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Central limit theorem for an additive functional
of the fractional Brownian motion II*
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Abstract
We prove a central limit theorem for an additive functional of the d-dimensional frac-

tional Brownian motion with Hurst index H &€ (ﬁ, %) using the method of moments,

extending the result by Papanicolaou, Stroock and Varadhan in the case of the stan-
dard Brownian motion.
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1 Introduction

Let {B(t) = (B(t),...,B%(t)),t > 0} be a d-dimensional fractional Brownian motion
(fBm) with Hurst index H € (0,1). The local time of B, defined as L(x) = fot 0(B(s) —
x)ds, for t > 0 and = € R?, where § is the Dirac delta function, exists and is jointly
continuous in ¢ and z if Hd < 1 (see [2]). For any integrable function f : R? — R, using
the scaling property of the fBm and the continuity of the local time, one can easily show
the following convergence in law in the space C([0, 00)), as n tends to infinity

nt
(an—l/ F(B(s))ds,t > 0) A (Lt(O) fz)dz,t > 0). (1.1)
0 R4
If we assume that [, f(z)dz = 0, a central limit theorem holds with a random

variance. In order to formulate this theorem, we need to introduce some notation. Fix
a number 5 > 0 and denote

HE = {f e L'(RY) : / |f(@)||z|Pdz < 0o and f(z)dz = o}.
R4 R4
Forany f € Hoﬁ, and assuming S € (0,2), the quantity (see Lemma 4.1 in [3])
A3 = - / F@)f@)le —yl° drdy = cs.q / |F (@)l =7~ da (1.2)
R2d Rd

is finite and nonnegative, where fdenotes the Fourier transform of f.
Then, the following central limit theorem holds.
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CLT for an additive functional of the FBM II

1
Theorem 1.1. Suppose ;15 < H < } and f € H “ Then

/ F(B(s)ds, 2 0) 5 (VOmallFl y-aW(LA0)) 1> 0)

in the space C([0,00)), as n tends to infinity, where W is a real-valued standard Brown-
ian motion independent of B and

2 1 213 (Hd+2H—1)

C :7/ w (1 — exp(———=)) dw =
fd (271')% 0 ( <P QUJQH)) (I—Hd)ﬂ'% 2H

This theorem has been proved by Hu, Nualart and Xu in the reference [3], in the
case where the Hurst parameter H satisfies d}r1 < H< l and it has been conjectured
in that paper that the result can be extended to the case d+2 < HKL d+1 The purpose
of the present paper is to prove this conjecture. With this aim we will develop a new
approach to prove Theorem 1.1 based on Fourier analysis.

Note that the lower bound T+2 is optimal because for H < -5 +2 the constant Cp 4
is infinite. When d = 1 and H = 3, the above theorem was obtained by Papanicolaou,
Stroock and Varadhan in [4] with C%J =2.

As in the reference [3], the proof of Theorem 1.1 is based on the method of moments.
In order to handle the integrals on [0, t]2m, with respect to the measure ds; - - - dsg,,, we
make the change of variables usy_—1 = n(sor — s2x—1) and ugg = s2x, 1 < k < m. Then,
the increments of B in small intervals will be responsible for the independent noise
appearing in the limit. The main novelty of our approach, in comparison with [3], is a
new methodology based on Fourier analysis and an iterative procedure in order to get
the right estimates to derive the tightness of the laws and to show the convergence to
zero in the truncation argument.

After some preliminaries in Section 2, in Section 3 we prove some technical esti-
mates based on Fourier analysis which play a fundamental role in our approach. Finally,
Section 4 is devoted to the proof of Theorem 1.1. Throughout this paper, if not men-
tioned otherwise, the letter ¢, with or without a subscript, denotes a generic positive
finite constant whose exact value is independent of n and may change from line to line.

2 Preliminaries

Let {B(t) = (B(t),...,B%(t)),t > 0} be a d-dimensional fractional Brownian motion
with Hurst index H € (0,1), defined on some probability space (2, F, P). That is, the
components of B are independent centered Gaussian processes with covariance

E (B'(t)B'(s)) = %(t”f + 2 — |t — 5.

The next lemma (see Lemma 2.1 in [3]) gives a formula for the moments of the
increments of the process {W(L:(0)),t > 0} on disjoint intervals, where W is a real-
valued standard Brownian motion independent of B.

Lemma 2.1. Fix a finite number of disjoint intervals (a;, b;] in [0,00), wherei =1,..., N
and b; < a;y1. Consider a multi-index m = (my,...,my), where m; > 1 and 1 <1i < N.
Then

::]z

(W (Ly,(0)) = W(La, (0))]™) (2.1)

@
Il
_

u:]z

E
myl, )/N . det(A(w))’% dw if all m; are even
= 1275 (2m) "4 (mi/2)! IT [as,bi] 2
i=1

otherwise,
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where A(w) is the covariance matrix of the Gaussian random vector
; . my
(B(w;);1gz§Nand1gkg7).

As a consequence, the law of the random vector (W (Ly, (0)) =W (Lq,(0)) : 1 < i < N)
is determined by the moments computed in the above lemma.

We shall use the following local nondeterminism property of the fractional Brownian
motion (see [1]): For any n > 2 there exists a positive constant £y depending on n, such
that forany 0 = sg < s; < --- < s, <ooand uy,...,u, € RY,

Vaur(XIuZ $;) — B(si—1 )>kHZ|ul| i — Si_ 1) . (2.2)

3 Technical estimates

We are interested in the sequence of stochastic processes defined by

For0<a<b<ooandme N, let I = E [(F,(b) — F,(a))™]. It is easy to see that

m

Hd—1
I =mln™ 2 / E f(B(s;))) ds
. ([[ (B(s1)))
- m N 1 m
= Cm.an ot I (ll:[l f(yl)) exp ( — §Var (;yz . B(sz))) ds dy,
where ¢, 4 = (zﬂ)md and D,, = {(s1,...,5m) 1 na < s1 < --- < 8,, < nb}. Making the

change of variables z; = Z y; (with the convention that z,,; = 0) we can write

Jj=t
I,’}Lfcmvdn ( i — Titl )
Rmd D, E +
1 m
X exp ( - iVar le B(s;— 1)))) dsdx.

The main idea in order to estimate these terms is to replace each product f (502Z 1 —
%‘\Ql)f(l‘gl .%‘21+1) by f( .Igl)f(xgz) |f($21)|2 Then the differences f(xgl 1 .2?22)

f(= xgl) and f(an'gz — Xoiy1) — f(:vgz) are bounded by constant multiples of |z3;_1|* and
respectively, forany 0 < a < (i —d) A 1. This is possible because the integral

of |f(z) 4 is finite. We are going to make these substitutions recursively. To do
this, we 1ntroduce the following notation.
Let I}, o = I,. For k =1,...,m, we define
L = cman™ I x- —Tiy1)
Rmd m i kJrl

X exp ( - fVar le B(s;) — B(si,l)))) dsdx,

i=1
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where
k=1
2 ~ ~
1 |f(z25)?f(=ak+1), if k is odd;
Li=<""
2 ~
H | f(225) % if k is even.
j=1
The following proposition controls the difference between /7 , ; and I ,. We fix a
positive constant v such that
1-Hd if 1 — Hd < H;
Y<42H-1-Hd ; CRY
== ifH <1- Hd<2H.

Proposition 3.1. Fork =1,2,...,m, there exists a positive constant ¢, which depends
on v, such that

IRy — Il <en ™7 (b—a)™ 2 7.

Proof. The proof will be done in several steps.
Step 1. Suppose first that £ = 1. Applying the local nondeterminism property (2.2) and
making the change of variable u; = s1, u; = s; — s;_1, for 2 < i < m, we can show that
|1}, 0 — Iy, 1| is less than a constant multiple of

/]Rmd/ (21 —2) (H |f —Tit1 ‘) €xp (_%i |$i|2u$H) du dz,

i=1

where
Omz{(ul,...,um): O<u;<nb—a),i=1,--- ,m}.

Taking into account that \f(m)| < colz|® for o € [0, (4 — d) A 1] because f belongs to

1
L—d .
H{" ', we obtain

m—1
ufno—le|scmmm;1/ /'“1‘“1H<
’ ’ ]Rm,d O i—2

xexp(——2| i|2u 2H)ducla:

Hd 1
=cn™ xq|* x;
! Z/IR”Ld/ ‘ 1‘ | !
RH
X exp ( Ty Z |xz|2u12H> dudz,
=1
where S = {p;,p; : pi € {0,1},p; +P; =1,i=2,...,m — 1} and the ;s are constants in

[0, (7 —d) A1].
Rewriting the right hand side of (3.2) gives

Y @) ‘%n'am

Picyi

zip1 i)

m|*™ (3.2)

m—1

im0 = Tmal < con™ Z/}R d/ |$1|al\m2|p2a2( H |z
m

X exp ( - %{Z AR 3H> du dx.

=1

Pm—1®m—11t0m

Pi1Qi—1FPic 1)|I
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Integrating with respect to x gives

Hd 1 _Hd—H(p ) s
n 7Hd Hoq —H(i Hpoo Hd—H(p;_ii—1+pic;)
o= Imil <can™ E / II u;

=3

—Hd—H (B, m—1+am
X Um (P m—rtam) g
Assume that

1—Hd—Hay; >0,1—Hd— Hpyay >0,1—Hd— H(p,,_1@m—1+ am) >0

and
1 —Hd—H(ﬁi_loéi_l +piai) >0 for:=3,....m—1.
Then .
_ 1-Hd)—H
I — I 1] < 5 n™ ™5 (nb — o)™ 0TI B
Fix ¢ > 0. We choose a; = 1}5“ —eif 1 — Hd < H. Otherwise, we let a; = 1. For
i=2,...,m, we choose o; = 15844 — ¢. With these choices of «;s, we obtain
Hd—1 e Hd=1 + ;mHe if1 — Hd < H;
+m(1_Hd)_HZO‘i: \Ha-2H .
Pt LHA-2H | (;y — 1)He if 1 — Hd > H.

Thus we can choose € such that m#94=L + m(1 — Hd) — H }_ a; = —v, and

-

)

12— I | <ean ™ (b—a)™ 2

which is the desired estimation.
Step 2: Suppose now that k£ = 2. By the definition of [}, ; and I} ,,
than a constant multiple of

M/ d/ } — T ||f To—T3)— x2 H|f —Tiy1) exp<f—Z| i|Pu 2H)dud:z
R™ Om

=1

Pﬂi)|xm|am

n n 3
Ihq — I, o is less

Using similar arguments as in Step 1,

L |Pici T

m—1
= il < esn ™ S [ [ gt (T b
Sl R’HLd Ow7 1:3
m
X exp ( - HTH Z |xi|2u12H) dudx
=1

Hd—1 _ _Hd— —Hd—H
< ¢ an L / uj Hdu2 Hd Ha1u3 (az2+psas)
OT‘VL

y (Wll_Il u;Hd_H(ﬁi,lai,ﬁpiai))U;Hd—H(ﬁm,lam,ﬁam) du,
i=4

where S1 = {p;, p; : pi € {0,1},pi +P; =1, =3,--- ,m — 1}. Then we can conclude as

in Step 1.

Step 3: Suppose that k is odd and 3 < k < m. Since k is odd, |1}, , , — I} ;| is less than

a constant multiple of

/}Rmd/ H *I¢+1)|)

1=k+1

e

71

~

K m
[1F(a2s)F") exp (= 1 3 o) dud.

=1

=

x| Flan — r1) — A(—ffk+1)|(

<.
I
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Therefore,

I — Iﬁl’k| is less than a constant multiple of

k=1
m 2 m
Lz /Rm/o (11 f(xi—xi+1))|xk°"“(j1:[1|f(3:2j)2) exp (=55 Y Joil*u2™) du da.

m Z:k+1 =1
Integrating with respect to x;s and u;s with ¢« < k — 1 gives

Lo =1 = Lo

m,

m
<er(b-a) o H ek [ (T fa )] o
ROm-++14 /0,

i=k+1

m
KH 2 2H
xexp(—222|xi| us )dudm,
where du = duy, - - - du,,, dx = dxy, - - - dx,, and
Ompe = {(ui, ..., um) :0<u; <n(b—a),i=k,...,m}.

Applying Step 1 and then doing some algebra, we can obtain

gy — Il S can™ (b —a)™ 2
Step 4: The case when k is even and 4 < k < m is handled in a similar way. O

4 Proof of Theorem 1.1

The proof of Theorem 1.1 will be done in two steps. We first show tightness, and then
establish the convergence of moments. Tightness will be deduced from the following
inequality.

Proposition 4.1. For any 0 < a < b <t and any integerm > 1,
E [(Fa(b) = Fu(a))*™] < C (b—a)™ 1077,
where C' is a constant depending only on H, m, d and f.

Proof. Note that E [(F,(b) — F,(a))*™] = I%,, . Applying Proposition 3.1 repeatedly
gives

Ioo<an Y(b—a)" 1D po g (4.1)

So it suffices to estimate I3, 5,,. By the definition of I3, ,,,,, using the same notation as
in the proof of Proposition 3.1, we obtain

I om = con™—HD /WM /132m (H |f(962j)|2)

J=1

2m

X exp < - %Var (ZxL - (B(si) — B(si_l))>) ds dx

i=1

=
<o nm(l—Hd)/ / (
R2md O2m .

)=

m

2m
- K
|f(:1c2j)|2) exp ( - 7H Z |xi|2u?H) dudx
1 i=1

<ey(b— a)m(l_Hd)(/ |F2) 2|7 da?) . (4.2)

Rd
Combining (4.1) and (4.2) gives the desired result. O
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Next we shall prove the convergence of all finite dimensional distributions. That
is, we shall prove that the moments of F,(t) converge to the corresponding ones of
W (L(0)).

Fix a finite number of disjoint intervals (a;,b;] with i = 1,..., N and b; < a;41. Let

N

m = (mq,...,my) be a fixed multi-index with m; € Nfori=1,...,N. Set > m; = |m|
i=1

N
and [] m;! = m!. We need to consider the following sequence of random variables
i=1

N
H Fo(ai)™

1=1

and compute lim E (G, ). Note that the expectation of GG,, can be formulated as
n—oo

N m;
616 - min =5 | T[T 008,
mz 145=1
where
D= {seR™ :ng; <s} < <s <nb,1<i<N}. (4.3)

Here and in the sequel we denote the coordinates of a point s € RI™/ as s = (sé-), where
1<i<Nand1l<j<m,.
For simplicity of notation, we define
Jo={(i,7) : 1 <i < N,1<j <m}.
For any (i1, j1) and (i, j2) € Jo, we define the following dictionary ordering

(i1,51) < (i2,j2)

ifi; <iyori; =iy and j; < jo. Forany (7, j) in Jy, under the above ordering, (i, j) is the

i—1 i—1
(> mi + j)-th element in Jy and we define #(i,j) = > my + J.
k=1 k=1

Proposition 4.2. Suppose that at least one of the exponents m; is odd. Then

lim E(G,)=0.

n—oo

Proof. Using Fourier transform, we see that E (G,,) is equal to

N m; N m
m! m|(Hd—1) 1 -
WTL 2 /I;Jmld/ HHf y])exp(Var(ZZy] ))dsdy
m =1 j=1 =1 j=1
Making the change of variables m; = > yﬁ fori1<i< Nand1l<j<m,,
(£,k)>(i,5)
E(G m! iy A
(Gn) = (2m)mia " /le\d / Din }_[1]1_[1f )
N m;
xexp(— fVar<ZZx B(s}ﬁ)))dsdx.
i=1 j=1
ECP 18 (2013), paper 74. ecp.ejpecp.org
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Applying Proposition 3.1, we obtain

m' |m\(Hd 1) .
Iim E(G,)= ——— lim n =z / / ( flz 2)1m
8 B G = o 2 wemis Jo, \ L2 TG ) T
N m;
xexp(Var(ZZx i B(S§_1)))) dsdz,
=1 5=1

where J. = {(i,7) € Jo : #(i,]) is even} and
o F@ ), if jm| is odd;
feul = 1, if |m| is even.

It is easy to see that lim E (G,) = 0 when |m| is odd. We shall show lim E(G,) =0
n—0o0

n— oo
when |m| is even. In this case,

: m! Lm|(Hd=1) PR
e /Rm/ r)
(4,9) GI
N m; )
X exp (— fVar(ZZw B(S;I)))) dsdx.
=1 j=1

Note that the right hand side of the above equality is positive. Using the local nonde-
terminism property (2.2),

. \m|(Hd 1) N2
| lim E(G,)| < ¢ limsupn™ 2 ($j)| )
n— oo m
n— 00 RImld (i ])GJ
K N m;
X exp ( 5 g E |xj|2(sj - sj_l)ZH) ds dx

i=1 j=1

:= ¢y limsup [,,.
n—oo

Assume that my is the first odd exponent. Integrating with respect to proper m;s and
sis gives

Hd—-1 nb[Jrl €+1 0 4 Hd
In S Con sup / / )| (Smg - Smgfl)
s‘Z 16 nag,nby)

nagy1

X exp ( -5 |x§+1|2(5§+1 — sfw)QH) dslﬁl dsfnz dxf"'l.

Note that \f(a:)| < cql|® for o € [0, (4 — d) A 1]. Choosing o € (1584 (& — d) A1) gives

Hd—1 @-0—1 2c0( A 4 —Hd
In S c3n sup / / / ( mg - smg—l)
st €(nag,nbg] JRI n

mp— ap41

X exp < - H—H\x”1| (8”1 st F)QH) dst™ldst, dar:é+1

m

nbﬁ+1
Hd—-1 . 4 —Hd—2Hao t 4 —Hd {+1 4
S cqam sup / / sz) (sz - 5m5—1> dsl dsmg
sfng71 €(nag,nbe] /sy, 4 "w+1
Hd—-1 4 1-Hd—2Hay( 0 —Hd 4
<csn sup / (nagy1 — Sp,) “(Smy = Smp—1) ds,,,
sty —1€(nagnbel Jsp o
S e nl—Hd—QHoz7
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where we used by < ayy; in the last inequality. Therefore,

’ lim E(Gn)’ < ¢ lim npt~Hd—2Ha —
n—oo n—oo

O
Consider now the convergence of moments when all exponents m; are even.
Proposition 4.3. Suppose that all exponents m,; are even. Then
N
Im] m;
Tim B(Ga) = Crtg 1L, B(TT (W (L0, (0) = W(La, (0))™), (4.4)

i=1
where the expectation in the right-hand side of the above equation is given by formula
(2.1).

Proof. Forany K > 0and ¢=1,...,|m|/2, we introduce the set
D|m| K= {(51,...,5‘m‘) €EDpm:s1<s2<--< Slm|, S2¢ — S20—1 > K},

where Dy, is defined in (4.3).
Taking into account the results proved in [3], the proof of the convergence (4.4)

reduces to show that forall /= 1,...,|m|/2
|m|
lim limsup n‘ml(Hd ) / Hf ) =0. (4.5)
K00 n—oo Dfm\ K 1=1

In order to prove (4.5), set |m| = 2m. Then, it suffices to show that

2m
lim i s m(Hd— 1)/ / l) (_7V . )dd —0.
Jim_limsup n N H fx;) ) exp ar Zx sdx

—00 pn
oo 2m, K =1

Using similar arguments as in the proof Proposition 3.1 we can write

2m
lim sup n™(Hd=1) /}Rzm /DZ Hf(x») exp ( - %Var (Z X B(SZ))) ds dx
i=1

n—o00
2m, K i=1

m
= lim sup n™Hd- 1)/ / H (225) )
n—oo Rde D@

m K j=1

X exp (— ~Var (Zz B(s;) — B(sil)))) ds dz.

The right hand side of the above equality is positive and less than or equal to

2m
. " K
lim sup n™Hd=1) /}RMd /D@ H 17 (225)] ) exp ( -5 ; 2% (s; — sz;l)zH) dsdz.

n—oo

Integrating with respect to all z;s and s;s (i # 2¢), the above limit is less than or equal

to
H 2 2H
c1 / / (220)| 2oz 122Uy gy
]Rd
_FH 2 2H
§02/ / ‘Zgg|2€ 3| z20 " du dzoy
R JK
—c3 K1-Hd—2H
This completes the proof since 1 — Hd — 2H < 0. O
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Proof of Theorem 1.1. This follows from Lemma 2.1, Propositions 4.1, 4.2 and 4.3 by
the method of moments.
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