary sequence of regularly varying random variables we study
functional weak convergence of partial sum processes in the space D[0, 1] with the
Skorohod J1 topology. Under the strong mixing condition, we identify necessary and
sufficient conditions for such convergence in terms of the corresponding extremal
index. We also give conditions under which the regular variation property is a neces-
sary condition for this functional convergence in the case of weak dependence.
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1 Introduction

Let (Xn) be a strictly stationary sequence of real-valued random variables. If the se-
quence (Xn) is i.i.d. then it is well known (see for example Gnedenko and Kolmogorov [8],
Rvačeva [16], Feller [7]) that there exist real sequences (an) and (bn) such that

1

an

n∑
k=1

(Xk − bn)
d−→ S, (1.1)

for some non-degenerate α–stable random variable S with α ∈ (0, 2) if and only if X1 is
regularly varying with index α ∈ (0, 2), that is,

P(|X1| > x) = x−αL(x), (1.2)

where L( · ) is a slowly varying function at ∞ and the tails are balanced: there exist
p, q ≥ 0 with p+ q = 1 such that

P(X1 > x)

P(|X1| > x)
→ p and

P(X1 < −x)

P(|X1| > x)
→ q, (1.3)

as x → ∞. As α is less than 2, the variance of X1 is infinite. The functional general-
ization of (1.1) has been studied extensively in probability literature. Define the partial
sum processes

Vn(t) =
1

an

bntc∑
k=1

Xk − tbn, t ∈ [0, 1],
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Functional weak convergence

where the sequences (an) and (bn) are chosen as

nP(|X1| > an)→ 1 and bn =
n

an
E
(
X1 1{|X1|≤an}

)
.

Here bxc represents the integer part of the real number x. In functional limit theory
one investigates the asymptotic behavior of the processes Vn( · ) as n → ∞. Since
the sample paths of Vn( · ) are elements of the space D[0, 1] of all right-continuous real
valued functions on [0, 1] with left limits, it is natural to consider the weak convergence
of distributions of Vn( · ) with the one of Skorohod topologies on D[0, 1] introduced in
Skorohod [18].

A functional limit theorem for processes Vn( · ) for infinite variance i.i.d. regularly
varying sequences (Xn) was established by Skorohod [19]. Under some weak depen-
dence conditions, weak convergence of partial sum processes in the Skorohod J1 topol-
ogy were obtained by Leadbetter and Rootzén [12] and Tyran-Kamińska [20]. They give
a characterization of the J1 convergence in terms of convergence of the corresponding
point processes of jumps. Further in [20] are given sufficient conditions for such con-
vergence when the stationary sequence is strongly mixing. One of them is a certain
local dependence condition, which is implied by the local dependence condition D′ of
Davis [5]. It prevents clustering of large values of |Xn|, which allows the J1 convergence
to hold, since the J1 topology is appropriate when extreme values do not cluster.

After recalling relevant notations and background in Section 2, in Section 3 we char-
acterize the functional J1 convergence of the partial sum process of a strictly stationary
strongly mixing sequence (Xn) of regularly varying random variables in terms of the the
extremal index of the sequence (|Xn|), which is a standard tool in describing clustering
of large values. When clustering of large values occurs J1 convergence fails to hold, al-
though convergence with respect to the weaker Skorohod M1 topology might still hold.
Recently Basrak et al. [2] gave sufficient conditions for functional limit theorem with
the M1 topology to hold for stationary, jointly regularly varying sequences for which all
extremes within each cluster of high-threshold excesses have the same sign.

The regular variation property is a necessary condition for the J1 convergence of
the partial sum process in the i.i.d. case (see for example Corollary 7.1 in Resnick [15]).
In Section 4 we extend this result to the weak dependent case when clustering of large
values do not occur.

2 Preliminaries

In this section we introduce some basic tools and notions to be used throughout the
paper.

2.1 Regular Variation

Let E = R \ {0}, where R = [−∞,∞]. The space E is equipped with the topology by
which the Borel σ–algebras B(E) and B(R) coincide on R \ {0}. A set B ⊆ E is relatively
compact if it is bounded away from origin, that is, if there exists u > 0 such that B ⊆
E \ [−u, u]. Let M+(E) be the class of all Radon measures on E, i.e. all nonnegative
measures that are finite on relatively compact subsets of E. A useful topology forM+(E)

is the vague topology which renders M+(E) a complete separable metric space. If µn ∈
M+(E), n ≥ 0, then µn converges vaguely to µ0 (written µn

v−→ µ0) if
∫
f dµn →

∫
f dµ0

for all f ∈ C+
K(E), where C+

K(E) denotes the class of all nonnegative continuous real
functions on E with compact support.

Regular variation can be expressed in terms of vague convergence of measures on
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Functional weak convergence

E. Relation (1.2) together with (1.3) are equivalent to

nP(a−1n X1 ∈ · )
v−→ µ( · ) as n→∞,

the Radon measure µ on E being given by

µ(dx) =
(
pαx−α−11(0,∞)(x) + qα(−x)−α−11(−∞,0)(x)

)
dx, (2.1)

where p and q are as in (1.3).
Using standard regular variation arguments it can be shown that for every λ > 0 it

holds that
abλnc

an
→ λ1/α as n→∞.

Therefore an can be represented as

an = n1/αL′(n),

where L′( · ) is a slowly varying function at∞.

2.2 Skorohod J1 and M1 topologies

Since the stochastic processes that we consider in this paper have discontinuities,
for the function space of sample paths of these stochastic processes we take the space
D[0, 1] of all right-continuous real valued functions on [0, 1] with left limits. Usually
the space D[0, 1] is endowed with the Skorohod J1 topology, which is appropriate when
clustering of large values do not occur.

The metric dJ1 that generates the J1 topology on D[0, 1] is defined in the following
way. Let ∆ be the set of strictly increasing continuous functions λ : [0, 1] → [0, 1] such
that λ(0) = 0 and λ(1) = 1, and let e ∈ ∆ be the identity map on [0, 1], i.e. e(t) = t for all
t ∈ [0, 1]. For x, y ∈ D[0, 1] define

dJ1(x, y) = inf{‖x ◦ λ− y‖[0,1] ∨ ‖λ− e‖[0,1] : λ ∈ ∆},

where ‖x‖[0,1] = sup{|x(t)| : t ∈ [0, 1]} and a ∨ b = max{a, b}. Then dJ1 is a metric on
D[0, 1] and is called the Skorohod J1 metric.

When stochastic processes exhibit rapid successions of jumps within temporal clus-
ters of large values, collapsing in the limit to a single jump, the J1 topology become
inappropriate since the J1 convergence fails to hold. This difficulty can be overcame
by using a weaker topology in which the functional convergence may still hold. i.e. the
Skorohod M1 topology.

The M1 metric dM1 that generates the M1 topology is defined using the completed
graphs. For x ∈ D[0, 1] the completed graph of x is the set

Γx = {(t, z) ∈ [0, 1]×R : z = λx(t−) + (1− λ)x(t) for someλ ∈ [0, 1]},

where x(t−) is the left limit of x at t. Thus the completed graph of x besides the
points of the graph {(t, x(t)) : t ∈ [0, 1]} contains also the vertical line segments join-
ing (t, x(t)) and (t, x(t−)) for all discontinuity points t of x. We define an order on
the graph Γx by saying that (t1, z1) ≤ (t2, z2) if either (i) t1 < t2 or (ii) t1 = t2 and
|x(t1−)− z1| ≤ |x(t2−)− z2|. A parametric representation of the completed graph Γx is
a continuous nondecreasing function (r, u) mapping [0, 1] onto Γx, with r being the time
component and u being the spatial component. Denote by Π(x) the set of parametric
representations of the graph Γx. For x1, x2 ∈ D[0, 1] define

dM1(x1, x2) = inf{‖r1 − r2‖[0,1] ∨ ‖u1 − u2‖[0,1] : (ri, ui) ∈ Π(xi), i = 1, 2}.
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This definition introduces dM1
as a metric on D[0, 1]. The induced topology is called the

Skorohod M1 topology.

The J1 and M1 metrics are related by the following inequality

dM1(x, y) ≤ dJ1(x, y), x, y ∈ D[0, 1]

(see for instance Theorem 6.3.2 in Whitt [21]).

Define the maximum (absolute) jump functional T : D[0, 1]→ R by

T (x) = sup{|x(t)− x(t−)| : t ∈ [0, 1]}, x ∈ D[0, 1]. (2.2)

The supremum in (2.2) is always attained, because for any ε > 0 a function x ∈
D[0, 1] has finitely many jumps of magnitude greater than ε (cf. Whitt [21], page 98). If
dM1(xn, x)→ 0, by Lemma 4.1 of Pang and Whitt [14] (cf. Whitt [21], Corollary 12.11.3)
it follows that

lim sup
n→∞

T (xn) ≤ T (x). (2.3)

Lemma 2.1. The functional T : D[0, 1] → R is continuous on D[0, 1] when D[0, 1] is
endowed with the Skorohod J1 topology.

Proof. Take an arbitrary x ∈ D[0, 1] and suppose that dJ1(xn, x)→ 0 in D[0, 1]. Since the
J1 convergence implies theM1 convergence, by relation (2.3) we have lim supn→∞ T (xn) ≤
T (x).

From the definition of the functional T , we know that there exists some t0 ∈ (0, 1]

such that |x(t0) − x(t0−)| = T (x). From the definition of the J1 metric, there exists a
sequence (tn) in [0, 1] such that tn → t0, xn(tn)→ x(t0) and xn(tn−)→ x(t0−) as n→∞
(it suffices to let tn = λn(t0) where ‖λn − e‖[0,1] → 0 and ‖xn ◦ λn − x‖[0,1] → 0). Hence

|xn(tn)− xn(tn−)| → |x(t0)− x(t0−)| = T (x) as n→∞.

Nothing that

T (xn) = sup{|xn(t)− xn(t−)| : t ∈ [0, 1]} ≥ |xn(tn)− xn(tn−)|,

we obtain lim infn→∞ T (xn) ≥ T (x). Therefore limn→∞ T (xn) = T (x), and we conclude
that T is continuous at x.

Remark 2.2. Similar results as in Lemma 2.1 hold for the maximum positive and neg-
ative jump functionals T+, T− : D[0, 1]→ R defined by

T+(x) = sup{|x(t)− x(t−)|1{x(t)−x(t−)>0} : t ∈ [0, 1]},

T−(x) = sup{|x(t)− x(t−)|1{x(t)−x(t−)<0} : t ∈ [0, 1]},

for x ∈ D[0, 1]. Precisely, the functionals T+ and T− are continuous on D[0, 1] when
D[0, 1] is endowed with the Skorohod J1 topology. This can be proven using a slight
modification of the proof of Lemma 4.1 in Pang and Whitt [14] and the procedure used
in the proof of Lemma 2.1 (we omit the details here).

For more discussion about the J1 and M1 topologies we refer to Resnick [15], section
3.3.4 and Whitt [21], sections 12.3–12.5.
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2.3 Weak dependence

A strictly stationary sequence (ξn) has extremal index θ if for every τ > 0 there exists
a sequence of real numbers (un) such that

lim
n→∞

nP(ξ1 > un)→ τ and lim
n→∞

P

(
max
1≤i≤n

ξi ≤ un
)
→ e−θτ . (2.4)

It holds that θ ∈ [0, 1]. In particular, if the ξn are i.i.d. then (2.4) can hold only for
θ = 1. Dependent random variables can also have extremal index equal to 1. For this
it suffices that they satisfy the extreme mixing conditions D(un) and D′(un) introduced
by Leadbetter [10], [11]. The extremal index can be interpreted as the reciprocal mean
cluster size of large exceedances (cf. Hsing et al. [9]). When θ < 1 clustering of extreme
values occurs. If the sequence (ξn) is strongly mixing and the ξn’s are regularly varying
then for θ to be the extremal index of (ξn) it suffices that (2.4) holds for some τ > 0 (cf.
Leadbetter and Rootzén [12], page 439).

In order to restrict the dependence in the sequence (Xn) we will use the strong
mixing condition. Let (Ω,F ,P) be a probability space. For any σ-field A ⊂ F , let L2(A)

denote the space of square-integrable, A-measurable, real-valued random variables.
For any two σ-fields A,B ⊆ F define

α(A,B) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ A, B ∈ B}

For a sequence (Xn) of random variables on (Ω,F ,P), we define F lk = σ({Xi : k ≤ i ≤
l}). Then we say the sequence (Xn) is α–mixing (or strongly mixing) if

αn = sup
j≥1

α(F j1 ,F∞j+n)→ 0 as n→∞.

Let (un) be a sequence of real numbers and (qn) any sequence of positive integers
with qn →∞ as n→∞ and qn = o(n). O’Brien [13] showed that if the sequence (Xn) is
strongly mixing and there exists a sequence (pn) of positive integers such that pn = o(n),
nαqn = o(pn), qn = o(pn), and either lim inf[P(X1 ≤ un)]n > 0 or lim inf P(M2,pn ≤
un|X1 > un) > 0, then

P(Mn ≤ un)− [P(X1 ≤ un)]nP(M2,pn≤un|X1>un) → 0 as n→∞, (2.5)

where Mi,j = max{Xk : k = i, . . . , j}.

3 Limit theorem with J1 convergence

Let (Xn) be a strongly mixing and strictly stationary sequence of regularly varying
random variables with index α ∈ (0, 2). Let (an) be a sequence of positive real numbers
such that

nP(|X1| > an)→ 1 as n→∞. (3.1)

Tyran-Kamińska [20] showed that under a certain "vanishing small values" condition
when α ∈ [1, 2) (see Condition 3.2 below), the partial sum process

Vn(t) =

[nt]∑
k=1

Xk

an
− ntE

(
X1

an
1{ |X1|

an
≤1
}), t ∈ [0, 1],

satisfies a nonstandard functional limit theorem in the space D[0, 1] equipped with the
Skorohod J1 topology, with a Lévy α–stable process as a limit if and only if the following
local dependence condition holds:
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Condition 3.1. For any x > 0 there exist sequences of integers pn = pn(x), qn =

qn(x)→∞ such that

pn = o(n), nαqn = o(pn), qn = o(pn) as n→∞,

and

lim
n→∞

P

(
max

2≤i≤pn
|Xi| > xan

∣∣∣∣ |X1| > xan

)
= 0. (3.2)

Here (αn) is the sequence of α–mixing coefficients of (Xn).

We will show a similar result, but with a certain condition involving the extremal
index of the sequence (|Xn|) instead of Condition 3.1. Roughly speaking Condition 3.1
prevents clustering of large values of |Xn|. In terms of the extremal index θ of the
sequence (|Xn|), the non-clustering of large values occurs when θ = 1. Hence it is
expected that the functional J1 convergence of the partial sum process holds if and only
if the sequence (|Xn|) has extremal index equal to 1, which we formally prove in the
theorem below.

Recall that the distribution of a Lévy process W ( · ) is characterized by its character-
istic triplet, i.e. the characteristic triplet of the infinitely divisible distribution of W (1).
The characteristic function of W (1) and the characteristic triplet (a, µ, b) are related in
the following way:

E[eizW (1)] = exp

(
−1

2
az2 + ibz +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
µ(dx)

)
for z ∈ R; here a ≥ 0, b ∈ R are constants, and µ is a measure on R satisfying

µ({0}) = 0 and

∫
R

(|x|2 ∧ 1)µ(dx) <∞,

that is, µ is a Lévy measure. For a textbook treatment of Lévy processes we refer to
Bertoin [3] and Sato [17].

In this section we identify some necessary and sufficient conditions for the J1 con-
vergence of partial sum processes Vn( · ) to a Lévy stable process. In case α ∈ [1, 2), we
will need to assume that the contribution of the smaller increments of the partial sum
process is close to its expectation.

Condition 3.2. For all δ > 0,

lim
u↓0

lim sup
n→∞

P

[
max

0≤k≤n

∣∣∣∣ k∑
i=1

(
Xi

an
1{ |Xi|

an
≤u
} − E

(
Xi

an
1{ |Xi|

an
≤u
}))∣∣∣∣ > δ

]
= 0.

Theorem 3.3. Let (Xn) be a strictly stationary sequence of regularly varying random
variables with index α ∈ (0, 2). Assume the sequence (Xn) is strongly mixing, and if
1 ≤ α < 2, also suppose that Condition 3.2 holds. Then

Vn
d−→ V, n→∞,

in D[0, 1] endowed with the J1 topology, where V ( · ) is an α–stable Lévy process with
characteristic triplet (0, µ, 0) and µ as in (2.1), if and only if the sequence (|Xn|) has
extremal index θ = 1.
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Proof. First assume the sequence (|Xn|) has extremal index θ = 1. Let (qn) be any
sequence of positive integers such that qn → ∞ and qn = o(n). Fix an arbitrary x >

0 and put pn = max{bn√αqnc, b
√
nqnc + 1}, where (αn) is the sequence of α–mixing

coefficients of (Xn). Then it can easily be seen that pn = o(n), nαqn = o(pn) and
qn = o(pn). Since by a standard regular variation argument

lim
n→∞

[P(|X1| ≤ xan)]n = lim
n→∞

[
1− nP(|X1| > xan)

n

]n
= e−x

−α
, (3.3)

i.e. lim infn→∞[P(|X1| ≤ xan)]n = e−x
−α

> 0, from relation (2.5) we obtain that, as
n→∞,

P

(
max
1≤i≤n

|Xi| ≤ xan
)
− [P(|X1| ≤ xan)]tn → 0, (3.4)

where tn = nP(max2≤i≤pn |Xi| ≤ xan | |X1| > xan).

Let (X̂n) be the associated independent sequence of (Xn), i.e. (X̂n) is an i.i.d. se-

quence with X̂1
d
= X1. Then by Theorem 2.2.1 in Leadbetter and Rootzén [12]

P

(
max
1≤i≤n

|Xi| ≤ xan
)
→ Gθ(x) as n→∞, (3.5)

where

G(x) = lim
n→∞

P

(
max
1≤i≤n

|X̂i| ≤ xan
)

= lim
n→∞

[P(|X̂1| ≤ xan)]n = e−x
−α
.

Since θ = 1, from (3.5) we obtain

P

(
max
1≤i≤n

|Xi| ≤ xan
)
→ e−x

−α
as n→∞. (3.6)

Therefore, from (3.4) and (3.6) we obtain, as n→∞,

P

(
max

2≤i≤pn
|Xi| ≤ xan

∣∣∣∣ |X1| > xan

)
· ln[P(|X1| ≤ xan)]n → −x−α,

and taking into account relation (3.3) it follows that

P

(
max

2≤i≤pn
|Xi| > xan

∣∣∣∣ |X1| > xan

)
→ 0 as n→∞.

Therefore (3.2) holds and an application of Theorem 1.1 in Tyran-Kamińska [20] yields

that Vn
d−→ V in D[0, 1] with the Skorohod J1 topology.

Now assume Vn
d−→ V in D[0, 1] with the J1 topology. Since by Lemma 2.1 the func-

tional T is continuous, by the continuous mapping theorem we obtain

T (Vn) =
1

an

n∨
i=1

|Xi|
d−→ T (V ) as n→∞. (3.7)

Following the Lévy-Ito representation of Lévy processes, V ( · ) can be represented as

V (t) =
∑
tk≤t

jk1{|jk|>1} + lim
ε↓0

(∑
tk≤t

jk1{ε<|jk|≤1} − t
∫
ε<|x|≤1

xµ(dx)

)
,

with N =
∑
k δ(tk,jk) being a Poisson process with mean measure λ × µ, where λ is the

Lebesgue measure (see Resnick [15], page 150). Since T (V ) = sup{|jk| : tk ≤ 1}, we
have for every x > 0,

P(T (V ) ≤ x) = P(N([0, 1]× Ex) = 0) = e−x
−α
.
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Hence (3.7) yields

lim
n→∞

P

(
1

an

n∨
i=1

|Xi| ≤ x
)
→ e−x

−α
.

Taking x = 1, we obtain

lim
n→∞

P

( n∨
i=1

|Xi| ≤ an
)
→ e−1,

and from this, taking into account relation (3.1) we conclude that (|Xn|) has extremal
index equal to 1.

Remark 3.4. If random variables Xn are regularly varying with index α ∈ (0, 1), the
centering function in the definition of the process Vn( · ) can be removed and this re-
moving affects the characteristic triplet of the limiting process in the way we describe
here.

By Karamata’s theorem, as n→∞,

nE

(
X1

an
1{ |X1|

an
≤1
})→ (p− q) α

1− α
, (3.8)

where p and q are as in (2.1). Put b = (p−q)α/(1−α) and define the function x0 : [0, 1]→
R by x0(t) = bt. The function x0 is continuous, and hence it belongs to D[0, 1]. Further,
by standard arguments one can show that the function h : D[0, 1] → D[0, 1] defined by
h(x) = x + x0 is continuous (with respect to the J1 topology on D[0, 1]). Hence by the

continuous mapping theorem from Vn
d−→ V we obtain h(Vn)

d−→ h(V ).
Since the J1 metric on D[0, 1] is bounded above by the uniform metric on D[0, 1], for

every δ > 0 it holds

P

[
dJ1

(
h(Vn( · )),

bn ·c∑
i=1

Xi

an

)
> δ

]
≤ P

(
sup
t∈[0,1]

∣∣∣∣ntE

(
X1

an
1{ |X1|

an
≤1
})− bt∣∣∣∣ > δ

)

= P

(∣∣∣∣nE

(
X1

an
1{ |X1|

an
≤1
})− b∣∣∣∣ > δ

)
.

Hence (3.8) yields

lim
n→∞

P

[
dJ1

(
h(Vn( · )),

bn ·c∑
i=1

Xi

an

)
> δ

]
= 0,

and an application of Slutsky’s theorem (cf. Theorem 3.4 in Resnick [15]) leads to

bn · c∑
k=1

Xk

an

d−→ h(V ( · )) = V ( · ) + ( · )b

in D[0, 1] endowed with the J1 topology. The characteristic triplet of the limiting process
is therefore (0, µ, b).

Remark 3.5. The J1 convergence in Theorem 3.3 fails to hold when the extremal index
θ < 1. For example, the extremal index of the moving average process

Xn = Yn + Yn+1, n ∈ Z,

where (Yn) is an i.i.d. sequence of regularly varying random variables, is equal to 1/2

(cf. Leadbetter and Rootzén [12] or Embrechts et al. [6], page 415). By Theorem 1 of
Avram and Taqqu [1], the J1 convergence does not hold for this process.
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In this case the J1 topology is inappropriate as the partial sum process may exhibit
rapid successions of jumps within temporal clusters of large values, collapsing in the
limit to a single jump. In other words the J1 convergence could hold only if extreme
values do not cluster, i.e. when θ = 1.

When θ < 1, the functional convergence may still hold in the weaker M1 topology.
Sufficient conditions for such convergence were obtained by Basrak et al. [2].

4 Necessity of the regular variation condition

The theorem below gives a certain converse of Theorem 3.3. It gives conditions
under which the regular variation property of Xn’s is a necessary condition for the
functional J1 convergence of partial sum processes Vn( · ) to a Lévy stable process.
This can be viewed as a generalization of the corresponding result for i.i.d. random
variables (cf. Corollary 7.1 in Resnick [15]). In the dependent case some restrictions
on the sequence (Xn) are necessary, since in general the functional convergence may
hold although the random variables are not regularly varying. This can be seen in the
following example.

Example 4.1. Let (Xi) be a sequence of i.i.d. Pareto random variables with the tail
function P (Xi > x) = 1(−∞,1)(x) + x−1/21[1,∞)(x), x ∈ R. Hence Xi is regularly
varying with index α = 1/2. Assume Z is a random variable with the tail function
P (Z > x) = 1(−∞,e)(x) + (log x)−11[e,∞)(x), and independent of the sequence (Xi). Here
log x represents the natural logarithm of the positive real number x. Since the random
variables Xi are i.i.d. and regularly varying it is well known that

bn ·c∑
i=1

Xi

an

d−→ Ṽ ( · ), n→∞, (4.1)

in D[0, 1] with the J1 topology, where the limiting process Ṽ ( · ) is an α–stable Lévy pro-
cess with characteristic triplet (0, µ, (p− q)α/(1−α)) with µ as in (2.1) (see for instance
Theorem 7.1 and Corollary 7.1 in Resnick [15]). This follows also from Theorem 3.3
since the i.i.d. sequence (Xi) has extremal index θ = 1.

Using again the fact that the J1 metric on D[0, 1] is bounded above by the uniform
metric on D[0, 1], for every δ > 0 we obtain

P

[
dJ1

( bn ·c∑
i=1

Xi

an
,

bn ·c∑
i=1

Xi

an
+ bn ·c Z

an

)
> δ

]
≤ P

(
sup
t∈[0,1]

∣∣∣∣bntc Zan
∣∣∣∣ > δ

)

= P

(
n

an
|Z| > δ

)
.

Recall that an can be represented as an = n1/αL′(n), with L′( · ) being a slowly varying
function at∞. Using this and Proposition 1.3.6 in Bingham et al. [4] we obtain

n

an
=

1

n1/α−1L′(n)
→ 0 as n→∞.

This implies P(n|Z|/an > δ)→ 0 as n→∞, and hence

lim
n→∞

P

[
dJ1

( bn ·c∑
i=1

Xi

an
,

bn ·c∑
i=1

Xi

an
+ bn ·c Z

an

)
> δ

]
= 0.

By Slutsky’s theorem, as n→∞,

bn ·c∑
i=1

Xi + Z

an
=

bn ·c∑
i=1

Xi

an
+ bn ·c Z

an

d−→ Ṽ ( · ),
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in D[0, 1] with the J1 topology. Therefore, the functional J1 convergence holds for the
sequence (Yi), where Yi = Xi + Z.

Let show now that random variables Yi are not regularly varying. For large x > 0 it
holds that P(Y1 > x) ≥ P(Z > x). If we assume Y1 is regularly varying, then it would
hold P(Y1 > x) = x−βL(x) for some β > 0 and some slowly varying function L( · ). Hence
x−βL(x) ≥ (log x)−1, i.e.

x−β/2L(x) ≥ xβ/2(log x)−1.

Letting x→∞, we obtain 0 on the left hand side of this inequality (by Proposition 1.3.6
in Bingham et al. [4]) and∞ on the right hand side, which is a contradiction. Therefore,
Y1 is not regularly varying.

Theorem 4.2. Let (Xn) be a strictly stationary sequence of random variables. Suppose
that (|Xn|) has extremal index θ = 1 and that the sequences (X+

n ) and (X−n ) have posi-

tive extremal indexes. If Vn
d−→ V in D[0, 1] endowed with the J1 topology, where V ( · ) is

an α–stable Lévy process with characteristic triplet (0, µ, 0),

µ(dx) =
(
pαx−α−11(0,∞)(x) + qα(−x)−α−11(−∞,0)(x)

)
dx,

(p, q ≥ 0, p+ q = 1) and α ∈ (0, 2), then

nP(a−1n X1 ∈ · )
v−→ µ( · ) as n→∞,

i.e. X1 is regularly varying with index α.

Proof. Let x > 0 be arbitrary. As in the second part of the proof of Theorem 3.3, applying

the functional T : D[0, 1]→ R to the convergence Vn
d−→ V we obtain

lim
n→∞

P

(
1

an

n∨
i=1

|Xi| ≤ x
)
→ e−x

−α
. (4.2)

In the same way, applying the functional T+ to the convergence Vn
d−→ V yields

lim
n→∞

P

(
1

an

n∨
i=1

X+
i ≤ x

)
→ e−px

−α
. (4.3)

Here we used the fact that

P(T+(V ) ≤ x) = P(N([0, 1]× (x,∞]) = 0) = e−px
−α
,

with N being a Poisson process with mean measure λ × µ (as described in the proof
of Theorem 3.3). Using Theorem 2.2.1 in Leadbetter and Rootzén [12], from (4.3) we
obtain

lim
n→∞

P

(
1

an

n∨
i=1

X̂+
i ≤ x

)
→ e−

p
θ1
x−α ,

where θ1 is the extremal index of (X+
n ) and (X̂n) is the associated independent sequence

of (Xn). Now by Lemma 1.2.2 in Leadbetter and Rootzén [12] (cf. also Proposition 7.1
in Resnick [15]) it holds that

nP(X+
1 > xan)→ p

θ1
x−α as n→∞. (4.4)

Repeating the same procedure for the functional T− we obtain

nP(X−1 > xan)→ q

θ2
x−α as n→∞, (4.5)
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where θ2 is the extremal index of (X−n ). In the same manner from (4.2) we get

nP(|X1| > xan)→ 1

θ
x−α = x−α as n→∞.

On the other hand,

nP(|X1| > xan) = nP(X+
1 > xan) + nP(X−1 > xan)→

( p
θ1

+
q

θ2

)
x−α as n→∞,

and hence we conclude that
p

θ1
+

q

θ2
= 1. (4.6)

Since θ1, θ2 ∈ (0, 1] and p + q = 1, from relation (4.6) we obtain θ1 = θ2 = 1. Now, from
(4.4) and (4.5) it follows (cf. Lemma 6.1 in Resnick [15])

nP(a−1n X1 ∈ · )
v−→ µ( · ) as n→∞.

Remark 4.3. If the random variables Xn that appear in Theorem 4.2 are positive,
then the conditions on extremal indexes of (|Xn|), (X+

n ) and (X−n ) reduce to a single
condition, i.e. that (Xn) has extremal index equal to 1. The same holds if the Xn are
negative.

Remark 4.4. From the functional M1 convergence of the partial sum process, using
arguments as in the proof of Theorem 4.2, we can not obtain the regular variation
property for random variables Xn. This is due to the fact that the maximum jump
functional T is not continuous on D[0, 1] with respect to the Skorohod M1 topology (see
the comment after Lemma 4.1 in Pang and Whitt [14]).
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