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1 Introduction

This short note is motivated by the work of Röckner and Zhang [21], where they
proved the uniqueness of solutions to degenerate Fokker–Planck equations with bounded
coefficients, satisfying a pointwise inequality. Before going to the details, we first in-
troduce some notations. Let σ : [0, T ] × Rd → Rd ⊗ Rm and b : [0, T ] × Rd → Rd be
measurable functions. Define the second order differential operator

Ltϕ(x) =
1

2

d∑
i,j=1

m∑
k=1

σikt (x)σjkt (x)∂ijϕ(x) +

d∑
i=1

bit(x)∂iϕ(x), ϕ ∈ C∞c (Rd), (1.1)

where ∂iϕ(x) = ∂ϕ
∂xi

(x) and ∂ijϕ(x) = ∂2ϕ
∂xi∂xj

(x), 1 ≤ i, j ≤ d. We consider the Fokker–
Planck equation

∂tµt = L∗tµt, µ|t=0 = µ0, (1.2)

where L∗t is the adjoint operator of Lt. Here is the rigorous meaning of this equation:
for any ϕ ∈ C∞c (Rd),

d

dt

∫
Rd
ϕ(x) dµt(x) =

∫
Rd
Ltϕ(x) dµt(x),

where the initial condition means that µt weakly∗ converges to µ0 as t tends to 0. If µt is
absolutely continuous with respect to the Lebesgue measure with the density function
ut for all t ∈ [0, T ], then the density function ut solves the PDE below in the weak sense:

∂tut = L∗tut, u|t=0 = u0. (1.3)
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Uniqueness of degenerate Fokker–Planck equations

We can now recall the main result of Röckner and Zhang [21]. They assume that the
coefficients σ and b are bounded and for any R > 0 and a.e. x, y ∈ B(R) := {z ∈ Rd :

|z| ≤ R},

2〈x− y, bt(x)− bt(y)〉+ ‖σt(x)− σt(y)‖2 ≤
(
fR,t(x) + fR,t(y)

)
|x− y|2, (1.4)

where fR ∈ Lq([0, T ] × B(R)) for some q ≥ 1. Under these conditions, they proved the
uniqueness of solutions to (1.3), in an integrability class depending on q, with probabil-
ity density ρ as the initial value u0. Their method is based on the natural connection
between Fokker–Planck equations and stochastic differential equations (SDE), see Sub-
section 2.1 for more details. We mention that (1.4) is satisfied when bt ∈ W 1,q

loc and
σt ∈ W 1,2∨q

loc with q > 1 for a.e. t ∈ [0, T ], but is in general not so when q = 1. Our
purpose in this work is to generalize Röckner and Zhang’s result to cover the case that
bt ∈ W 1,1

loc . Indeed, by employing Bouchut and Crippa’s estimate (see Theorem 2.15 of
the current paper), we can treat more general situation where the drift coefficient b has
a gradient given by a singular integral.

Here are our assumptions on the coefficients σ and b.

Assumption 1.1. Assume that

(H1) the functions σ and b are essentially bounded;

(H2) σ ∈ L2
(
[0, T ],W 1,2

loc (Rd)
)
;

(H3) for a.e. t ∈ (0, T ) and for every i, j = 1, . . . , d, we have

∂jb
i
t =

m0∑
k=1

Sijk
(
gijk(t)

)
holds in D′(Rd); (1.5)

where Sijk are singular integral operators of fundamental type inRd (see Definition

2.13 for the precise meaning) and the functions gijk ∈ L1((0, T )×Rd) for all i, j =

1, . . . , d and k = 1, . . . ,m0. In vectorial form, the above identity can be written as

∂jbt =

m0∑
k=1

Sjk(gjk(t)) holds in D′(Rd), for a.e. t ∈ (0, T ), (1.6)

in which Sjk is a vector consisting of d singular integral operators and for each
j = 1, . . . , d and k = 1, . . . ,m0, we have gjk ∈ L1

(
(0, T )×Rd,Rd

)
.

Some comments on the assumptions are in order. We assume σ and b are bounded
because we shall make use of a representation formula by Figalli (see [16, Theorem
2.6] or Theorem 2.5 below), where such boundedness condition are imposed on the
coefficients. The assumption (H2) on σ is natural, and it has already been used in
[18, 21, 20].

The motivation for considering the condition (H3) on the drift b comes from the re-
cent developments in the DiPerna–Lions theory, especially the papers [9, 10] by Bouchut
and Crippa, where the authors established the existence and uniqueness of flows associ-
ated to such vector field b. This theory has its origin in the celebrated work of DiPerna
and Lions [13], who proved that if b is a W 1,1

loc vector field with bounded divergence,
then there exists a unique flow of measurable maps generated by b which leaves the
Lebesgue measure quasi-invariant. Ambrosio [1] extended the main result in [13] to
the case where the vector field has only BV spatial regularity, see [2, 3] for more de-
tails. In the recent preprint [5], Ambrosio and Trevisan developed the DiPerna–Lions
theory in a rather general setting, that is, on metric measure spaces. This theory is
indirect in the sense that the authors first established the well-posedness of the corre-
sponding first order linear PDE (transport equation or continuity equation), from which
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Uniqueness of degenerate Fokker–Planck equations

they deduced the results on ODE. See [4, 14] for the developments in the infinite dimen-
sional Wiener space. Crippa and De Lellis [12] obtained some a-priori estimates on the
flow in the Lagrangian formulation, which enables them to give a direct construction of
the flow (see [23, 15] for the extension to the stochastic setting). While this approach
works very well when the vector field b has W 1,p

loc regularity with p > 1, it is not so for
the case p = 1. This motivates Bouchut and Crippa to further develop the direct method
to cover the case b ∈ W 1,1

loc . Indeed, they are able to deal with more general vector
fields b whose gradient is given by a singular integral, cf. [10]. Remark that this family
of functions include the Sobolev space W 1,1, but does not contain the BV class, nor is
contained in it.

We can now state the main result of this paper.

Theorem 1.2 (Uniqueness of Fokker–Planck equations). Under the assumptions (H1)–
(H3), for any given probability density function ρ on Rd, there is at most one weak
solution ut to the Fokker–Planck equation (1.3) in the class L∞

(
[0, T ], L1 ∩ L∞(Rd)

)
with u0 = ρ.

We recall some known results concerning the uniqueness of Fokker–Planck equa-
tions. Let P(Rd) be the set of probability measures on Rd. In the non-degenerate case,
it was shown in [6] that if in addition the diffusion coefficient σ is Lipschitz continuous
and the drift vector field b is locally integrable and coercive, then the uniqueness holds
for (1.2) in P(Rd) when the initial measure has finite entropy. On the other hand, Le
Bris and Lions [18] established the well-posedness of degenerate Fokker–Planck type
equations with coefficients fulfilling quite general Sobolev regularity, by extending the
DiPerna–Lions theory to this setting. In [20], we slightly generalize the main result in
[18] to the case where the drift b has only BV spatial regularity, in the spirit of [1].
The study of Fokker–Planck equations in the infinite dimensional setting can be found
in [7, 19]. Bogachev et al. considered in the recent paper [8] a class of second order
differential operators in divergence form, whose diffusion coefficient σ is written as the
product of a nonnegative function % (possibly unbounded and non-smooth) and a pos-
itive definite matrix A. They proved the uniqueness of solutions to (1.3) in a suitable
class, provided that A is bounded and Lipschitzian, and the vector field b in the drift
coefficient

√
% b is bounded too. We stress that, in Theorem 1.2, we require neither the

non-degeneracy condition nor Lipschitz continuity on σ, and the drift b has only very
weak differentiability which is not included in the BV class.

Remark 1.3. Before finishing this section, we give the following two remarks:

(i) This paper is only concerned with the uniqueness of solutions to the Fokker–Planck
equation (1.3). To show the existence of solutions to (1.3), one usually needs
some assumptions on the divergence of the coefficients, for instance [div(b)]− ∈
L1([0, T ], L∞(Rd)). Under such conditions, one can prove some a-priori estimates
on the solution u to (1.3), see e.g. [18, Section 5.2, p.1289] for more details.

(ii) The proof of Theorem 1.2 follows the line of arguments in [21, Theorem 1.1]. A
close look at the proof reveals that this method allows us to prove the pathwise
uniqueness of solutions to SDE (2.1), once we have some a-priori estimates on the
distributions of solutions, cf. [11, Theorem 1.1].

This paper is organized as follows. In Section 2, we first recall some well known re-
sults on the connection between Fokker–Planck equations and SDEs, then we introduce
the pointwise estimate of weakly differentiable functions with gradient given by a sin-
gular integral. Finally we prove in Section 3 our main result by following the arguments
in [21, 10].
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Uniqueness of degenerate Fokker–Planck equations

2 Preliminary results

In this section we recall some known results which are necessary for proving our
main result.

2.1 Connection between Fokker–Planck equations and SDEs

This subsection mainly follows the beginning parts of [21, Sections 1 and 2]. We
first introduce some notations. Denote by Wm

T = C([0, T ];Rm) the space of continuous
functions from [0, T ] to Rm. Let Fmt be the canonical filtration generated by coordi-
nate process Wt(w) = wt, w ∈ Wm

T . We write ν for the standard Wiener measure on
(Wm

T ,FmT ) so that t→Wt(w) is an m-dimensional standard Brownian motion.
Given bounded measurable functions σ : [0, T ]×Rd → Rd ⊗Rm and b : [0, T ]×Rd →

Rd, we consider the Itô SDE

dXt = σt(Xt) dWt + bt(Xt) dt, X|t=0 = X0. (2.1)

Let µt be the distribution of Xt. Then it is well known that, by Itô’s formula, µt is a
distributional solution to the Fokker–Planck equation (1.2).

Recall that P(Rd) is the set of probability measures on (Rd,B(Rd)). Here are two
well known notions of solutions to (2.1) in the theory of SDEs, which are stated in detail
to fix notations.

Definition 2.1 (Martingale solution). Given µ0 ∈ P(Rd), a probability measure Pµ0

on (Wd
T ,FdT ) is called a martingale solution to SDE (2.1) with initial distribution µ0 if

Pµ0 ◦ w−1
0 = µ0, and for any ϕ ∈ C∞c (Rd), ϕ(wt) − ϕ(w0) −

∫ t
0
Lsϕ(ws) ds is an (Fdt )-

martingale under Pµ0 .

Definition 2.2 (Weak solution). Let µ0 ∈ P(Rd). The SDE (2.1) is said to have a weak
solution with initial law µ0 if there exist a filtered probability space (Ω,G, (Gt)0≤t≤T , P ),
on which are defined a (Gt)-adapted continuous process Xt taking values in Rd and an
m-dimensional standard (Gt)-Brownian motion Wt, such that X0 is distributed as µ0 and
a.s.,

Xt = X0 +

∫ t

0

σs(Xs) dWs +

∫ t

0

bs(Xs) ds, ∀ t ∈ [0, T ].

We denote this solution by
(
Ω,G, (Gt)0≤t≤T , P ;X,W

)
.

The next result can be found in the proof of [17, Chap. IV, Theorem 1.1].

Proposition 2.3. Given two weak solutions
(
Ω(i),G(i),

(
G(i)
t

)
0≤t≤T , P

(i);X(i),W (i)
)
, i =

1, 2 to SDE (2.1), having the same initial law µ0 ∈ P(Rd), there exist a filtered probabil-
ity space (Ω,G, (Gt)0≤t≤T , P ), a standard m-dimensional (Gt)-Brownian motion Wt and

two Rd-valued continuous (Gt)-adapted processes Y (i), i = 1, 2, such that P
(
Y

(1)
0 =

Y
(2)
0

)
= 1 and for i = 1, 2, X(i) and Y (i) have the same distributions in Wd

T , and(
Ω,G, (Gt)0≤t≤T , P ;Y (i),W

)
is a weak solution of SDE (2.1).

The assertion below is a special case of [17, Chap. IV, Proposition 2.1].

Proposition 2.4 (Existence of martingale solution implies that of weak solution). Let
µ0 ∈ P(Rd) and Pµ0 be a martingale solution of SDE (2.1). Then there exists a weak
solution (Ω,G, (Gt)0≤t≤T , P ;X,W ) to SDE (2.1) such that P ◦X−1 = Pµ0 .

Finally we remind the following result which is an easy consequence of Figalli’s rep-
resentation theorem (see [16, Theorem 2.6]) for solutions to the Fokker–Planck equation
(1.2).
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Uniqueness of degenerate Fokker–Planck equations

Theorem 2.5. Assume that σ and b are two bounded measurable functions. Given
µ0 ∈ P(Rd), let µt ∈ P(Rd) be a measure-valued solution to equation (1.2) with initial
value µ0. Then there exists a martingale solution Pµ0

to SDE (2.1) with initial law µ0

such that for all ϕ ∈ C∞c (Rd), one has∫
Rd
ϕ(x) dµt(x) =

∫
Wd
T

ϕ(wt) dPµ0
(w), ∀ t ∈ [0, T ].

2.2 Elements from harmonic analysis and Bouchut and Crippa’s estimate

In this subsection we first recall some basic facts in harmonic analysis, and then
we introduce the pointwise estimate of Bouchut and Crippa on weakly differentiable
functions whose gradients are given by singular integrals. The main reference is [10,
Sections 2–4].

2.2.1 Weak Lebesgue spaces

Denote by Ld the Lebesgue measure on Rd, and B(R) the ball in Rd centered at the
origin with radius R.

Definition 2.6. Let O ⊂ Rd be an open set and u a measurable function (possibly vector
valued) defined on O. For any p ∈ [1,∞), define

|||u|||pMp(O) = sup
λ>0

{
λpLd({x ∈ O : |u(x)| > λ})

}
, (2.2)

and denote by Mp(O) the totality of measurable functions u defined on O such that
|||u|||Mp(O) <∞. Mp(O) is called the weak Lebesgue space. For p =∞, we set M∞(O) =

L∞(O) by convention.

It is worth mentioning that Mp(O) is not a Banach space, since ||| · |||Mp(O) is not
subadditive and hence not a norm. From the simple inequality below

λpLd({x ∈ O : |u(x)| > λ}) ≤
∫
{|u|>λ}

|u(x)|p dx ≤ ‖u‖pLp(O),

we conclude that Lp(O) ⊂Mp(O) and |||u|||Mp(O) ≤ ‖u‖Lp(O).
The following result (see [10, Lemma 2.2] for its proof) concerning the interpolation

between M1 and Mp (p > 1) is one of the key ingredient in the proof of Section 3.

Lemma 2.7. Let O ⊂ Rd be a set with finite Lebesgue measure and u : O → R+ a
nonnegative measurable function. Then for any p ∈ (1,∞), it holds

‖u‖L1(O) ≤
p

p− 1
|||u|||M1(O)

[
1 + log

( |||u|||Mp(O)

|||u|||M1(O)
Ld(O)1− 1

p

)]
, (2.3)

and for p =∞,

‖u‖L1(O) ≤ |||u|||M1(O)

[
1 + log

( ‖u‖L∞(O)

|||u|||M1(O)
Ld(O)

)]
. (2.4)

2.2.2 Maximal functions

We first introduce the notion of local maximal functions. Let R > 0 and u : Rd → R be a
measurable function. Set for x ∈ Rd

MRu(x) = sup
0<r≤R

−
∫
B(x,r)

|u(y)| dy = sup
0<r≤R

1

Ld(B(x, r))

∫
B(x,r)

|u(y)| dy, (2.5)
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where B(x, r) is the ball centered at x of radius r > 0. The following properties of the
local maximal function are well known, see for instance [12, Lemmas A.2 and A.3]. In
the sequel, C with subscripts d, p and so on means it is a positive constant depending
on these parameters.

Proposition 2.8. Fix any R, ρ > 0. If u ∈ L1
loc(R

d), then it holds

|||MRu|||M1(B(ρ)) ≤ Cd‖u‖L1(B(R+ρ)), (2.6)

and if u ∈ Lploc(Rd) with p ∈ (1,∞), then

‖MRu‖Lp(B(ρ)) ≤ Cd,p‖u‖Lp(B(R+ρ)). (2.7)

Moreover, if u belongs to the Sobolev spaceW 1,1
loc (Rd), then there exist a constant Cd > 0

and a negligible set N ⊂ Rd such that for all x, y ∈ N c with |x− y| ≤ R, one has

|u(x)− u(y)| ≤ Cd|x− y|
(
MR|∇u|(x) +MR|∇u|(y)

)
. (2.8)

We shall also need the so-called grand maximal function which is an important tool
in the theory of Hardy spaces. Denote by L∞c (Rd) the space of bounded functions with
compact support.

Definition 2.9 (Grand maximal function). Given a family of functions {ρα}α ⊂ L∞c (Rd)

and u ∈ L1
loc(R

d), we define the grand maximal function of u relative to {ρα}α as

M{ρα}u(x) = sup
α

sup
ε>0

∣∣(ραε ∗ u)(x)
∣∣ = sup

α
sup
ε>0

∣∣∣∣ ∫
Rd
ραε (x− y)u(y) dy

∣∣∣∣, (2.9)

where ραε (x) = ε−dρα(ε−1x), x ∈ Rd. When the family {ρα}α ⊂ C∞c (Rd), the space of
smooth functions with compact support, the same definition applies for distributions
u ∈ D′(Rd), more precisely,

M{ρα}u(x) = sup
α

sup
ε>0

∣∣〈u, ραε (x− ·)〉
∣∣.

Remark 2.10. Here are two comments on the above definition.

(i) Compared to the definition (2.5) of the local maximal function, we move the abso-
lute value outside the integral sign. This allows some kind of cancellation effect
when the grand maximal function is composed with the singular integral operator,
see [10, Section 3] for more details.

(ii) Taking ρα(x) = [Ld(B(1))]−11B(1)(x) and replacing supε>0 by sup0<ε≤R in (2.9), we
get the local maximal function MRu(x) defined in (2.5), except that the absolute
value is outside the integral sign.

2.2.3 Singular integral operators

We now recall some facts on singular kernels and singular integral operators, see [22,
Chap. II] for details. Let S(Rd) be the Schwartz space and S ′(Rd) the space of tempered
distributions.

Definition 2.11 (Singular kernel). We call K a singular kernel on Rd if

(i) K ∈ S ′(Rd) and its Fourier transform K̂ ∈ L∞(Rd);

(ii) the restriction K|Rd\{0} of K outside the origin belongs to L1
loc(R

d \ {0}) and there
exists a constant A ≥ 0 such that∫

{|x|>2|y|}
|K(x− y)−K(x)| dx ≤ A, for all y ∈ Rd.
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Theorem 2.12 (Calderón–Zygmund). Let K be a singular kernel. For u ∈ L2(Rd),
define Su = K ∗ u in the sense of multiplication in the Fourier variable. Then for every
p ∈ (1,∞), the following strong estimate holds:

‖Su‖Lp(Rd) ≤ Cd,p
(
A+ ‖K̂‖L∞

)
‖u‖Lp(Rd), u ∈ Lp ∩ L2(Rd); (2.10)

when p = 1, the weak estimate below holds:

|||Su|||M1(Rd) ≤ Cd
(
A+ ‖K̂‖L∞

)
‖u‖L1(Rd), u ∈ L1 ∩ L2(Rd). (2.11)

As a direct consequence of the above theorem, for any 1 < p <∞, we can extend the
domain of S to the whole Lp(Rd) with values in Lp(Rd), and the inequality (2.10) holds
for all u ∈ Lp(Rd); furthermore, S can be extended to the whole of L1(Rd) with values
in M1(Rd), and the estimate (2.11) holds for all u ∈ L1(Rd). The operator S constructed
in this way is called the singular integral operator associated to the singular kernel K.

Following the terminology of [10], we introduce a special class of singular kernels.

Definition 2.13 (Singular kernel of fundamental type). We say that K is a singular
kernel of fundamental type if it possesses the following properties:

(i) K|Rd\{0} ∈ C1(Rd \ {0});
(ii) there is a positive constant C0 such that |K(x)| ≤ C0/|x|d for all x 6= 0;

(iii) there exists a positive constant C1 such that |∇K(x)| ≤ C1/|x|d+1 for all x 6= 0;

(iv) there is a constant A2 ≥ 0 such that∣∣∣∣ ∫
{R1<|x|<R2}

K(x) dx

∣∣∣∣ ≤ A2 for all 0 < R1 < R2 <∞.

2.2.4 Bouchut and Crippa’s estimate

Now we are ready to introduce the important pointwise estimate of Bouchut and Crippa
on weakly differentiable functions whose gradient is given by a singular integral. First
of all, we present the following result (cf. [10, Theorem 3.3]) on the cancellation effect
between the singular integral and the maximal function introduced in Definition 2.9.

Theorem 2.14. Let K be a singular kernel of fundamental type as in Definition 2.13
and set Su = K ∗ u for u ∈ L2(RN ). Let {ρα}α be a family of kernels satisfying

supp(ρα) ⊂ B(1) and ‖ρα‖L1(Rd) ≤ Q1 for every α. (2.12)

Assume that for every ε > 0 and every α, it holds
(
εdK(ε·)

)
∗ ρα ∈ Cb(R

d) with the
uniform norm estimate∥∥(εdK(ε·)

)
∗ ρα

∥∥
Cb(Rd)

≤ Q2 for every ε > 0 and every α. (2.13)

Then we have

(i) there is a dimensional constant Cd such that for all u ∈ L1 ∩ L2(Rd),∣∣∣∣∣∣M{ρα}(Su)
∣∣∣∣∣∣
M1(Rd)

≤ Cd
[
Q2 +Q1(C0 + C1 + ‖K̂‖L∞)

]
‖u‖L1(Rd), (2.14)

where C0 and C1 are constants in Definition 2.13;

(ii) if Q3 := supα ‖ρα‖L∞(Rd) is finite, then there exists a constant Cd dependent on d

such that∥∥M{ρα}(Su)
∥∥
L2(Rd)

≤ CdQ3‖K̂‖L∞‖u‖L2(Rd) for all u ∈ L2(Rd). (2.15)
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Finally we can introduce Bouchut and Crippa’s pointwise estimate (see [10, Propo-
sition 4.2]).

Theorem 2.15. Let u ∈ L1
loc(R

d) and assume that for every j = 1, . . . , d, it holds

∂ju =

m0∑
k=1

Sjkgjk in D′(Rd), (2.16)

where Sjk are singular integral operators of fundamental type as in Definition 2.13 and
gjk ∈ L1(Rd) for all j = 1, . . . , d and k = 1, . . . ,m0. Then there exists a nonnegative
function U ∈M1(Rd) and a negligible set N ⊂ Rd such that

|u(x)− u(y)| ≤ |x− y|(U(x) + U(y)) for every x, y ∈ Rd \N. (2.17)

Moreover, the function U is explicitly given by

U =

d∑
j=1

m0∑
k=1

M{Λξ,j ,ξ∈Sd−1}(Sjkgjk), (2.18)

where the maximal function relative to a family of kernels is defined in Definition 2.9,
and the functions Λξ,j ∈ C∞c (Rd) are explicitly defined as

Λξ,j(x) = h

(
ξ

2
− x
)
xj , ξ ∈ Sd−1, j = 1, . . . , d (2.19)

and the kernel h satisfies

h ∈ C∞c (Rd),

∫
Rd
h(y) dy = 1 and supp(h) ⊂ B(1/2). (2.20)

At the beginning of the proof of [10, Proposition 4.2], it has been checked that
Theorem 2.14 now applies to the singular kernels Sjk and the family of mollifiers
Λξ,j , since they verify the conditions (2.12) and (2.13). We would like to mention
that, in Section 3, we actually use the smooth version of the above theorem, that is,
{gjk : 1 ≤ j ≤ d, 1 ≤ k ≤ m0} ⊂ C∞(Rd) ∩ L1(Rd). In this case, (2.17) holds for all
x, y ∈ Rd (cf. Step 1 of the proof of [10, Proposition 4.2]).

3 Proof of the main result

This section is devoted to the proof of Theorem 1.2, which is quite long and will be
divided into several steps.

Proof of Theorem 1.2. We follow the idea of the proof of [21, Theorem 1.1]. Let u(i)
t , i =

1, 2 be two weak solutions to (1.3) in the class L∞
(
[0, T ], L1 ∩ L∞(Rd)

)
with the same

initial value ρ. Set dµ0(x) = ρ(x) dx. Then by Theorem 2.5, there exist two martingale

solutions P (i)
µ0 , i = 1, 2 to the SDE (2.1) with the same initial probability distribution µ0,

such that for all ϕ ∈ C∞c (Rd),∫
Rd
ϕ(x)u

(i)
t (x) dx =

∫
Wd
T

ϕ(wt) dP
(i)
µ0

(w), i = 1, 2. (3.1)

Applying Proposition 2.4, we obtain two weak solutions
(
Ω(i),G(i), (G(i)

t )0≤t≤T , P
(i);X(i),

W (i)
)

(i = 1, 2) to SDE (2.1) satisfying P (i) ◦
(
X(i)

)−1
= P

(i)
µ0 , i = 1, 2. Finally by Proposi-

tion 2.3, we can find a common filtered probability space (Ω,G, (Gt)0≤t≤T , P ), on which
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Uniqueness of degenerate Fokker–Planck equations

are defined a standardm-dimensional (Gt)-Brownian motionW and two continuous (Gt)-
adapted processes Y (i) (i = 1, 2), such that P

(
Y

(1)
0 = Y

(2)
0

)
= 1 and Y (i) is distributed as

P
(i)
µ0 on Wd

T ; moreover for i = 1, 2, it holds a.s. that

Y
(i)
t = Y

(i)
0 +

∫ t

0

bs
(
Y (i)
s

)
ds+

∫ t

0

σs
(
Y (i)
s

)
dWs for all t ≤ T.

Set Zt = Y
(1)
t − Y (2)

t and for R > 0, define the stopping time τR = inf
{
t ∈ [0, T ] :∣∣Y (1)

t

∣∣ ∨ ∣∣Y (2)
t

∣∣ ≥ R
}

with the convention that inf ∅ = T . Since the coefficients σ and b

are bounded, it is clear that

lim
R→∞

τR(ω) = T almost surely. (3.2)

Fix δ > 0. We have by Itô’s formula that

log

(
|Zt∧τR |2

δ2
+ 1

)
=

∫ t∧τR

0

2
〈
Zs, bs

(
Y

(1)
s

)
− bs

(
Y

(2)
s

)〉
+
∥∥σs(Y (1)

s

)
− σs

(
Y

(2)
s

)∥∥2

|Zs|2 + δ2
ds

+ 2

∫ t∧τR

0

〈
Zs,
[
σs
(
Y

(1)
s

)
− σs

(
Y

(2)
s

)]
dWs

〉
|Zs|2 + δ2

− 2

∫ t∧τR

0

∥∥[σs(Y (1)
s

)
− σs

(
Y

(2)
s

)]
Zs
∥∥2

(|Zs|2 + δ2)2
ds.

Taking expectation on both sides with respect to P yields

E log

(
|Zt∧τR |2

δ2
+ 1

)
≤ 2E

∫ t∧τR

0

〈
Zs, bs

(
Y

(1)
s

)
− bs

(
Y

(2)
s

)〉
|Zs|2 + δ2

ds

+ E

∫ t∧τR

0

∥∥σs(Y (1)
s

)
− σs

(
Y

(2)
s

)∥∥2

|Zs|2 + δ2
ds

=: I1 + I2.

(3.3)

In the sequel we shall estimate the two terms separately.

Step 1. We first deal with the simpler term I2. Choose χ ∈ C∞c (Rd,R+) such that
supp(χ) ⊂ B(1) and

∫
Rd
χ(x) dx = 1. For ε ∈ (0, 1) let χε(x) = ε−dχ(x/ε), x ∈ Rd. Define

σεs = σs ∗ χε. Then by (H1), for a.e. s ∈ [0, T ], σεs ∈ C∞b (Rd) for every ε ∈ (0, 1). By the
triangular inequality, we have

I2 ≤ 3E

∫ t∧τR

0

∥∥σεs(Y (1)
s

)
− σεs

(
Y

(2)
s

)∥∥2

|Zs|2 + δ2
ds

+ 3E

∫ t∧τR

0

∥∥σεs(Y (1)
s

)
− σs

(
Y

(1)
s

)∥∥2
+
∥∥σεs(Y (2)

s

)
− σs

(
Y

(2)
s

)∥∥2

|Zs|2 + δ2
ds

=: I2,1 + I2,2.

(3.4)

To estimate the first term, we shall use (2.8). Note that σεs is now smooth, hence the
inequality (2.8) holds without the exceptional set N . Thus

I2,1 ≤ 3C2
d E

∫ t∧τR

0

[
M2R|∇σεs |

(
Y (1)
s

)
+M2R|∇σεs |

(
Y (2)
s

)]2
ds

≤ 6C2
d E

∫ t

0

([
M2R|∇σεs |

(
Y (1)
s

)]2
1{|Y (1)

s |≤R}
+
[
M2R|∇σεs |

(
Y (2)
s

)]2
1{|Y (2)

s |≤R}

)
ds.
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Recall that Y (i)
s has the same law with X

(i)
s , which is distributed as u(i)

s (x) dx, i = 1, 2.
Consequently,

I2,1 ≤ C
∫ t

0

∫
B(R)

(
M2R|∇σεs |(x)

)2(
u(1)
s (x) + u(2)

s (x)
)
dxds

≤ C
2∑
i=1

∥∥u(i)
∥∥
L∞([0,T ],L∞(Rd))

∫ t

0

∫
B(R)

(
M2R|∇σεs |(x)

)2
dxds

≤ C̃
∫ t

0

∫
B(3R)

(
|∇σεs |(x)

)2
dxds

≤ C̃‖∇σ‖2L2([0,T ],L2(B(3R+1))) < +∞,

where in the third inequality we have used (2.7). Note that the bound is independent of
ε ∈ (0, 1). In the same way,

I2,2 ≤
3

δ2

2∑
i=1

E

∫ t

0

∥∥σεs(Y (i)
s

)
− σs

(
Y (i)
s

)∥∥2
1{|Y (i)

s |≤R}
ds

≤ 3

δ2

2∑
i=1

∫ t

0

∫
B(R)

‖σεs(x)− σs(x)‖2u(i)
s (x) dxds

≤ 3

δ2

2∑
i=1

∥∥u(i)
∥∥
L∞([0,T ],L∞(Rd))

∫ t

0

∫
B(R)

‖σεs(x)− σs(x)‖2 dxds

which vanishes as ε→ 0 by the assumption (H2). Substituting the above two estimates
into (3.4) gives us

I2 ≤ C̃‖∇σ‖2L2([0,T ],L2(B(3R+1))) =: C̃T,R < +∞. (3.5)

Step 2. Now we turn to the difficult term I1 for which we shall need Bouchut and
Crippa’s estimate in Theorem 2.15. Again we set bεs = bs ∗χε ∈ C∞b (Rd) for any ε ∈ (0, 1)

and a.e. s ∈ [0, T ]. Then similar to (3.4), we have

I1 ≤ 2E

∫ t∧τR

0

∣∣bs(Y (1)
s

)
− bs

(
Y

(2)
s

)∣∣√
|Zs|2 + δ2

ds

≤ 2E

∫ t∧τR

0

∣∣bεs(Y (1)
s

)
− bεs

(
Y

(2)
s

)∣∣√
|Zs|2 + δ2

ds

+ 2E

∫ t∧τR

0

∣∣bεs(Y (1)
s

)
− bs

(
Y

(1)
s

)∣∣+
∣∣bεs(Y (2)

s

)
− bs

(
Y

(2)
s

)∣∣√
|Zs|2 + δ2

ds

=: I1,1 + I1,2.

(3.6)

The estimate of the term I1,2 is analogous to that of I2,2:

I1,2 ≤
2

δ

2∑
i=1

E

∫ t

0

∣∣bεs(Y (i)
s

)
− bs

(
Y (i)
s

)∣∣1{|Y (i)
s |≤R}

ds

≤ 2

δ

2∑
i=1

∫ t

0

∫
B(R)

|bεs(x)− bs(x)|u(i)
s (x) dxds

≤ 2

δ

2∑
i=1

∥∥u(i)
∥∥
L∞([0,T ],L∞(Rd))

∫ t

0

∫
B(R)

|bεs(x)− bs(x)| dxds

→ 0 as ε ↓ 0

(3.7)
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since b ∈ L∞([0, T ], L∞(Rd)).

Finally we deal with the term I1,1. Fix any η > 0. From (H3), we have

∂jb
ε
s =

m0∑
k=1

Sjk
(
gjk(s) ∗ χε

)
.

Moreover, for the finite family {gjk; 1 ≤ j ≤ d, 1 ≤ k ≤ m0} ⊂ L1
(
(0, T )×Rd,Rd

)
, we can

find Cη > 0 and a set Aη ⊂ (0, T )×Rd with finite measure such that for every j = 1, . . . , d

and k = 1, . . . ,m0, we have the decomposition below:

gjk(s, x) = g
(1)
jk (s, x) + g

(2)
jk (s, x)

satisfying∥∥g(1)
jk

∥∥
L1((0,T )×Rd,Rd)

≤ η, supp
(
g

(2)
jk

)
⊂ Aη and

∥∥g(2)
jk

∥∥
L2((0,T )×Rd,Rd)

≤ Cη. (3.8)

Now by Theorem 2.15 (see in particular the remark after it),∣∣bεs(x)− bεs(y)
∣∣ ≤ |x− y|(Uεs (x) + Uεs (y)

)
, for all x, y ∈ Rd, (3.9)

where

Uεs =

m0∑
k=1

d∑
j=1

M{Λξ,j ,ξ∈Sd−1}
[
Sjk
(
gjk(s) ∗ χε

)]
≤

m0∑
k=1

d∑
j=1

(
M{Λξ,j ,ξ∈Sd−1}

[
Sjk
(
g

(1)
jk (s) ∗ χε

)]
+M{Λξ,j ,ξ∈Sd−1}

[
Sjk
(
g

(2)
jk (s) ∗ χε

)])
=: Uε,1s + Uε,2s .

Therefore

I1,1 ≤ 2E

∫ t∧τR

0

min

{∣∣bεs(Y (1)
s

)∣∣+
∣∣bεs(Y (2)

s

)∣∣
δ

;

∣∣bεs(Y (1)
s

)
− bεs

(
Y

(2)
s

)∣∣∣∣Y (1)
s − Y (2)

s

∣∣
}
ds

≤ 2E

∫ t∧τR

0

min

{
2‖bs‖L∞(Rd)

δ
;Uεs

(
Y (1)
s

)
+ Uεs

(
Y (2)
s

)}
ds

≤ 2E

∫ t∧τR

0

min

{
2‖bs‖L∞(Rd)

δ
;Uε,1s

(
Y (1)
s

)
+ Uε,1s

(
Y (2)
s

)}
ds

+ 2E

∫ t∧τR

0

min

{
2‖bs‖L∞(Rd)

δ
;Uε,2s

(
Y (1)
s

)
+ Uε,2s

(
Y (2)
s

)}
ds

=: I1,1,1 + I1,1,2.

(3.10)

Similar to the treatment of I2,1, we have

I1,1,2 ≤ 2E

∫ t∧τR

0

[
Uε,2s

(
Y (1)
s

)
+ Uε,2s

(
Y (2)
s

)]
ds

≤ 2

2∑
i=1

∫ t

0

∫
B(R)

Uε,2s (x)u(i)
s (x) dxds

≤ 2

2∑
i=1

∥∥u(i)
∥∥
L∞([0,T ],L∞(Rd))

∫ t

0

∫
B(R)

Uε,2s (x) dxds.
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Uniqueness of degenerate Fokker–Planck equations

By Theorem 2.14(ii), we can find a positive constant L1 > 0 such that

∥∥Uε,2∥∥
L2([0,T ],L2(Rd))

=

[ ∫ T

0

∫
Rd

∣∣Uε,2s (x)
∣∣2 dxds] 1

2

≤ L1

m0∑
k=1

d∑
j=1

[ ∫ T

0

∫
Rd

∣∣g(2)
jk (s, x)

∣∣2 dxds] 1
2

≤ L1dm0Cη,

where the last inequality follows from (3.8). Thus by Cauchy’s inequality,

I1,1,2 ≤ C
√
TLd(B(R))

∥∥Uε,2∥∥
L2([0,T ],L2(B(R)))

≤ Cd,T,RCη. (3.11)

It remains to estimate the quantity I1,1,1 defined in (3.10). We have

I1,1,1 ≤ 2

2∑
i=1

E

∫ t∧τR

0

min

{
2‖bs‖L∞(Rd)

δ
;Uε,1s

(
Y (i)
s

)}
ds

≤ 2

2∑
i=1

∫ t

0

∫
B(R)

min

{
2‖bs‖L∞(Rd)

δ
;Uε,1s (x)

}
u(i)
s (x) dxds

≤ Ĉ
∫ t

0

∫
B(R)

min

{
2‖bs‖L∞(Rd)

δ
;Uε,1s (x)

}
dxds.

(3.12)

For simplicity of notations, we denote by ψs(x) the integrand on the right hand side.
Using the simple inequality

|||Uε,1|||M1
s,x
≤
∥∥|||Uε,1|||M1

x

∥∥
L1
s
,

we deduce from Theorem 2.14(i) that there exists a positive constant L2 > 0, such that

|||Uε,1|||M1((0,T )×Rd) ≤
∫ T

0

L2

d∑
j=1

m0∑
k=1

∥∥g(1)
jk (s)

∥∥
L1(Rd)

ds ≤ L2dm0Tη,

where the last inequality is due to (3.8). Therefore, by the definition of ψ,

|||ψ|||M1((0,T )×B(R)) ≤ |||Uε,1|||M1((0,T )×Rd) ≤ L2dm0Tη =: L̂2η. (3.13)

On the other hand,

‖ψ‖L∞((0,T )×(B(R))) ≤
2‖b‖L∞([0,T ]×Rd)

δ
.

Combining this estimate with (3.13) and applying (2.4), we get

‖ψ‖L1((0,T )×B(R)) ≤ L̂2η

[
1 + log

(
2‖b‖L∞

δ
· TL

d(B(R))

L̂2η

)]
,

in which we have used the fact that the function s 7→ s
(
1 + log+(C/s)

)
is nondecreasing

on [0,∞). Substituting this inequality into (3.12) finally leads to

I1,1,1 ≤ ĈL̂2η

[
1 + log

(
2‖b‖L∞

δ
· TL

d(B(R))

L̂2η

)]
.

Combining the above estimate with (3.10) and (3.11), we obtain

I1,1 ≤ Cd,T,RCη + ĈL̂2η

[
1 + log

(
2‖b‖L∞

δ
· TL

d(B(R))

L̂2η

)]
,
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which, together with (3.6) and (3.7), yields

I1 ≤ Cd,T,RCη + ĈL̂2η

[
1 + log

(
2‖b‖L∞

δ
· TL

d(B(R))

L̂2η

)]
. (3.14)

Step 3. Having the estimates (3.5) and (3.14) in hand, we are ready to complete the
proof as follows. Substituting the two estimates (3.5) and (3.14) into (3.3), we get for
any t ∈ [0, T ] that

E log

(
|Zt∧τR |2

δ2
+ 1

)
≤ C̃T,R + Cd,T,RCη + ĈL̂2η

[
1 + log

(
2‖b‖L∞

δ
· TL

d(B(R))

L̂2η

)]
.

Fix any θ > 0. The above inequality implies

P
(
|Zt∧τR | > θ

)
≤ C̃T,R + Cd,T,RCη + ĈL̂2η

log
[(
θ
δ

)2
+ 1
] +

ĈL̂2η

log
[(
θ
δ

)2
+ 1
] log

(
2‖b‖L∞

δ

)

+
ĈL̂2η

log
[(
θ
δ

)2
+ 1
] log

(
TLd(B(R))

L̂2η

)
.

Notice that in the second term, the quantity

1

log
[(
θ
δ

)2
+ 1
] log

(
2‖b‖L∞

δ

)
is bounded as δ tends to 0. Therefore first letting δ ↓ 0 and then η ↓ 0 we arrive at
P
(
|Zt∧τR | > θ

)
= 0. Since θ can be arbitrarily small, it follows that Zt∧τR = 0 almost

surely. Finally, we conclude from (3.2) that for any t ∈ [0, T ], Zt = Y
(1)
t − Y (2)

t = 0 a.s.

The continuity of the two processes Y (1)
t and Y (2)

t yields that, almost surely, Y (1)
t = Y

(2)
t

for all t ∈ [0, T ]. Therefore P (1)
µ0 = P

(2)
µ0 , which, together with the representation formula

(3.1), leads to the uniqueness of solutions to (1.3).
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