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Abstract
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1 Introduction and Results

In the last years there has been growing interest in concepts of positive/negative
dependence for families of random variables. Such concepts are of considerable use
in deriving inequalities in probability and statistics. Recently, Csörgő et al. [1] and
Choi and Csörgő [2] studied path properties and asymptotic properties for l∞-valued
Gaussian random fields, respectively. In this paper we are interested in path properties
for any positive or negative dependent random fields with multidimensional indices
taking values in l∞-space.

Newman [3] introduced and discussed the following concepts of positive or negative
dependence. The random field {Xi(t) ; t := (t1, · · · , tN ) ∈ [0,∞)N}∞i=1 is said to be
linearly positive quadrant dependent (LPQD) if, for any positive numbers λi and any
disjoint finite subsets A, B of Z+(set of positive integers), the inequality

P

{∑
i∈A

λiXi(ti) ≥ x,
∑
j∈B

λjXj(tj) ≥ y
}
≥ P

{∑
i∈A

λiXi(ti) ≥ x
}
P

{∑
j∈B

λjXj(tj) ≥ y
}

(1.1)

holds for all x, y ∈ R(set of real numbers), where {tj}∞j=1 ⊂ {t}, which is equivalent to
the inequality (Lehmann [6], pp. 1137-1138)

P

{∑
i∈A

λiXi(ti) ≤ x,
∑
j∈B

λjXj(tj) ≤ y
}
≥ P

{∑
i∈A

λiXi(ti) ≤ x
}
P

{∑
j∈B

λjXj(tj) ≤ y
}
,

(1.2)
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How big are the l∞-valued random fields?

while the random field {Xi(t)}∞i=1 is said to be linearly negative quadrant dependent
(LNQD) if the inequalities in (1.1) and (1.2) are reversed. For the results related to
such dependence, one can refer to [3, 4, 5]. In general, two random variables X and Y
have been called positively (resp. negatively) quadrant dependent (PQD) (resp. NQD)
by Lehmann [6], if P

(
X ≥ x, Y ≥ y

)
≥ (resp. ≤)P

(
X ≥ x

)
P
(
Y ≥ y

)
for all x, y ∈ R.

The objective of this paper is to establish a generalized uniform law of the iterated
logarithm and investigate path properties for LPQD or LNQD random fields taking val-
ues in l∞-space, whose description now follows. For s := (s1, · · · , sN ), t := (t1, · · · , tN ) ∈
[0,∞)N , denote

0 = (0, · · · , 0), 1 = (1, · · · , 1), s± t = (s1 ± t1, · · · , sN ± tN ),

s ≤ t if sm ≤ tm for each m = 1, 2, · · · , N,
at = (at1, · · · , atN ) for a ∈ (−∞,∞), (s, t) = (s1, · · · , sN , t1, · · · , tN ) ∈ [0,∞)2N .

Assume that {Xi(t) ; t ∈ [0,∞)N}∞i=1 is a sequence of centered strictly stationary and
LPQD (or LNQD) random fields with Xi(0) = 0 and stationary increments

σi(‖t‖) :=
√
E{Xi(s + t)−Xi(s)}2, i ≥ 1,

where σi(t) are nondecreasing continuous functions of t > 0, and ‖ · ‖ denotes the

Euclidean norm such that ‖t‖ =
(∑N

m=1 t
2
m

)1/2
. Put

σ∗(t) = sup
i≥1

σi(t)

and assume that σ∗(·) is a regularly varying function with exponent α > 0 at ∞. Recall
that a positive function σ(t) of t > 0 is said to be regularly varying with exponent α > 0

at b ≥ 0 if limt→b{σ(xt)/σ(t)} = xα for x > 0.

Let {X(t) := (X1(t), X2(t), · · · ) ; t ∈ [0,∞)N} be a centered strictly stationary and
LPQD (LNQD) random field taking values in l∞-space (i.e. l∞-valued random field) with
l∞-norm ‖ · ‖∞ defined by ‖X(t)‖∞ = supi≥1 |Xi(t)|.

For each m = 1, 2, · · · , N , let am(x) and bm(x) be positive nondecreasing functions
of x > 0 such that am(x) ≤ bm(x) and limx→∞ bm(x) =∞. Denote

ax = (a1(x), · · · , aN (x)), bx = (b1(x), · · · , bN (x)),

γ(x) =
√

2
{

log
(
‖bx‖/‖ax‖

)
+ log log ‖bx‖

}
,

where log z = log(max{z, e}).
The main results are as follows. Let {xk ; xk > 0}∞k=1 be an increasing sequence with

x0 > 0 and limk→∞ xk =∞, and let uk = O(vk) denote lim supk→∞ uk/vk <∞.

Theorem 1.1. Let {X(t) ; t ∈ [0,∞)N} be a centered strictly stationary and LPQD
(LNQD) l∞-valued random field with l∞-norm ‖ · ‖∞ and E|X1(t)|2+δ < ∞ for some
δ ∈ (0, 1], which satisfies conditions

(i)
∑

j≥k+1

|Cov(Xi(1), Xi(bj) ) | = O(‖bk‖−λ) for each i, k ≥ 1 and some λ > 2,

(ii) inf
x≥1

σ2
∗(x)/x > 0.

For each m = 1, 2, · · · , N , let the functions am(x) and bm(x) satisfy conditions

(iii) bm(x)/am(x) (> 1) is increasing,

(iv) there exists c0 > 1 such that bm(xk) ≤ c0 bm(xk−1) for k ≥ 1.

Then we have

lim sup
x→∞

sup
‖s‖≤‖bx‖

sup
‖t‖≤‖bx‖

‖X(s + t)−X(s)‖∞
σ∗(‖bx‖)γ(x)

= lim sup
x→∞

‖X(bx)‖∞
σ∗(‖bx‖)γ(x)

= 1 a.s. (1.3)
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How big are the l∞-valued random fields?

Theorem 1.1 presents a path property for l∞-valued random field, while we can
obtain the following law of the iterated logarithm (LIL) without conditions (iii)-(iv) of
Theorem 1.1.

Theorem 1.2. Let {X(t) ; t ∈ [0,∞)N} be as in Theorem 1.1 with conditions (i)-(ii).
Then

lim sup
x→∞

sup
‖s‖≤‖bx‖

sup
‖t‖≤‖bx‖

‖X(s + t)−X(s)‖∞
σ∗(‖bx‖)

√
2 log log ‖bx‖

= lim sup
x→∞

‖X(bx)‖∞
σ∗(‖bx‖)

√
2 log log ‖bx‖

= 1 a.s. (1.4)

Note that the first result in (1.4) implies a generalized uniform law of the iterated
logarithm for LPQD or LNQD l∞-valued random fields, but the second one in (1.4) is a
standard form of the ordinary LIL for any dependent (or independent) l∞-valued random
fields, which is an extension of some theorems in [1, 2, 4, 8].

Returning to our present exposition of Theorem 1.2, we present the following exam-
ples.

Example 1.3. Let {Xi(t) ; t ∈ [0,∞)N}∞i=1 be a sequence of centered stationary and
independent l∞-valued Gaussian random fields with exponent α = 1/2 (e.g. Wiener
random field). For each i = 1, 2, . . . , N, let bi(x) =

√
i x. Then

bx := (b1(x), · · · , bN (x)) = (1,
√

2, · · · ,
√
N)x, ‖bx‖ =

√
N(N + 1)/2x.

Hence, by Theorem 1.2, we have the uniform law of the iterated logarithm

lim sup
x→∞

sup
‖s‖≤‖bx‖

sup
‖t‖≤‖bx‖

‖X(s + t)−X(s)‖∞√
‖bx‖

√
2 log log ‖bx‖

= 1 a.s.

From the ordinary LIL in (1.4), one can obtain Theorem 1 in [4] for LPQD random
sequence {ξn ; n ≥ 1}, as in Example 1.4 below. In (1.1) and Theorem 1.2, denote
X(n) = Xn(tn), X(n) = Sn := ξ1 + · · · + ξn and σ(n) :=

√
E(Sn)2, when indexed by a

single time-parameter n in Theorems 1.1-1.2.

Example 1.4. Let {ξn ; n ≥ 1} be a centered strictly stationary and LPQD (or LNQD)
random sequence with Eξ21 > 0, which satisfies conditions

(i) E|ξ1|p <∞ for each p > 2,

(ii)
∑

j≥k+1

|Cov(ξ1, ξj ) | = O(k−λ) for each k ≥ 1 and some λ > 2,

(iii) σ2 := Eξ21 + 2

∞∑
j=2

|Cov(ξ1, ξj)| <∞.

Then we have

lim sup
n→∞

Sn

σ(n)
√

2 log log n
= 1 a.s.,

where it is easy to prove that σ(n) ≈ σ
√
n for n large enough.
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2 Proofs

In this section, let c denote a positive constant which may take different values
whenever they appear in different lines. We need the following properties.

(P1) Two random variables X and Y are PQD (resp. NQD) if and only if Cov
(
f(X),

g(Y )
)
≥ (resp. ≤) 0 for all real-valued nondecreasing functions f and g (such that f(X)

and g(Y ) have finite variances) (see Lehmann [6]);

(P2) (Hoeffding equality): For any absolutely continuous functions f and g on the
real line and for any random variables X and Y satisfying Ef2(X) + Eg2(Y ) < ∞, we
have

Cov
(
f(X), g(Y )

)
=

∫ ∞
−∞

∫ ∞
−∞

f ′(x)g′(y)
{
P (X ≥ x, Y ≥ y)− P (X ≥ x)P (Y ≥ y)

}
dxdy.

The main ingredients of the proofs of Theorems 1.1-1.2 are Propositions 2.1-2.3
below. Note that conditions (i)-(ii) in Theorem 1.1 imply conditions (C2) and (I)-(II) in
[4] and [5], respectively. Moreover, ‖X(t)‖∞/σ∗(‖t‖) is a standardized random variable.
Thus Lemma 2 in [4] and Corollary 2.1 in [5] are easily changed to the following Berry-
Esseen type theorem.

Proposition 2.1 (Berry-Esseen type theorem). Let {X(t) ; t ∈ [0,∞)N} be as in Theo-
rem 1.1 with conditions (i)-(ii). Then

sup
z∈R

∣∣∣P{‖X(bx)‖∞
σ∗(‖bx‖)

≤ z
}
− Φ(z)

∣∣∣ = O
(
‖bx‖−1/5

)
, x→∞,

where Φ(·) is a standard normal distribution function and ‖bx‖ → ∞ as x→∞.

Denote bk = bxk
for a positive increasing sequence {xk}∞k=1. Using Proposition 2.1

above, the following proposition is immediate from the proof of Lemma 9 in Petrov [7,
p. 311].

Proposition 2.2. Let {X(t)} be as in Proposition 2.1. Assume that g(x) is a positive
nondecreasing function of x > 0 and that {‖bk‖ ; k ≥ 1} is a positive nondecreasing
sequence such that

∑∞
k=1 ‖bk‖−1/5 <∞. Then the following statements are equivalent.

(A)
∞∑
k=1

P
{‖X(bk)‖∞
σ∗(‖bk‖)

> g(‖bk‖)
}
<∞,

(B)
∞∑
k=1

1

g(‖bk‖)
exp

(
− 1

2
g2(‖bk‖)

)
<∞.

The next proposition on the large deviation probability is essential to prove our
theorems for any strictly stationary l∞-valued random field, which is proved in a way
similar to those of Lemmas 2.2 and 2.3 in [8].

Proposition 2.3. Let {X(t) ; t ∈ [0,∞)N} be a centered strictly stationary l∞-valued
random field. Then, for any ε > 0 there exists a constant cε > 0 such that, for v > 1,

P

{
sup

‖s‖≤‖bx‖
sup

‖t‖≤‖bx‖

‖X(s + t)−X(s)‖∞
σ∗(‖bx‖)

≥ v
}

≤ cε
(
P
{‖X(bx)‖∞
σ∗(‖bx‖)

≥ v

1 + ε

}
+

∞∑
n=1

22N2nP
{‖X(bx)‖∞
σ∗(‖bx‖)

≥ v

1 + ε

√
1 + 2N log 3 · 2n/2

})
.

ECP 18 (2013), paper 61.
Page 4/9

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2417
http://ecp.ejpecp.org/


How big are the l∞-valued random fields?

Proof of Theorem 1.1. Since γ(x) ≥
√

2 log log ‖bx‖, we will first prove the sharper
result

lim sup
x→∞

sup
‖s‖≤‖bx‖

sup
‖t‖≤‖bx‖

‖X(s + t)−X(s)‖∞
σ∗(‖bx‖)

√
2 log log ‖bx‖

≤ 1 a.s. (2.1)

without conditions (iii)-(iv), whose result is used to prove (1.4). For θ > 1 and k ≥ 1, set
Ak =

{
x; θk ≤ ‖bx‖ ≤ θk+1

}
. Note that

√
2 log log θk ≥ θ−1

√
2 log log θk+1 since (log u)/u

is decreasing for u > ee. By the regularity of σ∗(·), we get σ∗(‖bx‖)/σ∗(θk+1) ≥ θ−2α

and hence

lim sup
x→∞

sup
‖s‖≤‖bx‖

sup
‖t‖≤‖bx‖

‖X(s + t)−X(s)‖∞
σ∗(‖bx‖)

√
2 log log ‖bx‖

≤ lim sup
k→∞

sup
x∈Ak

sup
‖s‖≤‖bx‖

sup
‖t‖≤‖bx‖

‖X(s + t)−X(s)‖∞
σ∗(‖bx‖)

√
2 log log θk

≤ θ1+2α lim sup
k→∞

sup
‖s‖≤θk+1

sup
‖t‖≤θk+1

‖X(s + t)−X(s)‖∞
σ∗(θk+1)

√
2 log log θk+1

. (2.2)

For convenience, let ‖bk‖ = θk, where bk := bxk
for a positive increasing sequence

{xk}∞k=1. Using Proposition 2.3, it follows that for any ε > 0 there exists a positive
constant cε such that

P

{
sup

‖s‖≤θk+1

sup
‖t‖≤θk+1

‖X(s + t)−X(s)‖∞
σ∗(θk+1)

√
2 log log θk+1

> 1 + 2ε

}
≤ cε

(
P
{‖X(bk+1)‖∞

σ∗(θk+1)
≥ (1 + 2ε)

√
2 log log θk+1

1 + ε

}
(2.3)

+

∞∑
n=1

22N2nP
{‖X(bk+1)‖∞

σ∗(θk+1)
≥ (1 + 2ε)

√
2 log log θk+1

1 + ε

√
1 + 2N log 3 · 2n/2

})
.

Now let us apply Proposition 2.2 with ‖bk‖ = θk and g(θk) = g1(θk)
(
or g2(θk)

)
, where

g1(θk) :=
(1 + 2ε)

√
2 log log θk+1

1 + ε
, g2(θk) :=

(1 + 2ε)
√

2 log log θk+1

1 + ε

√
1 + 2N log 3 · 2n/2

in (2.3). Considering the right hand side of (2.3) and equivalence of Proposition 2.2, we
have

∞∑
k=1

1

g1(θk)
e−g

2
1(θ

k)/2 ≤ c
∞∑
k=1

(
log θk+1

)−1−ε′
<∞

⇒
∞∑
k=1

P
{‖X(bk+1)‖∞

σ∗(θk+1)
≥ g1(θk)

}
<∞,

where ε′ = ε/(1 + ε), by the strict stationarity of X(t), and also

1

g2(θk)
exp

(
− 1

2
g22(θk)

)
≤ exp

(
− 1

2

(1 + 2ε

1 + ε

)2
(2 log log θk+1)(1 + 2N log 3)2n

)
≤ ((k + 1) log θ)−(1+ε

′)(1+2N log 3)2n ≤ c (k + 1)−(1+ε
′)(1+2N log 3)2n

which implies

P
{‖X(bk+1)‖∞

σ∗(θk+1)
> g2(θk)

}
≤ c (k + 1)−(1+ε

′)(1+2N log 3)2n
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by Proposition 2.2. Thus

∞∑
k=1

∞∑
n=1

22N2nP
{‖X(bk+1)‖∞

σ∗(θk+1)
> g2(θk)

}
≤ c

∞∑
k=1

∞∑
n=1

22N2n(k + 1)−(1+ε
′)(1+2N log 3)2n

≤ c
∞∑
k=1

∞∑
n=1

2−N2n log2(k+1) · 2−n ≤ c
∞∑
k=1

∞∑
n=1

k−2 · 2−n <∞.

In conclusion, it follows from (2.3) that

∞∑
k=1

P

{
sup

‖s‖≤θk+1

sup
‖t‖≤θk+1

‖X(s + t)−X(s) ‖∞
σ∗(θk+1)

√
2 log log θk+1

> 1 + 2ε

}
<∞

and the Borel-Cantelli lemma yields

lim sup
k→∞

sup
‖s‖≤θk+1

sup
‖t‖≤θk+1

‖X(s + t)−X(s) ‖∞
σ∗(θk+1)

√
2 log log θk+1

≤ 1 + 2ε a.s.

Combining this with (2.2) implies (2.1) since ε and θ are arbitrary.
By virtue of (2.1), the proof of (1.3) is completed if we show that

lim sup
x→∞

‖X(bx) ‖∞
σ∗(‖bx‖)γ(x)

≥ 1 a.s. (2.4)

Let {xk ; xk > 0}∞k=1 be an increasing sequence such that x0 > 0 and the (k − 1)st point
xk−1 is placed by the relation bm(xk) − am(xk) = bm(xk−1), 1 ≤ m ≤ N , with xk defined
by induction, since bm(x) − am(x) is increasing by (iii). For convenience, put ak = axk

and bk = bxk
, and let i0 ≥ 1 be an integer such that σi0(‖bk‖) = σ∗(‖bk‖), where

‖bk‖ := θk as above. Then,

lim sup
k→∞

‖X(bk) ‖∞
σ∗(‖bk‖)γ(xk)

≥ lim sup
k→∞

Xi0(bk)

σi0(‖bk‖)γ(xk)
(2.5)

and the inequality (2.4) is immediate from (2.5) if we prove

lim sup
k→∞

Xi0(bk)

σi0(‖bk‖)γ(xk)
> 1− 4ε a.s. (2.6)

for any small ε > 0. For each k ≥ 1, we see that

Uk :=
Xi0(bk)−Xi0(bk/2)

σi0(‖bk − bk/2 ‖)

is a standardized random variable. Let Bk = {Uk > (1− 2ε)γ(xk)} . If N is a standard
normal random variable, then it follows from Proposition 2.1 and the strict stationarity
of X(t) that

P (Bk) =
(

1− P
{
Uk ≤ (1− 2ε)γ(xk)

}
− 1 + P{N ≤ (1− 2ε)γ(xk)}

)
+ P{N > (1− 2ε)γ(xk)}

≥ −c1‖bk − bk/2 ‖−1/5 +
1√

2π(1− 2ε)2 γ2(xk)
exp

(
− 1− 2ε

2
γ2(xk)

)
≥ −c1

1

(log ‖bk ‖)1−ε
+ c

(
‖ak ‖

‖bk ‖ log ‖bk ‖

)1−ε

≥ c 1

(log ‖bk ‖)1−ε
(
ε
‖ak ‖
‖bk ‖

)
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for all large k by (iii), where c and c1 are positive constants, and further

∑̀
k=k0

P (Bk) ≥ ε 1

(log ‖b` ‖)1−ε
∑̀
k=k0

‖ak ‖
‖bk ‖

for some k0 ≥ 1 with k0 ≤ k ≤ `. Also there exist constants c2, c3 > 1 such that

log ‖b`‖ ≤ c2
∑̀
k=k0

log
‖bk‖
‖bk−1‖

≤ c2
∑̀
k=k0

log
(
c0 +

‖ak‖
‖bk−1‖

)
≤ c2

∑̀
k=k0

log
(
c0 +

c3‖ak−1‖
‖bk−1‖

)
(2.7)

since c0 ‖bk−1 ‖ ≥ ‖bk ‖−‖ak ‖ by (iv). The last inequality of (2.7) follows from the fact
that

‖ak‖
‖ak−1‖

≤ ‖bk‖
‖bk−1‖

≤ c0 ‖bk‖
‖bk‖ − ‖ak‖

=
c0

1− (‖ak‖/‖bk‖)
≤ c3

by (iii). Thus, by (2.7), there exists a constant K > 1 such that

log ‖b`‖ ≤ c2
∑̀
k=k0

log
(
c0 +

c3‖ak‖
‖bk−1‖

)
≤ K

∑̀
k=k0

c3
2‖ak‖
‖bk‖

.

Therefore, we have
∑`
k=1 P (Bk) ≥ ε(log ‖b`‖)ε/(Kc32) → ∞ as ` → ∞; that is, we get∑∞

k=1 P (Bk) =∞.

Next, let B′k = {Uk > (1− 3ε)γ(xk)} . We will show that P
(
B′k, i.o.

)
= 1. Choose a

differential function f(x) on R such that |f ′(x)| ≤ κ for some 0 < κ <∞ and

0 ≤ I
{
x > (1− 2ε)γ(xk)

}
≤ f(x) ≤ I

{
x > (1− 3ε)γ(xk)

}
≤ 1, (2.8)

where I{·} is an indicator function. In order to prove P
(
B′k, i.o.

)
= 1, it is enough

to show that
∑∞
k=1 f(Uk) = ∞ a.s. Since

∑∞
k=1 P (Bk) = ∞ in the above statement, it

follows from (2.8) that
∑∞
k=1Ef(Uk) ≥

∑∞
k=1 P (Bk) =∞. By Markov inequality, we have

P

{ ∞∑
k=1

f(Uk) <
1

2

n∑
k=1

Ef(Uk)

}
≤ P

{∣∣∣∣∣
n∑
k=1

f(Uk)−
n∑
k=1

Ef(Uk)

∣∣∣∣∣ > 1

2

n∑
k=1

Ef(Uk)

}

≤ 4 Var

(
n∑
k=1

f(Uk)

)/(
n∑
k=1

Ef(Uk)

)2

(2.9)

≤ 4∑n
k=1Ef(Uk)

+
8
∑∞
k=1

∑∞
j=k+1 |Cov

(
f(Uk), f(Uj)

)
|(∑n

k=1Ef(Uk)
)2 .

Noting that Uk and Uj are LPQD (resp. LNQD) from the definition of LPQD (resp.
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LNQD), it follows from (P1), (P2), condition (i) and the regularity of σ∗(·) that
∞∑
k=1

∞∑
j=k+1

∣∣Cov
(
f(Uk), f(Uj)

) ∣∣
≤ κ2

∞∑
k=1

∞∑
j=k+1

∣∣∣ ∫ ∞
−∞

∫ ∞
−∞

(
P{Uk ≥ x, Uj ≥ y} − P{Uk ≥ x}P{Uj ≥ y}

)
dxdy

∣∣∣
≤ c

∞∑
k=1

‖bk − bk/2 ‖
σ2
i0

(‖bk − bk/2 ‖)

∞∑
j=k+1

∣∣∣Cov
(
Xi0(1), X

i0
(bj)−Xi0

(bj/2)
)∣∣∣ (2.10)

≤ c
∞∑
k=1

(θk)1−2α‖b(k+1)/2 ‖
∑
j≥k+1

∣∣∣Cov
(
Xi0(1), Xi0(bj)

)∣∣∣
≤ c

∞∑
k=1

θ−(λ−2+2α)k <∞.

Since
∑∞
k=1Ef(Uk) =∞ as above, letting n→∞ in (2.9) yields P {

∑∞
k=1 f(Uk) <∞} =

0 by (2.10). This proves
∑∞
k=1 f(Uk) =∞ a.s. and consequently P

(
B′k, i.o.

)
= 1. Let

Ck =

{
Xi0(bk/2)

σi0(‖bk/2‖)
≥ −2γ(xk/2)

}
.

Since P
(
B′k, i.o.

)
= 1, it follows from (2.1) that P (B′k ∩ Ck, i.o.) = 1. It is easy to see

that

P
{ Xi0(bk)

σi0(‖bk‖)
> (1− 4ε)γ(xk), i.o.

}
≥ P

{ Xi0(bk)

σi0(‖bk‖)
> (1− 3ε)γ(xk)− 2γ(xk/2), i.o.

}
≥ P

{
B′k ∩ Ck, i.o.

}
= 1

for k large enough, by the stationarity of X(t). This implies (2.6) and hence (2.4) holds
true.

Proof of Theorem 1.2. Since we have proved (2.1) without conditions (iii)-(iv) of Theo-
rem 1.1, it is enough to show that

lim sup
x→∞

‖X(bx)‖∞
σ∗(‖bx‖)

√
2 log log ‖bx‖

≥ 1 a.s. (2.11)

Set bk = bxk
for a positive increasing sequence {xk}∞k=1, and let i0 ≥ 1 be an integer

such that σi0(‖bk‖) = σ∗(‖bk‖). Then

lim sup
k→∞

‖X(bk) ‖∞
σ∗(‖bk‖)

√
2 log log ‖bk‖

≥ lim sup
k→∞

Xi0(bk)

σi0(‖bk‖)
√

2 log log ‖bk‖
(2.12)

and (2.11) is immediate from (2.12) if we prove

lim sup
k→∞

Xi0(bk)

σi0(‖bk‖)
√

2 log log ‖bk‖
> 1− 4ε a.s.

for any small ε > 0. For θ > 1, set ‖bk‖ = θk andB∗k =
{
Uk > (1− 2ε)

√
2 log log ‖bk − bk/2 ‖

}
as in the proof of (2.6). Then ‖bk−bk/2 ‖ ≈ θk for sufficiently large k. If we apply Propo-
sition 2.2 with g(‖bk − bk/2 ‖) = (1− 2ε)

√
2 log log ‖bk − bk/2 ‖, then

∞∑
k=1

1

g
(
‖bk − bk/2 ‖

) exp
(
− 1

2
g2
(
‖bk − bk/2 ‖

))
≥ c

∞∑
k=1

k−1+ε =∞
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and hence
∑∞
k=1 P (B∗k) = ∞ by the strict stationarity of Xi(t) for i ≥ 1. The remainder

of the proof is the same as the corresponding proof in (2.8)-(2.10). The details are
omitted. This completes the proof of Theorem 1.2.
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