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Abstract

We present a new proof of the extended arc-sine law related to Walsh’s Brownian
motion, known also as Brownian spider. The main argument mimics the scaling prop-
erty used previously, in particular by D. Williams [12], in the 1-dimensional Brownian
case, which can be generalized to the multivariate case. A discussion concerning the
time spent positive by a skew Bessel process is also presented.
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1 Introduction

a) Recently, some renewed interest has been shown (see e.g. [9]) in the study of the
law of the vector

−→
A1 =

(∫ 1

0

1(Ws∈Ii)ds; i = 1, 2, . . . , n

)
,

where (Ws) denotes a Walsh Brownian motion, also called Brownian spider (see [10] for
Walsh’s lyrical description) living on I =

⋃n
i=1 Ii, the union of n half-lines of the plane,

meeting at 0.
For the sake of simplicity, we assume p1 = p2 = . . . = pn = 1/n, i.e.: when returning

to 0, Walsh’s Brownian motion chooses, loosely speaking, its "new" ray in a uniform way.
In fact, excursion theory and/or the computation of the semi-group of Walsh’s Brownian
motion (see [1]) allow to define the process rigorously.

Since (d(0,Ws); s ≥ 0), for d the Euclidian distance, is a reflecting Brownian motion,
we denote by (Lt, t ≥ 0) the unique continuous increasing process such that:
(d(0,Ws)− Ls; s ≥ 0) is aWs = σ {Wu, u ≤ s} Brownian motion.
Let −→

At =
(
A

(1)
t , A

(2)
t , . . . , A

(n)
t

)
denote the random vector of the times spent in the different rays. In Section 2 we will
state and prove our main Theorem concerning the distribution of

−→
At for a fixed time.
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Walsh’s Brownian motion extended arc-sine law

Section 3 deals with the general case of stable variables, First, we recall some known
results and then we state and prove our main Theorem. Finally, Section 4 is devoted to
some remarks and comments.

b) Reminder on the arc-sine law:
A random variable A follows the arc-sine law if it admits the density:

1

π
√
x(1− x)

1[ 0,1 )(x). (1.1)

Some well known representations of an arc-sine variable are the following:

A
(law)

=
N2

N2 + N̂2

(law)
= cos2(U)

(law)
=

T

T + T̂

(law)
=

1

1 + C2
, (1.2)

where N, N̂ ∼ N (0, 1) and are independent, U is uniform on [0, 2π], T and T̂ stand for
two iid stable (1/2) unilateral variables, and C is a standard Cauchy variable.
With (Bt, t ≥ 0) denoting a real Brownian motion, two well known examples of arc-sine
distributed variables are:

g1 = sup{t < 1 : Bt = 0}, and A+
1 =

∫ 1

0

ds 1(Bs>0) ,

a result that is due to Paul Lévy (see e.g. [6, 7, 13]).

c) This point gives some motivation for Section 3. From (1.2), one could think that
more general studies of the time spent positive by diffusions may bring 2 independent
gamma variables (this because N2 and N̂2 are distributed like two independent gamma
variables of parameter 1/2), or 2 independent stable (µ) variables. It turns out that it is
the second case which seems to occur more naturally. We devote Section 3 to this case.

2 Main result

Our aim is to prove the following:

Theorem 2.1. The random vectors
−→
AT /T for:

(i) T = t; (ii) T = α
(j)
s = inf{t : A

(j)
t > s}; (iii) T = τl, the inverse local times,

have the same distribution. In particular, it is specified by the iid stable (1/2) subor-
dinators: ((

A(j)
τl
, l ≥ 0

)
; 1 ≤ j ≤ n

)
.

Hence:

−→
A1

(law)
=

−−→
Aτ1
τ1

, (2.1)

which yields that:

−→
A1

(law)
=

(
Tj∑n
i=1 Ti

; j ≤ n
)
, (2.2)

where Tj are iid, stable (1/2) variables.
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Walsh’s Brownian motion extended arc-sine law

The law of the right-hand side of (2.1) is easily computed, and consequently so is its
left-hand side. We refer the reader to [2] for explicit expressions of this law, which for
n = 2 reduces to the classical arc-sine law.

Proof. a) Clearly, (ii) plays a kind of "bridge" between (i) and (iii).

b) We shall work with
(
α
(1)
s , s ≥ 0

)
, the inverse of

(
A

(1)
t , t ≥ 0

)
. It is more convenient

to use the notation
(
α
(+)
s , s ≥ 0

)
for
(
α
(1)
s , s ≥ 0

)
. We then follow the main steps of [13]

(Section 3.4, p. 42), which themselves are inspired by Williams [12]; see also Watanabe
(Proposition 1 in [11]) and Mc Kean [8].(
A

(j)
t

)
denotes the time spent in Ij , for any j 6= 1. Since



A
(j)

α
(+)
1

= A
(j)
τ(L

α
(+)
1

)

(law)
= (L

α
(+)
1

)2A
(j)
τ1 ,

α
(+)
1 = 1 +

∑
j A

(j)

α
(+)
1

,

and

for every u, t ≥ 0,
(
L2

α
(+)
u

< t
)

=
(
u < A

(1)
τ√t

)
,

and invoking the scaling property, we can write jointly for all j’s:

(
A

(j)

α
(+)
1

, L2

α
(+)
1

, α
(+)
1

)
(law)

=

L2

α
(+)
1

A(j)
τ1 , L

2

α
(+)
1

, 1 +
∑
j

L2

α
(+)
1

A(j)
τ1


(law)

=

(
A

(j)
τ1

A
(1)
τ1

,
1

A
(1)
τ1

,
τ1

A
(1)
τ1

)
. (2.3)

Dividing now both sides by α(+)
1 and remarking that: α(+)

1 A
(1)
τ1 = τ1, we deduce:

1

α
(+)
1

(
A

(j)

α
(+)
1

, L2

α
(+)
1

)
(law)

=
1

τ1

(
A(j)
τ1 , 1

)
. (2.4)

With the help of the scaling Lemma below, we obtain:

E
[
1(W1∈I1)f(

−→
A1, L

2
1)
]

= E

 1

α
(+)
1

f

−−−→A
α

(+)
1

α
(+)
1

,
L2

α
(+)
1

α
(+)
1


from (2.3)

= E

[
A

(1)
τ1

τ1
f

(−−→
Aτ1
τ1

,
1

τ1

)]
. (2.5)

I1 may be replaced by Im, for any m ∈ {2, . . . , n}. Adding the m quantities found in (2.5)
and remarking that:

τ1 =

n∑
i=1

A(i)
τ1 , (2.6)

we get:

E
[
f(
−→
A1, L

2
1)
]

= E

[
f

(−−→
Aτ1
τ1

,
1

τ1

)]
.
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Walsh’s Brownian motion extended arc-sine law

which proves (2.1). Note that from (2.4), the latter also equals:

E

f
−−−→A

α
(+)
1

α
(+)
1

,
L2

α
(+)
1

α
(+)
1

 .
Equality in law (2.2) follows now easily. Indeed, we denote by ν the Itô measure of the
Brownian spider, and we have:

ν =
1

n

n∑
j=1

νj , (2.7)

where νj is the canonical image of n, the standard Itô measure of the space of the
excursions of the standard Brownian motion, on the space of the excursions on Ij .
Hence, with λj , j = 1, . . . , n denoting positive constants:

E

exp

− n∑
j=1

λjA
(j)
τ1

 = exp

− 1

n

n∑
j=1

∫
νj(dεj)(1− e−λjνj )


= exp

− 1

n

n∑
j=1

√
2λj

 ,

thus:

−−→
Aτ1 =

(
A(j)
τ1 ; j ≤ n

)
(law)

=

(
1

n2
Tj ; j ≤ n

)
.

The latter, using (2.6) yields:

−→
A1 =

−−→
Aτ1
τ1

=

−−→
Aτ1∑n
i=1A

(i)
τ1

(law)
=

(
Tj

n2
∑n
i=1 n

−2Ti
; j ≤ n

)
,

finishes the proof.

It now remains to state the scaling Lemma which played a role in (2.5), and which
we lift from [13] (Corollary 1, p. 40) in a "reduced" form.

Lemma 2.2. (Scaling Lemma) Let Ut =
∫ t
0
dsθs, with the pair (W, θ) satisfying:

(Wct, θct; t ≥ 0)
(law)

=
(√
cWt, θt; t ≥ 0

)
. (2.8)

Then,

E [F (Wu, u ≤ 1) θ1] = E

[
1

α1
F

(
1
√
α1
Wvα1

, v ≤ 1

)]
, (2.9)

where αt = inf{s : Us > t}.

3 Stable subordinators

3.1 Reminder and preliminaries on stable variables

In this Section, we consider Sµ and S′µ two independent stable variables with expo-
nent µ ∈ (0, 1), i.e. for every λ ≥ 0, the Laplace transform of Sµ is given by:

E[exp(−λSµ)] = exp(−λµ). (3.1)
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Walsh’s Brownian motion extended arc-sine law

Concerning the law of Sµ, there is no simple expression for its density (except for the
case µ = 1/2; see e.g. Exercise 4.20 in [3]). However, we have that, for every s < 1 (see
e.g. [15] or Exercise 4.19 in [3]):

E[(Sµ)µs] =
Γ(1− s)

Γ(1− µs)
. (3.2)

We consider now the random variable of the ratio of two µ-stable variables:

X =
Sµ
S′µ

. (3.3)

Following e.g. Exercise 4.23 in [3], we have respectively the following formulas for the
Stieltjes and the Mellin transforms of X:

E

[
1

1 + sX

]
=

1

1 + sµ
, s ≥ 0 , (3.4)

E [Xs] =
sin(πs)

µ sin(πsµ )
, 0 < s < µ . (3.5)

Moreover, the density of the random variable Xµ is given by (see e.g. [14, 5] or Exercise
4.23 in [3]):

P (Xµ ∈ dy) =
sin(πµ)

πµ

dy

y2 + 2y cos(πµ) + 1
, y ≥ 0, (3.6)

or equivalently: (
Sµ
S′µ

)µ
= (Cµ|Cµ > 0), (3.7)

where, with C denoting a standard Cauchy variable and U a uniform variable in [ 0, 2π ),

Cµ = sin(πµ)C − cos(πµ)
(law)

=
sin(πµ− U)

U
.

3.2 The case of 2 stable variables

We turn now our study to the random variable:

A =
S′µ

S′µ + Sµ
=

1

1 +X
, (3.8)

Theorem 3.1. The density function of the random variable A is given by:

P (A ∈ dz) =
sin(πµ)

π

dz

z(1− z)
[(

1−z
z

)µ
+
(

z
1−z

)µ
+ 2 cos(πµ)

] , z ∈ [0, 1]. (3.9)

Proof. Identity (3.8) is equivalent to:

X =
1

A
− 1 .

Hence, (3.4) yields:

E

[
1

1 + sX

]
= E

[
A

(1− s)A+ s

]
=

1

1 + sµ
.
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Walsh’s Brownian motion extended arc-sine law

We consider now a test function f and invoking the density (3.6) we have (ν = 1
µ > 1):

E

[
f

(
1

1 +X

)]
=

sin(πµ)

πµ

∫ ∞
0

dy

y2 + 2y cos(πµ) + 1
f

(
1

1 + yν

)
.

Changing the variables z = 1
1+yν , we deduce:

E [f (A)] =
sin(πµ)

π

∫ 1

0

dz(1− z)µ−1

zµ+1
f (z) ∆(z),

where:

∆(z) =
1

(z−1 − 1)2µ + 2(z−1 − 1)µ cos(πµ) + 1

=
z2µ

(1− z)2µ + 2(1− z)µzµ cos(πµ) + z2µ
,

and (3.9) follows easily.

In Figure 1, we have plotted the density function g of A, for several values of µ.

Remark 3.2. Similar discussions have been made in [4] in the framework of a skew
Bessel process with dimension 2 − 2α and skewness parameter p. Formula (3.9) is a
particular case of formula in [4] for the density of the time spent positive (called fp,α in
[4]).

3.3 The case of many stable (1/2) variables

In this Subsection, we consider again n iid stable (1/2) variables, i.e.: T1, . . . , Tn, and
we will study the distribution of:

A
(1)
1 =

T1
T1 + . . .+ Tn

. (3.10)

The following Theorem answers to an open question (and even in a more general sense)
stated at the end of [9].

Theorem 3.3. The density function of the random variable A(1)
1 is given by:

P
(
A

(1)
1 ∈ dz

)
=

1

π

dz
√
z
√

1− z
[
(n− 1)z + 1

n−1 (1− z)
] , z ∈ [0, 1]. (3.11)

Proof. We first remark that, with C denoting a standard Cauchy variable, using e.g.
(1.2):

A
(1)
1

(law)
=

T1
T1 + (n− 1)2T2

(law)
=

1

1 + (n− 1)2C2
. (3.12)

Hence, with f standing again for a test function, and invoking the density of a standard
Cauchy variable, that is: for every x ∈ R, g(x) = 1

π(1+x2) we have:

E
[
f
(
A

(1)
1

)]
= E

[
f

(
1

1 + (n− 1)2C2

)]
=

1

π

∫ ∞
−∞

dx

1 + x2
f

(
1

1 + (n− 1)2x2

)
x2=y
=

2

π

∫ ∞
0

dy

2
√
y(1 + y)

f

(
1

1 + (n− 1)2y

)
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Walsh’s Brownian motion extended arc-sine law

Figure 1: The density function g of A, for several values of µ.
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Walsh’s Brownian motion extended arc-sine law

Changing the variables z = 1
1+(n−1)2y , we deduce:

E
[
f
(
A

(1)
1

)]
=

1

π

∫ 1

0

dz

(n− 1)2z2
(n− 1)

√
z

√
z − 1

(
1 + 1

(n−1)2
(
1
z − 1

)) f (z) ,

and (3.11) follows easily.

Figure 2 presents the plot of the density function h of A(1)
1 , for several values of n.

Figure 2: The density function h of A(1)
1 , for several values of n.

Corollary 3.4. The following convergence in law holds:

n2A
(1)
1 (n)

(law)−→
n→∞

C2 . (3.13)

Proof. It follows from Theorem 3.3 by simply remarking that C
(law)

= C−1. Hence:

n2A
(1)
1 (n) =

n2

1 + (n− 1)2C2
=

1
1
n2 +

(
n−1
n

)2
C2

n→∞−→ 1

C2

(law)
= C2.
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Walsh’s Brownian motion extended arc-sine law

4 Conclusion and comments

We end up this article with some comments: usually, a scaling argument is "one-
dimensional", as it involves a time-change. Exceptionally (or so it seems to the authors),
here we could apply a scaling argument in a multivariate framework. We insist that the
scaling Lemma plays a key role in our proof. The curious reader should also look at
the totally different proof of this Theorem in [2], which mixes excursion theory and the
Feynman-Kac method.
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