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Abstract

In this paper, we show an approximation in law of the fractional Brownian sheet by
random walks. As an application, we consider a quasilinear stochastic heat equation
with Dirichlet boundary conditions driven by an additive fractional noise.
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1 Introduction and main result

Given α, β ∈ (0, 1), a fractional Brownian sheet on R is a two-parameter centered
Gaussian process

Wα, β = {Wα, β(t, s), (t, s) ∈ R2
+}

such that

E
[
Wα, β(t, s)Wα, β(t′, s′)

]
=

1

2

[
t2α + t′2α − |t′ − t|2α

]
· 1

2

[
s2β + s′2β − |s′ − s|2β

]
.

For α = β = 1
2 , Wα, β coincides with the standard Brownian sheet. It is an extension

of fractional Brownian motion Bα = {Bαt , t ≥ 0} to two-parameter case. In this paper,
we will be interested in the weak approximation of the fractional Brownian sheet with
α, β ∈ ( 1

2 , 1) from random walks in the plane and give an application.

Recently, Bardina et al. [6] (see also Tudor [16] for a similar approximation in the
Besov space) proved that the family of processes

Xε(t, s) :=
1

ε2

∫ 1

0

∫ 1

0

Kα(t, u)Kβ(s, v)
√
uv(−1)N(uε ,

v
ε )dudv
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Weak approximation of the fractional Brownian sheet

with α, β ∈ ( 1
2 , 1) converges in law, as ε tends to zero, to the fractional Brownian sheet

Wα, β , where {N(x, y), (x, y) ∈ R2
+} is a standard Poisson process in the plane and the

kernel KH given by

KH(t, s) = (H − 1

2
)cHs

1
2−H

∫ t

s

uH−
1
2 (u− s)H− 3

2 du (1.1)

with H ∈ ( 1
2 , 1) and the normalizing constant cH > 0 given by

cH =

√
2HΓ( 3

2 −H)

Γ(H + 1
2 )Γ(2− 2H)

.

The results of Bardina et al. [6] and Tudor [16] have been inspired by the following
relationship between the standard one-parameter Poisson process and the standard
Brownian motion proved by Stroock [15]: the family of processes

yε(t) :=
1

ε

∫ t

0

(−1)N( sε )ds,

where N is a standard Poisson process, converges in law, as ε tends to zero, to the
standard Brownian motion W . More works concerning weak approximation for multi-
dimensional parameter process have been studied by many authors (see, for examples,
Bardina et al. [3, 5, 6]). In these references, the methods for obtaining the correspond-
ing approximation sequences are Poisson processes due to their good properties such
as independent increments and that if Z ∼ Poiss(λ) then E[(−1)Z ] = exp(−2λ).

Let now {ξ(n)i , i = 1, 2, . . .} be a triangular array of i.i.d. random variables with

Eξ
(n)
i = 0 and E(ξ

(n)
i )2 = 1. Then the sequence of stochastic processes

W
(n)
t :=

1√
n

bntc∑
i=1

ξ
(n)
i , t ∈ [0, T ], n = 1, 2, . . .

converges weakly to a standard Brownian motion W , where bxc denotes the greatest
integer not exceeding x. According to the next integral representation of the fractional
Brownian motion BH with Hurst index H ∈ ( 1

2 , 1) :

BHt =

∫ t

0

KH(t, s)dWs, t ≥ 0, (1.2)

Sottinen [14] considered the family of processes {Z(n)}

Z
(n)
t :=

∫ t

0

K
(n)
H (t, s)dW (n)

s =

bntc∑
i=1

n

∫ i
n

i−1
n

KH(
bntc
n

, s)ds
1√
n
ξ
(n)
i , t ∈ [0, T ]

for n = 1, 2, . . ., and showed that the family converges weakly to BH for H ∈ ( 1
2 , 1),

where the sequence {K(n)
H (t, ·), n = 1, 2, . . .} is an approximation to KH(t, ·) defined by

K
(n)
H (t, s) := n

∫ s

s− 1
n

KH(
bntc
n

, u)du, n = 1, 2, . . . . (1.3)

Motivated by this, in the present paper we consider the approximation of fractional
Brownian sheet by random walks in the plane, and our main result is to explain and
prove the following theorem.
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Weak approximation of the fractional Brownian sheet

Theorem 1.1. Let α > 1
2 , β >

1
2 and let

{
ξ
(n)
i,j , i, j = 1, 2, . . .

}
be an independent family

of identically distributed and centered random variables with E(ξ
(n)
i,j )2 = 1. For n ≥ 1,

(t, s) ∈ [0, T ]× [0, S], we set

Bn(t, s) :=
1

n

bntc∑
i=1

bnsc∑
j=1

ξ
(n)
i,j (1.4)

and

Zn(t, s) : =

∫ t

0

∫ s

0

K(n)
α (t, v)K

(n)
β (s, u)Bn(dv, du)

= n

bntc∑
i=1

bnsc∑
j=1

ξ
(n)
i,j

∫ i
n

i−1
n

∫ j
n

j−1
n

Kα(
bntc
n

, v)Kβ(
bnsc
n

, u)dudv.

(1.5)

where the kernel K· is given by (1.1) and the sequence {K(n)
· , n = 1, 2, . . .} of approx-

imation to K· defined by (1.3). Then, {Zn} converges weakly in the Skorohod space
D([0, T ]× [0, S]) to the fractional Brownian sheet Wα, β in the plane.

This paper is organized as follows. In Section 2 we give the proof of Theorem 1.1.
Clearly, when α > 1

2 , β = 1
2 , Wα, β is called a fractional noise with Hurst parameter α

which is introduced in Nualart-Ouknine [12]. Thus, as an application of Theorem 1.1,
in Section 3 we consider the approximation solution of a one-dimensional quasi-linear
stochastic heat equation driven by fractional noise.

2 Proof of the Theorem 1.1

To prove Theorem 1.1, we first recall some facts. For a deeper discussion we refer
the reader to see Ayache et al. [1], Cairoli-Walsh [8], Decreusefond-Üstünel [9], Kamont
[10].

Let (Ω,F , P ) be a complete probability space and let {Ft,s; (t, s) ∈ [0, T ]× [0, S]} be
a family of sub-σ-fields of F such that

(C1) Ft,s ⊆ Ft′,s′ for any t ≤ t′, s ≤ s′;
(C2) F0,0 contains all null sets of F ;

(C3) for each z ∈ [0, T ] × [0, S], Fz = ∩z<z′Fz′ , where z = (t, s) < z′ = (t′, s′) denotes
the partial order on [0, T ]× [0, S], meaning that t < t′ and s < s′.

Given (t, s) < (t′, s′), we denote by ∆t,sX(t′, s′) the increment of the process X over the
rectangle ((t, s), (t′, s′)], that is, ∆t,sX(t′, s′) = X(t′, s′)−X(t, s′)−X(t′, s) +X(t, s).

Recall that a fractional Brownian sheet admits an integral representation of the form

Wα, β(t, s) =

∫ t

0

∫ s

0

Kα(t, v)Kβ(s, u)B(dv, du), (t, s) ∈ [0, T ]× [0, S], (2.1)

where B is a standard Brownian sheet andKH is the deterministic kernel given by (1.1).
For the deterministic kernel given by (1.1) it is not difficult to see that∫ t′0

t0

(KH(t′, x)−KH(t, x))2dx ≤ CH(t′0 − t0)2−2H

for all 0 < t0 < t′0 and 0 < t < t′.
Let Λ be the group of all mappings λ : [0, T ] × [0, S] → [0, T ] × [0, S] of the form

λ(t, s) = (λ1(t), λ2(s)), where each λi is continuous, strictly increasing and fixes zero
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Weak approximation of the fractional Brownian sheet

and one. Denote by D = D([0, T ]×[0, S]) the Skorohod space of functions on [0, T ]×[0, S]

are continuous from above with limits from below and equip D with the metric

d(x, y) := inf{min(‖x− yλ‖, ‖λ‖) : λ ∈ Λ},

where ‖x− yλ‖ = sup{|x(t, s)− y(λ(t, s))| : (t, s) ∈ [0, T ]× [0, S]} and ‖λ‖ = sup{|λ(t, s)−
(t, s)| : (t, s) ∈ [0, T ] × [0, S]}. Under this metric, D is a separable and complete metric
space.

Now, we can prove Theorem 1.1, and we split the proof in several results. We first
prove the tightness. Using the criterion given by Bickel-Wichura [7], and notice that
our processes Zn are null on the axes, it suffices to prove the following lemma.

Lemma 2.1. Let Zn(t, s) be the family of processes defined by (1.5). Then for any
(t, s) < (t′, s′), we have

sup
n
E[(∆t,sZn(t′, s′))4] ≤ 16α+β(t′ − t)4α(s′ − s)4β .

In order to prove Lemma 2.1 we need the next technical result.

Lemma 2.2. Let Zn(t, s) be the family of processes defined by (1.5). Then for any
(t, s) < (t′, s′), we have

E[(∆t,sZn(t′, s′))2] ≤ 4α+β(t′ − t)2α(s′ − s)2β .

Proof. First, we observe that

∆t,sZn(t′, s′) =

∫ t′

t

∫ s′

s

(
K(n)
α (
bnt′c
n

, v)−K(n)
α (
bntc
n

, v)

)(
K

(n)
β (
bns′c
n

, u)

−K(n)
β (
bnsc
n

, u)

)
Bn(dv, du)

=

bnt′c∑
i=1

bns′c∑
j=1

n

∫ i
n

i−1
n

∫ j
n

j−1
n

(
K(n)
α (
bnt′c
n

, v)−K(n)
α (
bntc
n

, v)

)

·
(
K

(n)
β (
bns′c
n

, u)−K(n)
β (
bnsc
n

, u)

)
dudvξ

(n)
i,j .

Thus,

E[∆t,sZn(t′, s′)]2 =

bnt′c∑
i=1

(
√
n

∫ i
n

i−1
n

(Kα(
bnt′c
n

, v)−Kα(
bntc
n

, v))dv)2

· .
bns′c∑
j=1

(
√
n

∫ j
n

j−1
n

(Kβ(
bns′c
n

, u)−Kβ(
bnsc
n

, u))du)2.

Then, applying the Cauchy-Schwarz inequality, the above term can be bounded by

bnt′c∑
i=1

∫ i
n

i−1
n

(Kα(
bnt′c
n

, v)−Kα(
bntc
n

, v))2dv

bns′c∑
j=1

∫ j
n

j−1
n

(Kβ(
bns′c
n

, u)−Kβ(
bnsc
n

, u))2du

≤
∫ t′

0

(Kα(
bnt′c
n

, v)−Kα(
bntc
n

, v))2dv

∫ s′

0

(Kβ(
bns′c
n

, u)−Kβ(
bnsc
n

, u))2du

=

∣∣∣∣bnt′c − bntcn

∣∣∣∣2α∣∣∣∣bns′c − bnscn

∣∣∣∣2β .
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Weak approximation of the fractional Brownian sheet

Let now 0 < r < r′ and 1
2 < ν < 1. We then see that nr′ − nr ≥ 1 implies that∣∣∣ bnr′c−bnrcn

∣∣∣2ν ≤ |2(r′ − r)|2ν . Conversely, nr′ − nr < 1 implies that either r′ and r belong

to a same subinterval [mn ,
m+1
n ) for some integer m, and hence

∣∣∣ bnr′c−bnrcn

∣∣∣2ν = 0. It

follows that ∣∣∣∣bnr′c − bnrcn

∣∣∣∣2ν ≤ |2(r′ − r)|2ν

for all 0 < r < r′, ν ∈ ( 1
2 , 1) and all n ≥ 1. This completes the proof.

We are now ready to prove Lemma 2.1.

Proof of Lemma 2.1. First, we observe that we can write

E[∆t,sZn(t′, s′)]4 = E

[ bnt′c∑
i=1

bns′c∑
j=1

n

∫ i
n

i−1
n

∫ j
n

j−1
n

(K(n)
α (
bnt′c
n

, v)−K(n)
α (
bntc
n

, v))

· (K(n)
β (
bns′c
n

, u)−K(n)
β (
bnsc
n

, u))dudvξ
(n)
i,j

]4
.

Notice that Eξ(n) = 0 and E2ξ(n) = 1, therefore, the above expectation can be computed
as

bnt′c∑
i=1

bns′c∑
j=1

bnt′c∑
k=1

bns′c∑
l=1

(
√
n

∫ j
n

j−1
n

(Kβ(
bns′c
n

, u)−Kβ(
bnsc
n

, u))du)2

· (
√
n

∫ i
n

i−1
n

(Kα(
bnt′c
n

, v)−Kα(
bntc
n

, v))dv)2

· (
√
n

∫ l
n

l−1
n

(Kβ(
bns′c
n

, u)−Kβ(
bnsc
n

, u))du)2

· (
√
n

∫ k
n

k−1
n

(Kα(
bnt′c
n

, v)−Kα(
bntc
n

, v))dv)2

=

bnt′c∑
i=1

(
√
n

∫ i
n

i−1
n

(Kα(
bnt′c
n

, v)−Kα(
bntc
n

, v))dv)2

2

·

bns′c∑
j=1

(
√
n

∫ j
n

j−1
n

(Kβ(
bns′c
n

, u)−Kβ(
bnsc
n

, u))du)2

2

.

Using the Cauchy-Schwarz inequality, we get that

E[∆t,sZn(t′, s′)]4 ≤

bnt′c∑
i=1

∫ i
n

i−1
n

(Kα(
bnt′c
n

, v)−Kα(
bntc
n

, v))2dv

2

·

bns′c∑
j=1

∫ j
n

j−1
n

(Kβ(
bns′c
n

, u)−Kβ(
bnsc
n

, u))2du

2

≤
∣∣∣∣bnt′c − bntcn

∣∣∣∣4α ∣∣∣∣bns′c − bnscn

∣∣∣∣4β ≤ 16α+β(t′ − t)4α(s′ − s)4β

by Lemma 2.2 and the lemma follows.
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Weak approximation of the fractional Brownian sheet

Now, it suffices to show that the law of all possible weak limits is the law of a frac-
tional Brownian sheet.

Theorem 2.3. The family of processes Zn(t, s) defined by (1.5) converge, as n tends to
infinity, to the fractional Brownian sheet in the sense of finite-dimensional distribution.

Proof. For any a1, . . . , ad ∈ R and (t1, s1), . . . , (td, sd) ∈ [0, T ]× [0, S]. We claim that

Yn :=

d∑
k=1

akZn(tk, sk)

converges in distribution to a normal random variable with zero mean and variance

E

(
d∑
k=1

akW
α, β(tk, sk)

)2

. (2.2)

In fact, the zero mean is trivial. Let us now calculate the limiting variance of Yn. We
have

(σ(n))2 := E(Yn)2 =

d∑
k,l=1

akaln
2

bnTc∑
i=1

bnSc∑
j=1

∫ i
n

i−1
n

∫ j
n

j−1
n

Kα(
bntkc
n

, v)Kβ(
bnskc
n

, u)dudv

·
∫ i

n

i−1
n

∫ j
n

j−1
n

Kα(
bntlc
n

, v)Kβ(
bnslc
n

, u)dudv

=

d∑
k,l=1

akal

bnTc∑
i=1

n

∫ i
n

i−1
n

Kα(
bntkc
n

, v)dv

∫ i
n

i−1
n

Kα(
bntlc
n

, v)dv

·
bnSc∑
j=1

n

∫ j
n

j−1
n

Kβ(
bnskc
n

, u)du

∫ j
n

j−1
n

Kα(
bnslc
n

, u)du.

By the mean value theorem the above equation is equal to

d∑
k,l=1

akal
1

n

bnTc∑
i=1

Kα(
bntkc
n

, s
(n)
i,k )Kα(

bntlc
n

, s
(n)
i,l )

1

n

bnSc∑
j=1

Kβ(
bnskc
n

, s
(n)
j,k )Kβ(

bnslc
n

, s
(n)
j,l )

(2.3)

for some s(n)i,k , s
(n)
i,l ∈ ( i−1n , in ] and s(n)j,k , s

(n)
j,l ∈ ( j−1n , jn ]. Since the kernel K·(t, ·) is continu-

ous and decreasing we get the inner sum in (2.3) is equal to

1

n

bnTc∑
i=1

Kα(
bntkc
n

, v
(n)
i )Kα(

bntlc
n

, v
(n)
i )

1

n

bnSc∑
j=1

Kβ(
bnskc
n

, u
(n)
j )Kβ(

bnslc
n

, u
(n)
j ) (2.4)

for some

v
(n)
i ∈

[
min(s

(n)
i,k , s

(n)
i,l )
]
⊆
(
i− 1

n
,
i

n

]
; u

(n)
j ∈

[
min(s

(n)
j,k , s

(n)
j,l )
]
⊆
(
j − 1

n
,
j

n

]
.

By using the following facts:

• The kernel KH with 1
2 < H < 1 is continuous with respect to both arguments;

• The maps t 7→ bntc
n , s 7→ bnsc

n converge uniformly to the identity map in [0, T ]×[0, S],
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we see that (2.4) is a Riemann type sum. It follows that (2.3) converges to

d∑
k,l=1

akal

∫ T

0

Kα(tk, s)Kα(tl, s)ds

∫ S

0

Kβ(sk, s)Kβ(sl, s)ds = E(

d∑
k=1

akW
α, β(tk, sk))2.

Decompose Yn as follows

Yn =

bnTc∑
i=1

bnSc∑
j=1

nξ
(n)
i,j

d∑
k=1

ak

∫ i
n

i−1
n

Kα(
btkc
n
, v)dv

∫ j
n

j−1
n

Kβ(
bskc
n

, u)du

:=

bnTc∑
i=1

bnSc∑
j=1

Y
(n)
i,j .

(2.5)

Now, in order to end the proof we need to obtain the following Lindeberg condition:

lim
n→∞

1

(σ(n))2

bnTc∑
i=1

bnSc∑
j=1

E
[
(Y

(n)
i,j )21{|Y (n)

i,j |>εσ(n)}

]
= 0 (2.6)

for all ε > 0. To see that, let us consider the set{
|Y (n)
i,j | > ε

}
=
{

(Y
(n)
i,j )2 > ε2

}
.

Noticing that the kernel KH(t, s) with 1
2 < H < 1 is increasing in t and decreasing in s,

we get

(Y
(n)
i,j )2 = n2(ξ

(n)
i,j )2

(
d∑
k=1

ak

∫ i
n

i−1
n

Kα(
btkc
n
, v)dv

∫ j
n

j−1
n

Kβ(
bskc
n

, u)du

)2

≤ n2(ξ
(n)
i,j )2A

(∫ i
n

i−1
n

Kα(T, v)dv

∫ j
n

j−1
n

Kβ(S, u)du

)2

≤ (ξ
(n)
i,j )2A

∫ i
n

i−1
n

K2
α(T, v)dv

∫ j
n

j−1
n

K2
β(S, u)du

≤ (ξ
(n)
i,j )2A

∫ 1
n

0

K2
α(T, v)dv

∫ 1
n

0

K2
β(S, u)du = (ξ

(n)
i,j )2Aδ(n),

where A := (
∑d
k=1 ak)2 and δ(n) :=

∫ 1
n

0
K2
α(T, v)dv

∫ 1
n

0
K2
β(S, u)du, which deduces{

|Y (n)
i,j | > εσ(n)

}
⊆
{

(ξ
(n)
i,j )2Aδ(n) > ε2(σ(n))2

}
. (2.7)

It follows that

E
[
(Y

(n)
i,j )21{|Y (n)

i,j |>εσ(n)}

]
≤ E

[
(ξ

(n)
i,j )2Aδ(n)1{(ξ(n)

i,j )2Aδ(n)>ε2(σ(n))2}

]
for all i, j = 1, 2, . . . , n, and that

1

(σ(n))2

bnTc∑
i=1

bnSc∑
j=1

E
[
(Y

(n)
i,j )21{|Y (n)

i,j |>εσ(n)}

]

≤ 1

(σ(n))2

bnTc∑
i=1

bnSc∑
j=1

E
[
(ξ

(n)
i,j )2Aδ(n)1{(ξ(n)

i,j )2Aδ(n)>ε2(σ(n))2}

]
≤ E

[
(ξ(n))21{(ξ(n)

i,j )2Aδ(n)>ε2(σ(n))2}

]
→ 0 (n→∞)

because δ(n) → 0. Thus, the Lindeberg condition (2.6) holds and the theorem follows.
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Weak approximation of the fractional Brownian sheet

3 An application

It is well-known that a fractional Brownian sheet Wα, β with β = 1
2 and α > 1

2

is called the fractional noise with Hurst parameter α, denoted by Wα, which is first
introduced in Nualart-Ouknine [12]. Obviously, it is a zero mean Gaussian process with
the covariance function

E [Wα(t, x)Wα(s, y)] =
1

2

[
t2α + s2α − |t− s|2α

]
(x ∧ y).

That is, Wα is a Brownian motion in the space variable and a fractional Brownian motion
with Hurst parameter α ∈ ( 1

2 , 1) in the time variable.
In the sequel, as an application to Theorem 1.1 we consider the approximation solu-

tion (in law) of the stochastic heat equation

∂U

∂t
− ∂2U

∂x2
= b(U) +

∂2Wα

∂t∂x
, (3.1)

with Dirichlet boundary conditions

U(t, 0) = U(t, 1) = 0, t ∈ [0, T ]

and initial condition U(0, x) = u0(x), x ∈ [0, 1], where u0 is a continuous function and Wα

is the fractional noise with 1
2 < α < 1. This is a one-dimensional quasi-linear stochastic

heat equation on [0, 1] which was first studied by Nualart-Ouknine [12].
For each t ∈ [0, T ], let FW

t be the σ− field generated by the random variables
{Wα(t, A), t ∈ [0, T ], A ∈ B[0, 1]} and the sets of probability zero, P be the σ− field of
progressively measurable subsets of [0, T ]×Ω. We denote by E the set of step functions
on [0, T ] × [0, 1]. Let H be the Hilbert space defined as the closure of E with respect to
the scalar product

〈1[0,t]×A, 1[0,s]×B〉H = E [Wα(t, A)Wα(s,B)] .

According to Nualart-Ouknine [12], the mapping 1[0,t]×A → Wα(t, A) can be extended
to an isometry between H and the Gaussian space H1(Wα) associated with Wα and
denoted by

ϕ 7→Wα(ϕ) :=

∫
[0,t]×A

ϕ(s, y)Wα(ds, dy).

Consider the linear operator K∗α from E to L2([0, T ]) defined by

K∗α(ϕ) = Kα(T, s)ϕ(s, x) +

∫ T

s

(ϕ(r, x)− ϕ(s, x))
∂Kα

∂r
(r, s)dr,

where Kα is the square integrable kernel given by (1.1). Moreover, for any pair of step
functions ϕ and ψ in E we have

〈K∗α(ϕ),K∗α(ψ)〉L2([0,T ]×[0,1]) = 〈ϕ,ψ〉H,

because

(K∗α1[0,t]×A)(s, x) = Kα(t, s)1[0,t]×A(s, x).

As a consequence, the operator K∗α provides an isometry between the Hilbert space H
and L2([0, T ]× [0, 1]). Hence, the Gaussian family {B(t, A), t ∈ [0, T ], A ∈ B[0, 1]} defined
by

B(t, A) = Wα((K∗α)−1(1[0,t]×A)),
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is a space-time white noise, and the process Wα has an integral representation of the
form

Wα(t, x) =

∫ t

0

∫ x

0

Kα(t, s)B(ds, dy).

Denote by

Gt(x, y) =
1√
2πt

∞∑
n=−∞

(
e−

(y−x−2n)2

4t + e−
(y+x−2n)2

4t

)
= 2

∞∑
n=1

sin(nπx)sin(nπy)e−n
2π2t,

(t, x, y) ∈ [0, T ]× [0, 1]2, the Green function associated to the heat equation in [0, 1] with
Dirichlet boundary conditions. We have

0 ≤ Gt(x, y) ≤ 1√
2πt

e
−(y−x)2

4t , t > 0, (x, y) ∈ [0, 1]2.

Assume that b is bounded, then a P ⊗ B([0, 1])-measurable and continuous random field
U = {U(t, x), (t, x) ∈ [0, T ]× [0, 1]} is a solution to (3.1) if and only if

U(t, x) =

∫ 1

0

Gt(x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gt−s(x, y)b(U(s, y))dyds

+

∫ t

0

∫ 1

0

Gt−s(x, y)Wα(ds, dy),

(3.2)

where the last term is equal to

Wα(1[0,t](·)Gt−·(x, ·)) =

∫ t

0

∫ 1

0

K∗αGt−s(x, y)B(ds, dy).

It follows from Nualart-Ouknine [12] that (3.1) admits a unique solution satisfying (3.2),
provided α ∈ ( 1

2 , 1) and b is Lipschitz function with the linear growth.

Remark 3.1. We should notice that the mild solution to (3.1), given by (3.2), is under-
stood in the generalized sense defined by Walsh [17] in the case of a space-time white
noise.

To study the approximation solution of (3.1) in the space C([0, T ]× [0, 1]) we consider

the triangular array {ξ(n)i , i = 1, 2, . . .} of i.i.d. random variables with Eξ
(n)
i = 0 and

E(ξ
(n)
i )2 = 1, as in Theorem 1.1, and define the processes

Un(t, x) =

∫ 1

0

Gt(x, y)u0(y)dy +

∫ t

0

∫ 1

0

Gt−s(x, y)b(Un(s, y))dyds

+

∫ t

0

∫ 1

0

K∗αGt−s(x, y)θn(s, y)dyds, n = 1, 2, . . .

(3.3)

where θn(t, x), (t, x) ∈ [0, T ]× [0, 1] stands for the Donsker kernel given by

θn(t, x) = n

∞∑
i=1

∞∑
j=1

ξ
(n)
i,j 1[ i−1

n , in )×[ j−1
n , jn )(t, x). (3.4)

Observe that since θn have square integrable paths, the integrals in (3.3) are well
defined. Standard arguments yield existence and uniqueness of solution for (3.3).
Notice that ∫ t

0

∫ x

0

θn(s, y)dyds =
1

n

bntc∑
i=1

bnxc∑
j=1

ξ
(n)
i,j = Bn(t, x), n = 1, 2, . . . . (3.5)
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We see, as an application of Theorem 1.1, that

Wα
n (t, x) :=

∫ t

0

∫ x

0

Kα(t, s)Bn(ds, dy) =

∫ t

0

∫ x

0

Kα(t, s)θn(s, y)dyds, (3.6)

converges in law to fractional noise Wα. Our main object of this section is to explain
and prove the following theorem.

Theorem 3.2. Let {θn(t, x), (t, x) ∈ [0, T ] × [0, 1]}, n = 1, 2, . . . be the Donsker kernel
given in (3.4). Assume that u0 : [0, 1] → R is a continuous function and b : R → R is
Lipschitz. Then, the family {Un, n = 1, 2, . . .} defined by (3.3) converges in law, as n
tends to infinity, in the space C([0, T ] × [0, 1]), to the mild solution U of (3.1), given by
(3.2).

In order to prove Theorem 3.2, we first consider the linear problem, which is amount
to establish the convergence in law, in C([0, T ]× [0, 1]), of the solutions of

∂Xn

∂t
− ∂2Xn

∂x2
=
∂2Wα

n

∂t∂x
, (3.7)

with vanishing initial data and Dirichlet boundary conditions U(t, 0) = U(t, 1) = 0, t ∈
[0, T ] , towards the solution of

∂X

∂t
− ∂2X

∂x2
=
∂2Wα

∂t∂x
, (3.8)

where the solutions of (3.7) and (3.8) are respectively given by

Xn(t, x) =

∫ t

0

∫ 1

0

K∗αGt−s(x, y)θn(s, y)dyds (3.9)

and

X(t, x) =

∫ t

0

∫ 1

0

K∗αGt−s(x, y)B(ds, dy). (3.10)

We will make use of the following results, which is a quotation of Theorem 2.1 and
Lemma 2.2 in Mellali-Ouknine [11] (see, also Theorem 2.2 and Lemma 2.3 in Bardina et
al. [4]).

Lemma 3.3. Let {Xn, n = 1, 2, . . .} be a family of random variables taking values in
C([0, T ] × [0, 1]). The family of the laws of {Xn, n = 1, 2, . . .} is tight, if there exist
p, p′ > 0, δ > 2 and a constant C > 0 such that

sup
n≥1

E|Xn(0, 0)|p
′
<∞

and

sup
n≥1

E|Xn(t′, x′)−Xn(t, x)|p < C(|x′ − x|+ |t′ − t|)δ

for all t, t′ ∈ [0, T ], x, x′ ∈ [0, 1].

Lemma 3.4. Let (F, ‖·‖) be a normed space and let J, Jn, n = 1, 2, . . . be linear maps de-
fined on F with their values in the space L0(Ω) of almost surely finite random variables.
Assume that there exists a positive constant C such that, for any f ∈ F ,

sup
n≥1

E|Jn(f)| ≤ C‖f‖, E|J(f)| ≤ C‖f‖,

and that, for some dense subspace D of F , it holds that Jn(f) converges in law to
J(f), as n tends to infinity, for all f ∈ D. Then, the sequence of random variables
{Jn(f), n = 1, 2, . . .} converges in law to J(f), for any f ∈ F .
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We also will use the following lemmas which are given in Bardina et al. [4] and Bally
et al. [2].

Lemma 3.5. Let {θn(t, x), (t, x) ∈ [0, T ]× [0, 1]}, n = 1, 2, . . . be the Donsker kernels and
let m ≥ 10 be some even number. Then, there exists a positive constant Cm such that

E

(∫ T

0

∫ 1

0

f(t, x)θn(t, x)dxdt

)m
≤ Cm

(∫ T

0

∫ 1

0

f2(t, x)dxdt

)m
2

, (3.11)

for all n ≥ 1 and all f ∈ L2([0, T ]× [0, 1]).

Lemma 3.6. (i) Let α ∈ ( 3
2 , 3). Then, for all t ∈ [0, T ] and x, y ∈ [0, 1],∫ t

0

∫ 1

0

|Gt−s(x, z)−Gt−s(y, z)|αdzds ≤ C|x− y|3−α.

(ii) Let α ∈ (1, 3). Then, for all s, t ∈ [0, T ] such that s ≤ t and x ∈ [0, 1],∫ s

0

∫ 1

0

|Gt−r(x, y)−Gs−r(x, y)|αdydr ≤ C|t− s|
3−α
2 .

(iii) Under the same hypothesis as (ii), we have∫ t

s

∫ 1

0

|Gt−r(x, y)|αdydr ≤ C|t− s|
3−α
2 .

Proposition 3.7. The family {Xn, n = 1, 2, . . .} given by (3.9) is tight in C([0, T ]× [0, 1]).

Proof. First, we observe that

Xn(t′, x′)−Xn(t, x) =

∫ t

0

∫ 1

0

K∗α(Gt′−s(x
′, y)−Gt′−s(x, y))θn(s, y)dyds

+

∫ t

0

∫ 1

0

K∗α(Gt′−s(x, y)−Gt−s(x, y))θn(s, y)dyds

+

∫ t′

t

∫ 1

0

K∗αGt′−s(x
′, y)θn(s, y)dyds

≡ I1 + I2 + I3

for all t < t′. It follows from Lemma 3.5 that

sup
n≥1

E|Xn(t′, x′)−Xn(t, x)|m ≤ Cm
[∫ t

0

∫ 1

0

[K∗α(Gt′−s(x
′, y)−Gt′−s(x, y))]2dyds

]m
2

+ Cm

[∫ t

0

∫ 1

0

[K∗α(Gt′−s(x, y)−Gt−s(x, y))]2dyds

]m
2

+ Cm

[∫ t

0

∫ 1

0

(K∗αGt′−s(x
′, y))2dyds

]m
2

≡ Cm(J1 + J2 + J3).

Using the continuous embedding established in Pipiras-Taqqu [13]

L
1
α ([0, T ]× [0, 1]) ⊂ H,

and the inequality in Lemma 3.6, we obtain

J1 ≤ Cα
[∫ t

0

∫ 1

0

(Gt′−s(x
′, y)−Gt′−s(x, y)

1
α dyds

]mα
≤ Cα|x′ − x|(3α−1)m,
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and similarly, we also have J2, J3 ≤ Cα|t′ − t|(3α−1)
m
2 . Consequently, we have

sup
n≥1

E|Xn(t′, x′)−Xn(t, x)|m ≤ Cα,m[|t′ − t|(3α−1)m2 + |x′ − x|(3α−1)m],

and the proposition follows from Lemma 3.3.

Proposition 3.8. The family {Xn, n = 1, 2, . . .} defined by (3.9) converges to the process
X given by (3.10), in the sense of finite-dimensional distributions, as n tends to infinity,
in the space C([0, T ]× [0, 1]).

Proof. Let us consider the normed space (F := L2([0, T ]× [0, 1]), ‖ · ‖2). Set

Jn(f) :=

∫ t

0

∫ 1

0

f(s, y)θn(s, y)dyds, J(f) :=

∫ t

0

∫ 1

0

f(s, y)B(ds, dy),

where

f(s, y) =

m∑
j=1

aj1[0,sj ](s)K
∗
αGsj−s(yj , y).

Then, Jn and J define two linear applications on F . By Lemma 3.5 and the continuous
embedding as above, we obtain

sup
n≥1

E|Jn(f)| ≤ C‖f‖2.

Notice that from the computations of the proof of ( Nualart-Ouknine [12], Lemma 5),
and applying Lemma 3.6 we obtain∫ t

0

∫ 1

0

(K∗αGt−r(x, y))2dydr ≤ Cα(

∫ t

0

∫ 1

0

(Gt−s(x, y))
1
α dydr)2α ≤ Cαt3α−1 <∞,

which implies

E|J(f)| ≤ C‖f‖2.

Combining this with Lemma 3.4, we complete the proof.

As a consequence of the above two propositions, we can see that the family {Xn, n ≥
1} defined by (3.9) converges in law to the Gaussian process X defined by (3.10).

Finally, in a similar way as Theorem 4.5 in Mellali-Ouknine [11] we can obtain the
next theorem, and Theorem 3.2 follows as a direct consequence.

Theorem 3.9. Let {θn(t, x), (t, x) ∈ [0, T ] × [0, 1]}, n = 1, 2, . . . be the Donsker kernel
given in (3.4). Assume that u0 : [0, 1] → R is a continuous function and b : R → R

is Lipschitz. If the family {Xn, n ≥ 1} defined by (3.9) converges in law, as n tends
to infinity, to the Gaussian process X defined by (3.10). Then, the family {Un, n ∈ N}
defined by (3.3) converges in law, as n tends to infinity, in the space C([0, T ]× [0, 1]), to
the mild solution U of (3.1).
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