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Abstract

For the fundamental solutions of heat-type equations of order n we give a general
stochastic representation in terms of damped oscillations with generalized gamma
distributed parameters. By composing the pseudo-process Xm related to the higher-
order heat-type equation with positively skewed stable r.v.’s T j

1
3

, j = 1, 2, . . . , n we

obtain genuine r.v.’s whose explicit distribution is given for n = 3 in terms of Cauchy
asymmetric laws. We also prove that X3(T

1
1
3
(. . . (Tn

1
3
(t)) . . .)) has a stable asymmetric

law.
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1 Introduction

The problem of studying the form of fundamental solutions of higher-order heat
equations of the form

∂um
∂t

(x, t) = κm
∂mum
∂xm

(x, t), x ∈ R, t > 0, m ≥ 2 (1.1)

with
um(x, 0) = δ(x)

where

κm =

{
(−1)

m
2 +1 if m is even

±1 if m is odd

has been tackled in some particular cases by mathematicians of the caliber of Bernstein
[4], Lévy [8], Pòlya [13] and Burwell [5]. By applying the steepest descent method some
recent papers by Li and Wong [9], Accetta and Orsingher [1], Lachal [7] have explored
the form of the fundamental solutions of equation (1.1). The aim of this note is to give
an explicit representation of the solutions to (1.1) for the case where the order of the
equation is odd, that is an alternative to the inverse Fourier transform

um(x, t) =
1

2π

∫
R

e−iβx+κmt(−iβ)
m

dβ
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Higher-order equations

and that captures the sign-varying behavior of the fundamental solutions to (1.1). Our
result is that the fundamental solutions to (1.1) have the probabilistic representation

u2n+1(x, t) =
1

πx
E
[
e−bnxG

2n+1(1/t) sin
(
anxG

2n+1(1/t)
)]
, x ∈ R, t > 0 (1.2)

in the odd-order case, and

u2n(x, t) =
1

πx
E
[

sin
(
xG2n(1/t)

) ]
, x ∈ R, t > 0 (1.3)

for the even-order case. In (1.2) and (1.3) by Gγ(t) we denote the generalized gamma
r.v. with density

gγ(x, t) = γ
xγ−1

t
exp

(
−x

γ

t

)
, x, t > 0, γ > 0.

The parameters an, bn appearing in (1.2) and (1.3) are

an = cos
π

2(2n+ 1)
, bn = sin

π

2(2n+ 1)
.

Results (1.2) and (1.3) show that the fundamental solutions have an oscillating behav-
ior which has been explored in several papers by many researchers. In our view our
result represents a concluding picture of the solutions to higher-order heat equations.
For all values of the degree m of the equation (1.1) we have solutions which have the
behavior of damped oscillations where the probabilistic ingredients (the generalized
gamma or Weibull-type distributions) depend only on m ∈ N. An alternative universal
representation of the fundamental solution in the odd-order case reads

u2n+1(x, t) = − 1

πx

∞∑
k=1

1

k!
sin

(
nπk

2n+ 1

)
Γ

(
1 +

k

2n+ 1

)(
− x

t
1

2n+1

)k
.

Functions u2n+1 display oscillations which fade off as the degree 2n+ 1 of the equation
increases. A special attention has been devoted to third-order equations where we have
that

u3(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
, x ∈ R, t > 0

=
3t

πx

∫ ∞
0

e−
xy
2 sin

(√
3

2
xy

)
y2e−ty

3

dy

=− 1

πx

∞∑
k=1

1

k!
sin

(
πk

3

)
Γ

(
1 +

k

3

)(
− x

3
√
t

)k
.

In the fourth-order case (biquadratic heat-equation) in D’Ovidio and Orsingher [12] we
have shown that

u4(x, t) =
1

2π

∫ +∞

−∞
e−

y4t

22 cos (xy) dy

=
1

2π
√

2t1/2

∞∑
k=0

(−1)k

(2k)!
Γ

(
k

2
+

1

4

)(
−
√

2|x|
t1/4

)2k

=2

∫ ∞
0

1√
2πs

cos

(
x2

2s
− π

4

)
e−

s2

2t

√
2πt

ds.

The last form of u4(x, t) was first presented by Benachour et al. [3].
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Higher-order equations

In a recent paper ([11]) we have shown that the composition of an odd-order pseudo-
process X2n+1 with a positively skewed stable r.v. T 1

2n+1
of order 1

2n+1 yields a genuine
r.v. with asymmetric Cauchy distribution, that is, for any fixed time t > 0,

Pr{X2n+1(T 1
2n+1

(t)) ∈ dx} =
t cos π

2(2n+1)

π
[
(x+ t sin π

2(2n+1) )
2 + t2 cos2 π

2(2n+1)

]dx. (1.4)

For n = 1 from (1.4) we can extract a very interesting relationship for the Airy function
which reads

Pr{X3(T 1
3
(t)) ∈ dx}/dx =∫ ∞

0

1
3
√

3s
Ai

(
x

3
√

3s

)
t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
ds =

√
3

2π

t

x2 + xt+ t2
.

We show here that the r-times iterated pseudo-process (with T j 1
2n+1

, j = 1, 2, . . . , r inde-

pendent stable r.v.’s)

Zr(t) = X2n+1(T 1
1

2n+1
(T 2

1
2n+1

(. . . (T r 1
2n+1

(t)) . . .))),

for any fixed t > 0, is a stable r.v. of order 1
(2n+1)r−1 with characteristic function

EeiβZr(t) = exp

[
−
(

cos
π

2(2n+ 1)r
+ i sgn(β) sin

π

2(2n+ 1)r

)
t|β|

1

(2n+1)r−1

]
. (1.5)

We have also explored the connection between solutions of fractional equations

∂αu

∂tα
(x, t) = −∂u

∂x
(x, t), x > 0, t > 0

with the solutions of higher-order heat-type equations (1.1) for α = 1
m , m ∈ N.

2 Pseudo-processes

Some basic facts about the fundamental solutions of higher-order heat equations had
been established many years ago essentially by applying the steepest descent method.
In particular, Li and Wong [9] have shown that the number of zeros is infinite for so-
lutions to even-order equations. The steepest descent method was applied by Accetta
and Orsingher [1] for the analysis of the third-order equation. The oscillating behav-
ior of the solutions of higher-order heat-type equations is confirmed by our analysis.
Furthermore, for the odd-order case our results show that the asymmetry of solutions
decreases as the order 2n + 1 increases. The result of Theorem 2.1 below shows that
solutions of all odd-order heat equations can be constructed by means of damped oscil-
lating functions with gamma distributed parameters.

We move now to our principal result.

Theorem 2.1. The solution to{
∂u
∂t (x, t) = (−1)n ∂

2n+1u
∂x2n+1 (x, t), x ∈ R, t > 0

u(x, 0) = δ(x)
(2.1)

is given by

u2n+1(x, t) =
1

πx
E
[
e−bnxG

2n+1(1/t) sin
(
anxG

2n+1(1/t)
)]

(2.2)
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Higher-order equations

where, ∀ t > 0, the r.v. Gγ(t) has the generalized gamma distribution

gγ(x, t) = γ
xγ−1

t
exp

(
−x

γ

t

)
, x, t > 0, γ > 0.

and

an = cos
π

2(2n+ 1)
, bn = sin

π

2(2n+ 1)

Proof. We start by evaluating the Fourier transform of (2.2)∫
R

eiβxu2n+1(x, t)dx (2.3)

=

∫
R

eiβxdx

∫ ∞
0

(2n+ 1)t

πx
e−bnxw sin(anxw)w2ne−tw

2n+1

dw

=(2n+ 1)t

∫ ∞
0

w2ne−tw
2n+1

∫
R

eiβx+ianxw−bnxw − eiβx−ianxw−bnxw

2πix
dx dw

=(2n+ 1)t

∫ ∞
0

w2ne−tw
2n+1

[Hβ(w(an − ibn))−Hβ(−w(an + ibn))] dw

where in the last step we used the integral representation of the Heaviside function

Hy(x) = − 1

2π

∫
R

e−iwx
eiyw

iw
dw =

1

2π

∫
R

eiwx
e−iyw

iw
dw.

By a change of variable, the Fourier transform (2.3) takes the form∫
R

eiβxu2n+1(x, t)dx =
(2n+ 1)t

(an − ibn)2n+1

∫ ∞
0

w2ne−t(
w

an−ibn )
2n+1

Hβ(w)dw

− (2n+ 1)t

(an + ibn)2n+1

∫ ∞
0

w2ne−t(
w

an+ibn
)
2n+1

Hβ(−w)dw

=i(2n+ 1)t

∫ ∞
0

w2ne−itw
2n+1

Hβ(w)dw

+ i(2n+ 1)t

∫ ∞
0

w2neitw
2n+1

Hβ(−w)dw

=i(2n+ 1)t

∫ +∞

−∞
w2ne−itw

2n+1

Hβ(w)dw

=i(2n+ 1)t

∫ +∞

β

w2ne−itw
2n+1

dw. (2.4)

In the above steps we used the fact that

(an + ibn)2n+1 = i and (an − ibn)2n+1 = −i.

The integral (2.4) can be performed in two different ways. First we can take the Laplace
transform∫ ∞

0

e−µt
(∫

R

eiβxu2n+1(x, t)dx

)
dt =

∫ ∞
β

w2n

∫ ∞
0

e−(µ+iw
2n+1)tit(2n+ 1)dt dw

=

∫ ∞
β

i(2n+ 1)w2ndw

(µ+ iw2n+1)2
=

1

µ+ iβ2n+1

=

∫ ∞
0

e−µte−itβ
2n+1

dt.
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Higher-order equations

This shows that ∫ +∞

−∞
eiβxu2n+1(x, t)dx = e−itβ

2n+1

.

We can arrive at the same result by means of the following trick∫ +∞

−∞
eiβxu2n+1(x, t)dx = lim

µ→0

[
i(2n+ 1)t

∫ ∞
β

w2ne−(it+µ)w
2n+1

dw

]
= lim
µ→0

it

µ+ it
e−(it+µ)β

2n+1

= e−itβ
2n+1

.

We have thus shown that the Fourier transform of (2.2) coincides with the Fourier trans-
form of the solution to the Cauchy problem (2.1).

Proposition 2.2. We can write the fundamental solution u2n+1 in the following alter-
native form

u2n+1(x, t) = − 1

πx

∞∑
k=1

1

k!
sin

(
nπk

2n+ 1

)
Γ

(
1 +

k

2n+ 1

)(
− x

t
1

2n+1

)k
.

Proof. From (2.2) we have that

u2n+1(x, t) =
(2n+ 1)t

πx

∫ ∞
0

e−xy sin
π

2(2n+1) sin

(
xy cos

π

2(2n+ 1)

)
y2ne−ty

2n+1

dy

=
(2n+ 1)t

πx

∫ ∞
0

e−xy cos
nπ

(2n+1) sin

(
xy sin

nπ

(2n+ 1)

)
y2ne−ty

2n+1

dy

=− (2n+ 1)t

πx

∫ ∞
0

y2ne−ty
2n+1

∞∑
k=0

sin

(
nπk

2n+ 1

)
(−xy)k

k!
dy (by (3.2))

=− 1

πx

∞∑
k=0

1

k!
sin

(
nπk

2n+ 1

)
Γ

(
1 +

k

2n+ 1

)(
− x

t
1

2n+1

)k
.

Remark 2.3. We note that

u2n+1(0, t) = sin

(
nπ

2n+ 1

)
Γ

(
1 +

1

2n+ 1

)
1

πt
1

2n+1

−−−−→
n→∞

1

π
.

Additionally, we are able to evaluate the semi-infinite integral∫ ∞
0

u2n+1(x, t) dx

by means of the representation (2.2). Indeed, by considering that∫ ∞
0

e−Bx

x
sin (Ax) dx = arctan

(
A

B

)
=
π

2
− arccot

(
A

B

)
(2.5)

(see [6, formula 3.941]) we get that∫ ∞
0

u2n+1(x, t) dx =

∫ ∞
0

1

πx
E
[
e−bnxG

2n+1(1/t) sin
(
anxG

2n+1(1/t)
)]
dx

=
1

π

[
π

2
− arccot

(
an
bn

)]
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Higher-order equations

=
1

π

[
π

2
− arccot

(
cos π2

1
2n+1

sin π
2

1
2n+1

)]

=
1

2

[
1− 1

2n+ 1

]
(2.6)

which is in accord with Lachal [7, formula 11].

Theorem 2.4. The solution to{
∂u
∂t (x, t) = (−1)n+1 ∂2nu

∂x2n (x, t), x ∈ R, t > 0

u(x, 0) = δ(x)
(2.7)

can be written as

u2n(x, t) =
1

πx
E
[

sin
(
xG2n(1/t)

) ]
. (2.8)

Proof. The solution to (2.7) is given by

u2n(x, t) =
1

π

∫ ∞
0

e−tβ
2n

cosβx dβ =
2nt

πx

∫ ∞
0

β2n−1e−tβ
2n

sinβx dβ

which immediately concludes the proof.

Remark 2.5. The solution (2.8) takes the following values at x = 0

u2n(0, t) = Γ

(
1 +

1

2n

)
1

πt1/2n
−−−−→
n→∞

1

π
.

Clearly, by symmetry and by considering formula (2.5), we obtain that∫ ∞
0

u2n(x, t)dx =
1

2
.

Remark 2.6. It is well-known that the solution to the fractional diffusion equation of
index ν ∈ (0, 2] {

∂νu
∂tν (x, t) = λ2 ∂

2u
∂x2 (x, t), x ∈ R, t > 0,

u(x, 0) = δ(x)
(2.9)

with ut(x, 0) = 0, for ν ∈ (1, 2], is given by

uν(x, t) =
1

2λtν/2
W− ν2 ,1−

ν
2

(
− |x|
λtν/2

)
=

1

2λtν/2

∞∑
k=0

1

k!

1

Γ
(
1− ν

2 (1 + k)
) (− |x|

λtν/2

)k
=

1

2πλtν/2

∞∑
k=0

1

k!
Γ
(ν

2
(1 + k)

)
sin
(πν

2
(1 + k)

)(
− |x|
λtν/2

)k
.

The folded solution to the equation (2.9) reads

ūν(x, t) =

{
2uν(x, t), x ≥ 0

0, x < 0

and for ν = 2α, α ∈ (0, 1), λ = 1 becomes

qα(x, t) =
1

πtα

∞∑
k=0

Γ(α(k + 1))

k!
sin (πα(k + 1))

(
− x

tα

)k
. (2.10)
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Higher-order equations

This represents a probability density of a r.v. X(t) on the half-line (0,∞) which can be
expressed in terms of positively skewed stable densities:

Pr{X(t) ∈ dx} =qα(x, t)dx = qα

(
tα+1

yα
, t

)
αtα+1

yα+1
dy,

(
x

tα
=

t

yα

)
=

1

πtα

∞∑
k=0

1

k!
Γ(α(1 + k)) sin (πα(1 + k))

(
− t

yα

)k
αtα+1

yα+1
dy

=
αt

πyα+1

∞∑
k=0

1

k!
Γ(α(1 + k)) sin (πα(1 + k))

(
− t

yα

)k
dy

=
α

π

∞∑
k=0

(−1)k

k!
Γ(α(1 + k)) sin (πα(1 + k)) y−α(k+1)−1tk+1dy = pα(y, t) dy

where in the last step appears the expression of the stable density

pα(x, 1) =
α

π

∞∑
k=0

(−1)k

k!
Γ(α(1 + k)) sin(πα(1 + k))x−α(1+k)−1, x ∈ R+. (2.11)

The calculations above show that the r.v. X(t) with distribution (2.10) can be expressed
as

X(t) = t

(
t

Y (t)

)α
where Y (t) is a positively skewed stable-distributed r.v. of order α ∈ (0, 1). In other
words the stable law of Y (t) is related to the folded solution of the fractional diffusion
equation X(t) in the sense that

Y (t) = t

(
t

X(t)

)1/α

.

This is because

Pr {Y (t) < y} = Pr

{
X(t) >

tα+1

yα

}
=

∫ ∞
tα+1

yα

qα(x, t)dx.

We also give the double Laplace transform with respect to time t and space x of qα(x, t).
We have∫ ∞

0

e−λxqα(x, t)dx =−
[
− 1

λtα
E−α,1−α

(
− 1

λtα

)]
= Eα,1(−λtα), t > 0 (2.12)

where in the last step, formula

− 1

x
E−α,1−α

(
1

x

)
= Eα,1(x)

has been applied (see formula (5.1) of [2]). Furthermore,∫ ∞
0

e−µtqα(x, t)dt = µα−1e−xµ
α

, x > 0.

Formulas above help to check that qα satisfies the fractional equation

∂αu

∂tα
(x, t) = −∂u

∂x
(x, t) (2.13)
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Higher-order equations

with initial condition u(x, 0) = δ(x) where ∂α

∂tα is the Caputo fractional derivative. The
double Laplace transform of (2.13) reads

µαL(λ, µ)− µα−1 = −λL(λ, µ)

which proves that

L(λ, µ) =

∫ ∞
0

e−µt
∫ ∞
0

e−λxqα(x, t) dx dt =
µα−1

µα + λ
. (2.14)

Remark 2.7. For α = 1/2, the formula (2.11) yields

p1/2(x, 1) =
1

2π

∞∑
r=0

(−1)r

r!
Γ

(
r + 1

2

)
sin

(
π(r + 1)

2

)
x−

(r+1)
2 −1

=
1

2π

∞∑
k=0

[
Γ
(
k + 1

2

)
(2k)!

sin
(
πk +

π

2

)
x−k−

3
2 − Γ(k)

(2k − 1)!
sin (πk)x−k−1

]

=
1

2πx3/2

∞∑
k=0

(−1)k
Γ
(
k + 1

2

)
(2k)!

x−k =
1√

4πx3
exp

(
− 1

4x

)
. (2.15)

The result (2.15) shows that the stable law (2.11) for α = 1/2 coincides with the first-
passage time of a standard Brownian motion through level 1/

√
2.

3 The third order case

For the special case of the third-order heat equation we have the following result.

Corollary 3.1. The solution of the Cauchy problem{
∂u
∂t (x, t) = −∂

3u
∂x3 (x, t), x ∈ R, t > 0

u(x, 0) = δ(x)

can be written as

u3(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
, x ∈ R, t > 0.

Proof. It is convenient to work with the following series expansion of the Airy function
(see [10, formula (4.10)])

Ai(w) =
3−2/3

π

∑
k≥0

1

k!
sin

(
2π(k + 1)

3

)
Γ

(
k + 1

3

)
(

3
√

3w)k (3.1)

=
3−2/3

π

∑
k≥1

1

(k − 1)!
sin

(
2πk

3

)
Γ

(
k

3

)
(

3
√

3w)k−1

=
1

πw

∑
k≥1

1

k!
sin

(
2πk

3

)
Γ

(
k

3
+ 1

)
(

3
√

3w)k.

If we expand the function

ex cosφ sin (x sinφ) = =
{
exe

iφ
}

= =

{ ∞∑
k=0

eiφk
xk

k!

}
=

∞∑
k=0

sin(φk)
xk

k!
(3.2)

we establish a relationship which is useful in transforming (3.1) as

Ai(w) =
1

πw

∑
k≥1

1

k!
sin

(
2πk

3

)
(

3
√

3w)k
∫ ∞
0

zk/3e−zdz
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Higher-order equations

=
1

πw

∫ ∞
0

e−z
∑
k≥1

wk
sin (2πk/3)

k!
(3z)

k
3 dz

=
1

πw

∫ ∞
0

e−ze−
3√3z
2 w sin

(
35/6

2
z1/3w

)
dz.

Now we can write

1
3
√

3t
Ai

(
x

3
√

3t

)
=

3t

πx

∫ ∞
0

z2 exp
(
−z3t− zx

2

)
sin

(√
3

2
z x

)
dz.

From (2.2), for n = 1 (γ = 3), we write

u3(x, t) =
1

πx
E

[
e−

x
2G

3(1/t) sin

(√
3x

2
G3(1/t)

)]

=
3t

πx

∫ ∞
0

e−
xy
2 sin

(√
3

2
xy

)
y2e−ty

3

dy.

This proves that

u3(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
.

Remark 3.2. Two solutions to the third-order p.d.e

∂u

∂t
= −∂

3u

∂x3
(3.3)

are given by

p(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
and

q(x, t) =
x

t

1
3
√

3t
Ai

(
x

3
√

3t

)
=
x

t
p(x, t).

Indeed, we have that

∂q

∂t
(x, t) =− x

t2
p(x, t) +

x

t

∂p

∂t
(x, t)

and

∂q

∂x
(x, t) =

1

t
p(x, t) +

x

t

∂p

∂x
(x, t),

∂2q

∂x2
(x, t) =

2

t

∂p

∂x
(x, t) +

x

t

∂2p

∂x2
(x, t),

∂3q

∂x3
(x, t) =

3

t

∂2p

∂x2
(x, t) +

x

t

∂3p

∂x3
(x, t) =

3

t

∂2p

∂x2
(x, t)− x

t

∂p

∂t
(x, t)

and therefore
∂q

∂t
(x, t) +

∂3q

∂x3
(x, t) =

1

t2

(
3t
∂2p

∂x2
(x, t)− xp(x, t)

)
.

By observing that
∂2

∂x2

[
1

3
√

3t
Ai

(
x

3
√

3t

)]
=

1

3t
Ai′′

(
x

3
√

3t

)
and the fact that Ai′′(z)− zAi(z) = 0 that is, Ai satisfies the Airy equation, we get that

∂q

∂t
(x, t) +

∂3q

∂x3
(x, t) = 0.
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Higher-order equations

Remark 3.3. We have shown in a previous paper ([11]) that the r.v.

Z(t) = X3(T 1
3
(t)) (3.4)

obtained by composing the third-order pseudo-process X3 with the stable subordinator
T 1

3
with distribution

Pr{T 1
3
(t) ∈ ds} =

t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
ds, s, t > 0 (3.5)

possesses Cauchy distribution

Pr{Z(t) ∈ dx}/dx =

∫ ∞
0

1
3
√

3s
Ai

(
x

3
√

3s

)
t

s

1
3
√

3s
Ai

(
t

3
√

3s

)
ds

=

√
3t

2π(x2 + xt+ t2)
=

√
3

2π

t

(x+ t
2 )2 + 3

4 t
2
. (3.6)

Result (3.6) shows that (3.4) is a genuine r.v..The characteristic function of (3.6) is
clearly ∫ +∞

−∞
eiβxPr{Z(t) ∈ dx} = e−

√
3

2 t|β|−i t2β .

We have now the following generalization of the previous result for the composition
of the pseudo-process X3 with successively composed subordinators of order 1

3 .

Theorem 3.4. The r.v.
Zn(t) = X3(T 1

1
3
(. . . (Tn1

3
(t)) . . .))

with T j1
3

, j = 1, 2, . . . , n, independent, positively skewed r.v.’s with law (3.5) has charac-

teristic function

EeiβZn(t) = exp
[
−
(

cos
π

2 · 3n
+ i sgn(β) sin

π

2 · 3n
)
t|β|

1

3n−1

]
(3.7)

Proof. We first observe that

Pr{Zn(t) ∈ dx}/dx

=

∫ ∞
0

. . .

∫ ∞
0

1
3
√

3s1
Ai

(
x

3
√

3s1

)
s2
s1

1
3
√

3s1
Ai

(
s2

3
√

3s1

)
. . .

t

sn

1
3
√

3sn
Ai

(
t

3
√

3sn

) n∏
j=1

dsj

has Fourier transform∫ +∞

−∞
eiβxPr{Zn(t) ∈ dx}

=

∫ ∞
0

. . .

∫ ∞
0

e−iβ
3s1

s2
s1

1
3
√

3s1
Ai

(
s2

3
√

3s1

)
. . .

t

sn

1
3
√

3sn
Ai

(
t

3
√

3sn

) n∏
j=1

dsj

=

∫ ∞
0

. . .

∫ ∞
0

e−(iβ
3)

1
3 s2

s3
s2

1
3
√

3s2
Ai

(
s3

3
√

3s2

)
. . .

t

sn

1
3
√

3sn
Ai

(
t

3
√

3sn

) n∏
j=2

dsj

= . . . =

∫ ∞
0

e−(iβ
3)

1
3n−1 sn

t

sn

1
3
√

3sn
Ai

(
t

3
√

3sn

)
dsn

= exp
[
−
(
ei
π
2 sgn(β) |β|3

) 1
3n t
]

= exp

[
−
(
ei
π
2 sgn(β)|β|3

) 1
3n

t

]
= exp

[
−
(

cos
π

2 · 3n
+ i sgn(β) sin

π

2 · 3n
)
t|β|

1

3n−1

]
.
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Higher-order equations

We observe that the characteristic function of a stable r.v. Sα,ν(t) can be written as

EeiβSα,ν(t) =e−t|β|
αe−i

πν
2
sgn (β)

= exp
[
−σ
(

1− iθ sgn(β) tan
πα

2

)
t|β|α

]
where

θ =
tan πν

2

tan πα
2

∈ [−1, 1]

and σ = cos πν2 > 0. In our case α = 1
3n−1 , ν = 1

3n and therefore σ = cos π
2·3n and

θ =
tan π

2·3n

tan π
2·3n−1

(3.8)

and since θ 6= ±1, the r.v. Zn is spread on the whole line with parameter of asymmetry
equal to (3.8).

Remark 3.5. We note that by adjusting the derivation of (3.7) we can obtain result
(1.5) of the introduction.

Remark 3.6. The positively skewed stable r.v. Tα(t), t > 0, α ∈ (0, 1), with Laplace
transform

Ee−λTα(t) = e−λ
αt

has characteristic function

EeiβTα(t) =Ee−(−iβ)Tα(t) = e−t(−iβ)
α

= exp
[
−t|β|α e−iπα2 sgn(β)

]
= exp

[
− cos

πα

2

(
1− i sgn(β) tan

πα

2

)
t|β|α

]
and therefore with asymmetric parameter θ = +1 and σ = cos πα2 .
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