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Abstract

We describe scaling limits of recurrent excited random walks (ERWs) on Z in i.i.d.
cookie environments with a bounded number of cookies per site. We allow both pos-
itive and negative excitations. It is known that ERW is recurrent if and only if the
expected total drift per site, δ, belongs to the interval [−1, 1]. We show that if |δ| < 1
then the diffusively scaled ERW under the averaged measure converges to a (δ,−δ)-
perturbed Brownian motion. In the boundary case, |δ| = 1, the space scaling has
to be adjusted by an extra logarithmic term, and the weak limit of ERW happens to
be a constant multiple of the running maximum of the standard Brownian motion, a
transient process.
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1 Introduction and main results

Given an arbitrary positive integer M let

ΩM :=
{

((ωz(i))i∈N)z∈Z | ωz(i) ∈ [0, 1], for i ∈ {1, 2, . . . ,M}
and ωz(i) = 1/2, for i > M, z ∈ Z

}
.

An element of ΩM is called a cookie environment. For each z ∈ Z, the sequence
{ωz(i)}i∈N can be thought of as a stack of cookies at site z. The number ωz(i) rep-
resents the transition probability from z to z + 1 of a nearest-neighbor random walk
upon the i-th visit to z. If ωz(i) ≥ 1/2 (resp. ωz(i) < 1/2) the corresponding cookie is
called non-negative (resp. negative).

Let P be a probability measure on ΩM , which satisfies the following two conditions:

(A1) Independence: the sequence (ωz(·))z∈Z is i.i.d. under P;

(A2) Non-degeneracy: E
[∏M

i=1 ω0(i)
]
> 0 and E

[∏M
i=1(1− ω0(i))

]
> 0.

For x ∈ Z and ω ∈ ΩM consider an integer valued process X := (Xj), j ≥ 0, on some
probability space (X ,F , Px,ω), which Px,ω-a.s. satisfies Px,ω(X0 = x) = 1 and

Px,ω(Xn+1 = Xn + 1 | Fn) = 1− Px,ω(Xn+1 = Xn − 1 | Fn) = ωXn(LXn(n)),
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Excited random walks

where Fn ⊂ F , n ≥ 0, is the natural filtration of X and Lm(n) :=
∑n
j=0 1{Xj=m} is the

number of visits to site m by X up to time n. Informally speaking, upon each visit to a
site the walker eats the topmost cookie from the stack at that site and makes one step
to the right or to the left with probabilities prescribed by this cookie. The consumption
of a cookie ωz(i) induces a drift of size 2ωz(i) − 1. Since ωz(i) = 1/2 for all i > M , the
walker will make unbiased steps from z starting from the (M + 1)-th visit to z. Let δ be
the expected total drift per site, i.e.

δ := E

[∑
i≥1

(2ω0(i)− 1)

]
= E

[
M∑
i=1

(2ω0(i)− 1)

]
. (1.1)

The parameter δ plays a key role in the classification of the asymptotic behavior of the
walk. For a fixed ω ∈ Ω the measure Pω,x is called quenched. The averaged measure
Px is obtained by averaging over environments, i.e. Px( · ) := E (Px,ω( · )).

There is an obvious symmetry between positive and negative cookies: if the envi-
ronment (ωz)z∈Z is replaced by (ω′z)z∈Z where ω′z(i) = 1 − ωz(i), for all i ∈ N, z ∈ Z,

then X ′, the ERW corresponding to the new environment, satisfies X ′
d
= −X, where

d
=

denotes the equality in distribution. Thus, it is sufficient to consider only non-negative δ
(this, of course, allows both negative and positive cookies), and we shall always assume
this to be the case.

ERW on Z in a non-negative cookie environment and its natural extension to Zd

(when there is a direction in Rd such that the projection of a drift induced by every
cookie on that direction is non-negative) were considered previously by many authors
(see, for example, [4], [22], [23], [2], [3], [17] [5], [9], [16], and references therein).

Our model allows both positive and negative cookies but restricts their number per
site to M . This model was studied in [14], [15], [20], [19]. It is known that the process
is recurrent (i.e. for P-a.e. ω it returns to the starting point infinitely often) if and only
if δ ≤ 1 ([14]). For transient (i.e. not recurrent) ERW, there is a rich variety of limit laws
under P0 ([15]).

In this paper we study scaling limits of recurrent ERW under P0. The functional limit
theorem for recurrent ERW in stationary ergodic non-negative cookie environments on
strips Z× (Z/LZ), L ∈ N, under the quenched measure was proven in [9]. Our results
deal only with i.i.d. environments on Z with bounded number of cookies per site but
remove the non-negativity assumption on the cookies. We are also able to treat the
boundary case δ = 1. Extensions of these results and results of [15] to strips, or Zd for
d > 1, or the “boundary” case for the model treated in [9] are still open problems.

To state our results we need to define the candidates for limiting processes. Let

D([0,∞)) be the Skorokhod space of càdlàg functions on [0,∞) and denote by
J1⇒ the

weak convergence in the standard (J1) Skorokhod topology on D([0,∞)). Unless stated
otherwise, all processes start at the origin at time 0. Let B = (B(t)), t ≥ 0, denote a
standard Brownian motion andXα,β = (Xα,β(t)), t ≥ 0, be an (α, β)-perturbed Brownian
motion, i.e. the solution of the equation

Xα,β(t) = B(t) + α sup
s≤t

Xα,β(s) + β inf
s≤t

Xα,β(s), (1.2)

For (α, β) ∈ (−∞, 1)× (−∞, 1) the equation (1.2) has a pathwise unique solution that is
adapted to the filtration of B and is a.s. continuous ([18], [7]). Now we can state the
results of our paper.

Theorem 1.1 (Non-boundary case). If δ ∈ [0, 1) then

X[n·]√
n

J1⇒ Xδ,−δ(·) as n→∞.
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Excited random walks

We note that there are other known random walk models which after rescaling con-
verge to a perturbed Brownian motion (see, e.g., [8, 21]).

Theorem 1.2 (Boundary case). Let δ = 1 and B∗(t) := maxs≤tB(s), t ≥ 0. Then there
exists a constant D > 0 such that

X[n·]

D
√
n log n

J1⇒ B∗(·) as n→∞.

Observe that for δ = 1 the limiting process is transient while the original process is
recurrent. To prove Theorem 1.2 we consider the process Sj := max 0≤i≤j Xi, j ≥ 0, and
show that after rescaling it converges to the running maximum of Brownian motion.
The stated result then comes from the fact that with an overwhelming probability the
maximum amount of “backtracking” of Xj from Sj for j ≤ [Tn] is of order

√
n, which is

negligible on the scale
√
n log n (see Lemma 5.2).

2 Notation and preliminaries

Assume that δ ≥ 0 and X0 = 0. Let Tx = inf{j ≥ 0 : Xj = x} be the first hitting time
of x ∈ Z. Set

Sn = max
k≤n

Xk, In = min
k≤n

Xk, Rn = Sn − In + 1, n ≥ 0.

At first, we recall the connection with branching processes exploited in [2], [3], [14],
and [15].

For n ∈ N and 0 ≤ k ≤ n define

Dn,k =

Tn−1∑
j=0

1{Xj=k, Xj+1=k−1},

the number of jumps from k to k − 1 before time Tn. Then

Tn = n+ 2
∑
k≤n

Dn,k = n+ 2
∑

0≤k≤n

Dn,k + 2
∑
k<0

Dn,k. (2.1)

Consider the “backward” process (Dn,n, Dn,n−1 . . . , Dn,0). Obviously, Dn,n = 0 for every
n ∈ N. Moreover, given Dn,n, Dn,n−1, . . . , Dn,k+1, we can write

Dn,k =

Dn,k+1+1∑
j=1

(# of jumps from k to k − 1 between the (j − 1)-th

and j-th jump from k to k + 1 before time Tn), k = 0, 1, . . . , n− 1.

Here we used the observation that the number of jumps from k to k + 1 before time
Tn is equal to Dn,k+1 + 1 for all 0 ≤ k ≤ n − 1. It follows from the definition that
(Dn,n, Dn,n−1 . . . , Dn,0) is a Markov process. Moreover, it can be recast as a branch-
ing process with migration (see [14], Section 3, as well as [15], Section 2). Let V :=

(Vk), k ≥ 0, be the process such that V0 = 0 and

(V0, V1, . . . , Vn)
d
= (Dn,n, Dn,n−1 . . . , Dn,0) for all n ∈ N.

Denote by σ ∈ [1,∞] and Σ ∈ [0,∞] respectively the lifetime and the total progeny over
the lifetime of V , i.e. σ = inf{k > 0 : Vk = 0}, Σ =

∑σ−1
k=0 Vk. The probability measure

that corresponds to V will be denoted by PV0 . The following result will be used several
times throughout the paper.
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Excited random walks

Theorem 2.1 ([15], Theorems 2.1 and 2.2). Let δ > 0. Then

lim
n→∞

nδPV0 (σ > n) = C1 ∈ (0,∞); (2.2)

lim
n→∞

nδPV0
(
Σ > n2

)
= C2 ∈ (0,∞). (2.3)

We shall need to consider V over many lifetimes. Let σ0 = 0, Σ0 = 0,

σi = inf{k > σi−1 : Vk = 0}, Σi =

σi−1∑
k=σi−1

Vk, i ∈ N. (2.4)

Then (σi − σi−1,Σi)i∈N are i.i.d. under PV0 , (σi − σi−1,Σi)
d
= (σ,Σ), i ∈ N.

3 Non-boundary case: two useful lemmas

Let δ ∈ [0, 1). First of all, we show that by time n the walker consumes almost all the
drift between In and Sn.

Lemma 3.1. Assume that δ ∈ [0, 1). Given γ1 > δ, there exist γ2 > 0 and θ ∈ (0, 1) such
that for all 1 ≤ ` ≤ n

P0

(
n−1∑

m=n−`

1{Lm(Tn)<M} > `γ1

)
≤ θ`

γ2
and (3.1)

P0

 −(n−`)∑
m=−(n−1)

1{Lm(T−n)<M} > `γ1

 ≤ θ`γ2
. (3.2)

Proof. We shall start with (3.1) and use the connection with branching processes. Since
the event we are interested in depends only on the environment and the behavior of the
walk on {n− `, n− `+ 1, . . . }, we may assume without loss of generality that the process
starts at n− ` and, thus, by translation invariance consider only the case ` = n.

Let LVk (n) =
∑n
j=0 1{Vj=k}. We have

P0

(
n−1∑
m=0

1{Lm(Tn)<M} > nγ1

)
≤ P0

(
n∑

m=0

1{Dn,m<M} > nγ1

)

= PV0

(
n∑

m=0

1{Vm<M} > nγ1

)
≤M max

0≤k<M
PV0

(
n∑

m=0

1{Vm=k} >
nγ1

M

)
(3.3)

= M max
0≤k<M

PV0

(
LVk (n) >

nγ1

M

)
.

At first, consider the case δ ∈ (0, 1). Let k = 0. Then (see (2.2) and (2.4)) for all
sufficiently large n we get

PV0

(
LV0 (n) >

nγ1

M

)
≤

[nγ1/M ]∏
i=1

PV0 (σi − σi−1 ≤ n) ≤
(

1− C1

2nδ

)[nγ1/M ]

.

Since γ1 > δ, this implies the desired estimate for k = 0.
Let k ∈ {1, 2, . . . ,M − 1}. Then for any ε > 0

PV0

(
LVk (n) >

nγ1

M

)
=

PV0

(
LVk (n) >

nγ1

M
,LV0 (n) >

εnγ1

2M

)
+ PV0

(
LVk (n) >

nγ1

M
,LV0 (n) ≤ εnγ1

2M

)
≤ PV0

(
LV0 (n) >

εnγ1

2M

)
+ PV0

(
LV0 (n) ≤ εnγ1

2M

∣∣∣LVk (n) >
nγ1

M

)
.
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Excited random walks

We only need to estimate the last term. Notice that by (A2) there is ε > 0 such that
PV0 (Vj+1 = 0 |Vj = k) ≥ ε for all k ∈ {1, 2, . . . ,M − 1} and j ∈ N. Therefore, the last
term is bounded above by the probability that in at least [nγ1/M ] independent Bernoulli
trials with probability of success in each trial of at least ε there are at most [εnγ1/(2M)]

successes. This probability is bounded above by exp(−cnγ1/M) for some positive c =

c(ε). This completes the proof of (3.1) for δ > 0.

If δ = 0 we modify the environment by increasing slightly the drift (to the right)
in the first cookie at each site. Let Ṽ be the branching process corresponding to the
modified environment. There is a natural coupling between V and Ṽ such that Ṽj ≤ Vj ,
j ∈ {0, 1, . . . , n}. Accordingly,

n∑
j=0

1{Vj<M} ≤
n∑
j=0

1{Ṽj<M},

and (3.1) for δ = 0 follows from the result for δ > 0 and the second line of (3.3).

Next after replacing X by −X proving (3.2) reduces to proving (3.1) for δ ≤ 0 and
γ1 > 0. As above, the result for δ ≤ 0 can be deduced from the result for δ ∈ (0, γ1) by
coupling of the corresponding branching processes.

Next we show that
√
n is a correct scaling in Theorem 1.1.

Lemma 3.2. Assume that δ ∈ [0, 1). There exists θ ∈ (0, 1) such that for all L > 0,
` ∈ N ∪ {0}, and n ∈ N

P0

(
T`+n − T` ≤

n2

L

)
≤ θ
√
L and P0

(
T−`−n − T−` ≤

n2

L

)
≤ θ
√
L.

Proof. We shall prove the first inequality for δ ∈ (0, 1). The case δ = 0 and the second
inequality are handled in exactly the same way as in the proof of Lemma 3.1.

Since Tn+` − T` ≥
∑n+`
k=` Dn+`,k

d
=
∑n
j=0 Vj , it is enough to show that

PV0

 n∑
j=0

Vj ≤
n2

L

 ≤ θ√L.
Notice that by the Markov property and the stochastic monotonicity of V in the initial
number of particles

PV0

m+k∑
j=0

Vj ≤ n

 ≤ PV0
 m+k∑
j=m+1

Vj ≤ n
∣∣∣ m∑
j=0

Vj ≤ n

PV0

 m∑
j=0

Vj ≤ n


≤ PV0

 k∑
j=0

Vj ≤ n

PV0

 m∑
j=0

Vj ≤ n

 . (3.4)

Suppose that we can show that there exist K,n0 ∈ N such that for all n ≥ n0

PV0

Kn∑
j=0

Vj ≤ n2

 ≤ 1

2
. (3.5)
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Then using (3.4) and (3.5) we get that for all L > 4K2 and n ≥
√
Ln0

PV0

 n∑
j=0

Vj ≤
n2

L

 ≤
PV0

[2Kn/
√
L]∑

j=0

Vj ≤
n2

L

[
√
L/(2K)]

≤

PV0
2K[n/

√
L]∑

j=0

Vj ≤ 4

[
n√
L

]2
[

√
L/(2K)]

≤

((
1

2

)1/(4K)
)√L

,

and we are done.
To prove (3.5), we observe that due to (2.2) the sequence σm/m

1/δ, m ∈ N, has a
limiting distribution ([10], Theorem 3.7.2) and, thus, if K is large then P0(σ[(

√
Kn)δ] >

Kn) ≤ 1/4 for all large enough n. We conclude that there is an n0 ∈ N such that for all
n ≥ n0

PV0

Kn∑
j=0

Vj ≤ n2

 ≤ 1

4
+ PV0

σ
[(
√
Kn)δ ]∑
j=0

Vj ≤ n2, σ[(
√
Kn)δ] ≤ Kn


≤ 1

4
+PV0

[(
√
Kn)δ]∑
i=1

Σi ≤ n2

 ≤ 1

4
+

[(
√
Kn)δ]∏
i=1

PV0
(
Σi ≤ n2

) (2.3)
≤ 1

4
+

(
1− C2

2nδ

)[(
√
Kn)δ]

.

This immediately gives (3.5) if K is chosen sufficiently large.

4 Non-boundary case: Proof of Theorem 1.1

Let ∆n = Xn+1 −Xn and

Bn =

n−1∑
k=0

(∆k − E0,ω(∆k|Fk)) , Cn =

n−1∑
k=0

E0,ω(∆k|Fk). (4.1)

Then Xn = Bn + Cn, where (Bn), n ≥ 0 is a martingale. Define

X(n)(t) :=
X[nt]√
n
, B(n)(t) :=

B[nt]√
n
, C(n)(t) :=

C[nt]√
n
, t ≥ 0, n ∈ N.

Theorem 1.1 is an easy consequence of the following three lemmas, the first of which
holds for the quenched and the last two for the averaged measures.

Lemma 4.1. Let B be a standard Brownian motion. Then B(n) J1⇒ B as n → ∞ for
P-a.e. ω.

Lemma 4.2. For each t ≥ 0 and ε > 0

P0

(
sup
k≤nt

|Ck − δRk|√
n

> ε

)
→ 0.

Lemma 4.3. The sequence X(n), n ≥ 1, is tight in D([0,∞)). Moreover, if X is a
limit point of this sequence and P is the corresponding measure on D([0,∞)) then
P (X ∈ C([0,∞))) = 1.

Proof of Theorem 1.1 assuming Lemmas 4.1–4.3. Since X(n), n ≥ 1, is tight and B(n) J1⇒
B as n → ∞, the sequence C(n), n ≥ 1, as the difference of two tight sequences is also

tight. We can assume by choosing a subsequence thatX(n) J1⇒ X, whereX is continuous
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by Lemma 4.3. The mapping x(·) 7→ rx(·) := sups≤· x(s) − infs≤· x(s) is continuous on
C([0, t]). Therefore, by the continuous mapping theorem

rX
(n)

(·) =
R[n·]√
n

J1⇒ rX(·). (4.2)

The tightness of C(n), n ≥ 1, (4.2), Lemma 4.2, and the “convergence together” result

([6], Theorem 3.1) imply that C(n) J1⇒ δrX as n→∞.
Now we have a vector-valued sequence of processes (X(n), B(n), C(n)), n ≥ 1, that

is tight. Therefore, along a subsequence, this 3-dimensional process converges to
(X,B, δrX). Since X(n) = B(n) + C(n), we get that X = B + δrX .

We shall conclude this section with proofs of Lemmas 4.1–4.3.

Proof of Lemma 4.1. We shall use the functional limit theorem for martingale differ-
ences ([6], Theorem 18.2). Let ξnk = n−1/2(∆k−1 − E0,ω(∆k−1|Fk−1)), k, n ∈ N. Due to
rescaling and the fact that ERW moves in unit steps, it is obvious that the Lindeberg
condition, ∑

k≤nt

E0,ω[ξ2
nk1{|ξnk|≥ε}]→ 0 as n→∞ for every t ≥ 0 and ε > 0,

is satisfied. Thus, we just have to show the convergence of the quadratic variation
process, i.e. for P-a.e. ω for each t ≥ 0∑

k≤nt

E0,ω(ξ2
nk|Fk−1) =

[nt]

n
− 1

n

∑
k≤nt

(E0,ω(∆k−1|Fk−1))
2 ⇒ t (4.3)

as n→∞. Since

0 ≤ 1

n

∑
k≤nt

(E0,ω(∆k−1|Fk−1))
2 ≤ M

n
R[nt],

it is enough to prove that P0,ω(R[nt] > εn)→ 0 a.s. for each ε > 0. We have

P0,ω(R[nt] > εn) ≤ P0,ω(T[εn/3] ≤ nt) + P0,ω(T−[εn/3] ≤ nt) =: fn,ε(ω, t).

By Fubini’s theorem and Lemma 3.2,

E

( ∞∑
n=1

fn,ε(ω, t)

)
=
∞∑
n=1

Efn,ε(ω, t) =
∞∑
n=1

(
P0

(
T[εn/3] ≤ nt

)
+ P0

(
T−[εn/3] ≤ nt

))
<∞.

This implies that fn,ε(ω, t)→ 0 a.s. as n→∞ and completes the proof.

Proof of Lemma 4.2. Let dm =
∑M
i=1(2ωm(i) − 1) be the total drift stored at site m,

m ∈ Z. Then

Ck − δRk =

Sk∑
m=Ik

(dm − δ)−
Sk∑

m=Ik

1{Lm(k)<M}

M∑
j=Lm(k)+1

(2ωm(j)− 1).

By Lemma 3.2, given ν > 0, we can choose K sufficiently large so that P0(R[nt] >

K
√
n) < ν/2 for all n ∈ N. We have

P0

(
sup
k≤nt

|Ck − δRk|√
n

> ε

)
≤ P0

max
k≤nt

∣∣∣∑Sk
m=Ik

(dm − δ)
∣∣∣

Rk

Rk√
n
>
ε

2
,
R[nt]√
n
≤ K


+ P0

 M√
n

S[nt]∑
m=I[nt]

1{Lm([nt])<M} >
ε

2
,
R[nt]√
n
≤ K

+
ν

2
. (4.4)
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By the strong law of large numbers lim
(a+b)→∞

(a+b)−1
∑b
m=−a(dm−δ) = 0 (P-a.s.). There-

fore, for P-a.e. ω there is an r(ω) ∈ N such that R−1
k

∣∣∣∑Sk
m=Ik

(dm−δ)
∣∣∣ ≤ ε/(2K) whenever

Rk ≥ r(ω), and the first term in the right-hand side of (4.4) does not exceed

P0

(
2(M + 1)r(ω)√

n
>
ε

2
,
R[nt]√
n
≤ K

)
≤ E

(
P0,ω

(
r(ω) >

ε
√
n

4(M + 1)

))
→ 0 as n→∞.

Thus, we only need to estimate the second term in the right-hand side of (4.4).
Divide the interval [I[nt], S[nt]] into subintervals of length n1/4. By Lemma 3.1, given

γ1 ∈ (δ, 1), with probability at least 1 − θn
γ2/4

Kn1/4 all subintervals except the two
extreme ones have at most nγ1/4 points which are visited less than M times. Hence, for
n sufficiently large

P0

 M√
n

S[nt]∑
m=I[nt]

1{Lm([nt])<M} >
ε

2
,
R[nt]√
n
≤ K

 ≤
P0

 S[nt]∑
m=I[nt]

1{Lm([nt])<M} > n(1+γ1)/4 + 2n1/4,
R[nt]√
n
≤ K

 ≤ θnγ2/4

Kn1/4,

and the proof is complete.

Proof of Lemma 4.3. The idea of the proof is the following. IfX(n) has large fluctuations
then either B(n) has large fluctuations or C(n) has large fluctuations. B(n) is unlikely to
have large fluctuations, since it converges to the Brownian motion. By Lemma 3.1, Cn
can have large fluctuations only if Sn increases or In decreases. However by Lemma
3.2 neither In nor Sn can change too quickly. Let us give the details.

To prove both statements of Lemma 4.3 it is enough to show that there exists C3, α >

0 such that for all ` ∈ N and sufficiently large n, n > 2`,

P0(∪k<2`Ωn,k,`) ≤ C32−α`, (4.5)

where

Ωn,k,` =

{∣∣∣∣X(n)

(
k + 1

2`

)
−X(n)

(
k

2`

)∣∣∣∣ > 2−`/8
}

(see e.g. the last paragraph in the proof of Lemma 1 in [11], Chapter III, Section 5).
Let

m1 :=

[
kn

2`

]
, m2 :=

[
(k + 1)n

2`

]
, J :=

1

4
n1/22−`/8. (4.6)

Then
Ωn,k,` = {|Xm2

−Xm1
| > 4J} ⊂ ΩBn,k,` ∪ ΩCn,k,`,

where

ΩBn,k,` = {|Bτ −Bm1 | > J, τ ≤ m2}, ΩCn,k,` = {|Cτ − Cm1 | > 3J, τ ≤ m2},

τ := inf{m > m1 : |Xm −Xm1 | > 4J} and Bn and Cn are defined in (4.1).
Since (Bj+m1

−Bm1
), j ≥ 0, is a martingale, whose quadratic variation grows at most

linearly, the maximal inequality and Burkholder-Davis-Gundy inequality ([13], Theorem
2.11 with p = 4) imply that

P0,ω(ΩBn,k,`) ≤ P0,ω

(
max

m1≤j≤m2

|Bj −Bm1
| > J

)
≤ C(m2 −m1)2

J4
≤ C ′2−3`/2.
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Hence, P0

(
∪k<2`Ω

B
n,k,`

)
≤ C ′2−`/2 .

To control P0(ΩCn,k,`) consider the following intervals:

A1 = (−∞, Im1
) ∩ Γ, A2 = [Im1

, Sm1
] ∩ Γ, A3 = (Sm1

,∞) ∩ Γ,

where Γ = [Xm1
− 4J,Xm1

+ 4J ]. Then

ΩCn,k,` ⊂
3⋃
s=1


τ−1∑
j=m1

|E0,ω(∆j | Fj)|1{Xj∈As} > J, τ ≤ m2


⊂

3⋃
s=1


m2−1∑
j=m1

|E0,ω(∆j | Fj)|1{Xj∈As} > J

 =:

3⋃
s=1

ΩCn,k,`,s.

To estimate P0(ΩCn,k,`,3) note that to accumulate a drift larger than J the walk should
visit at least [J/M ] distinct sites, i.e.

ΩCn,k,`,3 ⊂ {TSm1
+[J/M ] − TSm1

+1 ≤ m2 −m1}.

Let J̄ = [J/(2M)] and ¯̀= `/8. There exists an m ∈ N such that

Sm1 + 1 ≤ mJ̄ ≤ (m+ 1)J̄ ≤ Sm1 + [J/M ].

Using Lemma 3.2, we can find K > 1 such that P0(Sn > K
√
n) < 2−

¯̀
for all sufficiently

large n. Therefore,

P0(ΩCn,k,`,3) ≤ 2−
¯̀
+ P0

(
∪m<2¯̀+3MKΩ†n,m,`, Sn ≤ K

√
n
)
,

where Ω†n,m,` =
{
T(m+1)J̄ − TmJ̄ ≤ m2 −m1

}
. Since m2 −m1 ≤ CJ̄2/26¯̀

for some con-

stant C > 0, Lemma 3.2 implies that there is θ̂ < 1 such that and all sufficiently large
n

P0

(
∪m<2¯̀+3KMΩ†n,m,`

)
≤

∑
m<2¯̀+3KM

P0

(
Ω†n,m,`

)
≤ 2

¯̀+3KMθ̂23`

< C ′′2−`.

P0(∪k<2`Ω
C
n,k,`,1) is estimated in the same way.

We consider now A2, which is a random subinterval of [−m1,m1] and, on ΩCn,k,`,2,

has length between J/M and 8J . To estimate P0(ΩCn,k,`,2) we notice that by Lemma 3.1,
outside of an event of exponentially small (in Jγ2) probability, the number of cookies
that are left in A2 at time m1 does not exceed CJγ1 , where γ1 < 1. Even if the walker
consumes all cookies in that interval, it can not build up a drift of size J � CJγ1 (for J
large). With this idea in mind, we turn now to a formal proof.

As we noted above, on ΩCn,k,`,2, we have A2 ∈ I, where I denotes the set of all
intervals of the form

[a, b], a, b ∈ Z, −m1 ≤ a < b ≤ m1, J/M ≤ b− a ≤ 8J.

The cardinality of I does not exceed 16m1J ≤ Cn3/2. Therefore,

P0(ΩCn,k,`,2) ≤ Cn3/2 max
A∈I

P0

m2−1∑
j=m1

|E0,ω(∆j | Fj)|1{Xj∈I} > J,A2 = A

 . (4.7)

By the definition of A2, the walk necessarily crosses the interval A2 by the time m1. The
leftover drift in A2 is at most M times the number of sites in A2, which still have at least
one cookie. Writing A as [a, b], a, b ∈ Z, a < b, we can estimate the last probability by

P0

(
M

b∑
m=a

1{Lm(Ta∨Tb)<M} > J

)
= P0

(
b∑

m=a

1{Lm(Ta∨Tb)<M} > J/M

)
.
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Excited random walks

If a ≥ 0 we can apply Lemma 3.1 and get that for all sufficiently large n (such that
(8J)γ1 ≤ J/M )

P0

(
b∑

m=a

1{Lm(Ta∨Tb)<M} > J/M

)
≤ P0

(
b∑

m=a

1{Lm(Tb)<M} > (b− a)γ1

)
≤ θ(b−a)γ2 ≤ θ(J/M)γ2

. (4.8)

The case b ≤ 0 is similar. Finally, consider the case a < 0 < b. Then

P0

(
b∑

m=a

1{Lm(Ta∨Tb)<M} > J/M

)
≤ P0

(
0∑

m=a

1{Lm(Ta)<M} > J/(2M)

)

+ P0

(
b∑

m=0

1{Lm(Tb)<M} > J/(2M)

)
. (4.9)

If b ≤ J/(2M) then the last term in (4.9) is 0. But for J/(2M) < b ≤ 8J we have that
bγ1 ≤ J/(2M) for all sufficiently large J . Lemma 3.1 implies that

P0

(
b∑

m=0

1{Lm(Tb)<M} > J/(2M)

)
≤ P0

(
b∑

m=0

1{Lm(Tb)<M} > bγ1

)
≤ θb

γ2 ≤ θ(J/(2M))γ2
.

The first term in the right-hand side of (4.9) is estimated in the same way. We conclude
that for some constant C and all sufficiently large n

P0(∪k<2`Ω
C
n,k,`,2) ≤ Cn3/22`θ(J/(2M))γ2

< 2−`.

This completes the proof of (4.5) establishing Lemma 4.3.

5 Boundary case: Proof of Theorem 1.2.

Let δ = 1. For t ≥ 0 and n ≥ 2 set

T (n)(x) :=
T[nx]

n2/ log2 n
, X(n)(t) :=

X[nt]√
n log n

, S(n)(t) :=
S[nt]√
n log n

.

Let Σj , j ≥ 0 be i.i.d. positive integer-valued random variables defined in (2.4). They
satisfy (2.3) with δ = 1 and by [12, Chapter 9, Section 6] for some constant a > 0∑[n·]

j=0 Σj

n2

J1⇒ aH(·) as n→∞, (5.1)

where H := (H(x)), x ≥ 0, is a stable subordinator with index 1/2. More precisely,

H(x) = inf{t ≥ 0 : B(t) = x}. (5.2)

We shall need the following two lemmas.

Lemma 5.1. The finite dimensional distributions of T (n) converge to those of cH, where
c > 0 is a constant and H is given by (5.2).

Lemma 5.2. For every ε > 0, T > 0

lim
n→∞

P0

(
sup

0≤t≤T
(S(n)(t)−X(n)(t)) > ε

)
= 0.
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Theorem 1.2 is an easy consequence of these lemmas.

Proof of Theorem 1.2. Lemma 5.1 implies that the finite dimensional distributions of
the process S(n) converge to those of DB∗, where D > 0 is a constant. Since the trajec-
tories of S(n) are monotone and the limiting process B∗ is continuous, we conclude that
S(n) converges weakly to DB∗ in the (locally) uniform topology (see [1], Corollary 1.3
and Remark (e) on p. 588). Finally, by Lemma 5.2 for each T > 0

sup
0≤t≤T

(S(n)(t)−X(n)(t))→ 0

in P0 probability. By the “converging together” theorem ([6, Theorem 3.1]) we conclude
that X(n) converges weakly to DB∗ in the (locally) uniform topology, and, thus, in J1.

Proof of Lemma 5.1. Let k ∈ N and 0 = x0 < x1 < · · · < xk. We have to show that for
any 0 = t0 < t1 < t2 < · · · < tk

P0(T (n)(xk)− T (n)(xi) ≤ tk−i, ∀i = 0, 1, 2, . . . , k − 1)

→ P (T (xk)− T (xi) ≤ tk−i, ∀i = 0, 1, . . . , k − 1), as n→∞,

where T (·) = cH(·) for some c > 0.
At time T[nxk] consider the structure of the corresponding branching process as we

look back from [nxk]. Notice that D[nxi],j ≤ D[nxk],j for i ≤ k and all j. This simple
observation will allow us to get bounds on T[nxi], i = 1, 2, . . . , k − 1, in terms of the
structure of downcrossings at time T[nxk]. This means that we can use the same copy of
the branching process V to draw conclusions about all hitting times T[nxi], i = 1, 2, . . . , k.

We shall use notation (2.4) and let N (0) = 0,

N (k−i) = min{m ∈ N : σm ≥ [nxk]− [nxi]}, i = 0, 1, 2, . . . , k − 1.

Since

2

N(k−i)−1∑
j=1

Σj ≤ T[nxk] − T[nxi] ≤ nxk − nxi + 2

N(k−i)∑
j=1

Σj ,

we have

P0(T (n)(xk)− T (n)(xi) ≤ tk−i, ∀i = 0, 1, 2, . . . , k − 1)

≤ P

2

N(k−i)−1∑
j=1

Σj ≤ n2tk−i/ log2 n, ∀i = 0, 1, 2, . . . , k − 1

 (5.3)

and

P0(T (n)(xk)− T (n)(xi) ≤ tk−i, ∀i = 0, 1, 2, . . . , k − 1)

≥ P

[nxk]− [nxi] + 2

N(k−i)∑
j=1

Σj ≤ n2tk−i/ log2 n, ∀i = 0, 1, 2, . . . , k − 1

 . (5.4)

Next we provide some control on N (k−i), i = 0, 1, . . . , k − 1, and on the maximal lifetime
over [nxk] generations. Theorem 2.1 and [10, Theorem 3.7.2] imply that σn/(n log n)⇒
b−1 for some positive constant b. From this it is easily seen that

min{m ∈ N : σm > n}
nb/ log n

⇒ 1 as n→∞. (5.5)
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Recalling our definition of N (k−i) we get that for every ε, ν > 0 there is n0 such that for
all n ≥ n0

P

(
1− ν ≤ N (k−i)

N̄ (k−i) ≤ 1 + ν, i = 0, . . . , k − 1

)
> 1− ε,

where N̄ (k−i) = b(xk − xi)n/ log n. In particular, for C = (1 + ν)bxk we have that

P

(
N (k) ≤ Cn

log n

)
> 1− ε.

Define λn = (logn)−1/2 (any sequence λn, n ∈ N, such that λn → 0 and λn log n → ∞
will work) and notice that by Theorem 2.1 there is n1 such that for all n ≥ n1

P

(
max

1≤i≤Cn/ logn
(σi − σi−1) ≤ nλn

)
≥
(

1− 2C1

nλn

)Cn/ logn

> 1− ε.

Thus, on a set Ωε of measure at least 1 − 2ε for all n ≥ n0 ∨ n1 the number of lifetimes
of the branching process V covering [nxk] − [nxi] generations, i = 0, 1, 2, . . . , k − 1, is
well controlled and the maximal lifetime over [nxk] generations does not exceed nλn. In
particular, on Ωε, the number of lifetimes in any interval ([nxi], [nxi+1]), i = 0, 1, . . . , k−1,
goes to infinity as n→∞.

Finally, on Ωε we get from (5.3) and (5.1) that

P0(T (n)(xk)− T (n)(xi) ≤ tk−i, ∀i = 0, 1, 2, . . . , k − 1)

≤ P

2

(1−ν)N̄(k−i)−1∑
j=1

Σj ≤ n2tk−i/ log2 n, ∀i = 0, 1, 2, . . . , k − 1


= P

∑(1−ν)N̄(k−i)−1
j=1 Σj

((1− ν)n/ log n)2
≤ tk−i

2(1− ν)2
, ∀i = 0, 1, 2, . . . , k − 1


→ P (aH(b(xk − xi)) ≤ (1− ν)−2tk−i/2 ∀i = 0, 1, 2, . . . , k − 1)

= P (2ab2(H(xk)−H(xi)) ≤ tk−i(1− ν)−2) ∀i = 0, 1, 2, . . . , k − 1).

The lower bound is shown starting from (5.4) in exactly the same way. Letting ν → 0

and then ε→ 0 we obtain the statement of the lemma with T (·) = 2ab2H(·) =: cH(·).

Proof of Lemma 5.2. Without loss of generality we can consider t ∈ [0, 1]. Fix some
ν > 0. We have

P0

(
sup

0≤t≤1
(S(n)(t)−X(n)(t)) > ε

)
≤ P0(Sn ≥ K

√
n lnn)+

P0

(
max

0≤m≤n
(Sm −Xm) > ε

√
n lnn, Sn < K

√
n lnn)

)
. (5.6)

By Lemma 5.1 we can find K > 0 such that for all large n

P0(Sn ≥ K
√
n lnn) ≤ P0(T[K

√
n lnn] ≤ n) < ν.

To estimate the last term in (5.6) we shall use properties of the branching process V .
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Let N = min{m ∈ N : σm > K
√
n lnn}. Then the last term in (5.6) is bounded by

PV0

(
max
i≤N

(σi − σi−1) ≥ ε
√
n lnn

)
≤

PV0 (N > C
√
n) + PV0

(
max
i≤C
√
n
(σi − σi−1) ≥ ε

√
n lnn,N ≤ C

√
n

)
(5.5)

≤

ν + PV0

(
max
i≤C
√
n
(σi − σi−1) ≥ ε

√
n lnn

)
,

for some large C and all sufficiently large n. Finally, from (2.2) we conclude that for all
large enough n the last probability does not exceed

1−
(

1− 2C1

ε
√
n lnn

)[C
√
n]

< ν.

This completes the proof.
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