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Abstract
In this note, we provide a simulation algorithm for a diffusion process in a layered media. Our
main tools are the properties of the Skew Brownian motion and a path decomposition technique
for simulating occupation times.

1 Introduction

Simulation of diffusion processes in multi-dimensional discontinuous media is still a challenging
problem, while recent progresses have been done for one-dimensional media. The object of this
note is to deal with the simulation of the stochastic process generated by the divergence form
operator

L =
1

2
∇(D∇·) + U∇,

in a multi-dimensional layered media. By this, we mean that there is a direction n orthogonal to
the discontinuities of a diffusion coefficient D and a convective term U that are constant in each
layers.

In geophysics, this could be used for example to model a solute in a vertically layered porous
media submitted to a advective flow U and diffusion effects given by D [1, 34, 35, 37]. The
concentration C(t, x) of the solute is then

∂ C(t, x)
∂ t

=
1

2
∇(D(x)∇C(t, x))−∇(U(x)C(t, x)) (1)

with C(t, x)−−→
t→0

δy if the solute is initially at y . Eq. (1) is interpreted as a Fokker-Planck equation,

and C(t, x) is then the density of the process Z at time t generated by L with starting point y .
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Note also that our method may be locally used for media with such a geometry. In addition to geo-
physics, many domains face this kind of simulation problem: magneto-electro-encephalography
[26], ecology [31], astrophysics [45], ...

We simplify our analysis by considering that the spatial dimension is equal to 2 and

(H1) D(x , y) =
�

Dx(x) 0
0 D y(x)

�

and U(x , y) =
�

0
U y(x)

�

.

Here, n points toward the y-direction. There is no difficulty to generalize our results in any
dimension d ≥ 3. We also assume that there exists a finite or countable set of separated points
{x i} such Dx , D y and U y are discontinuous at these points and constant elsewhere.

The main idea is the following. Let Z be the two dimensional process generated by L . With
the decomposition Z = (X , Y ), X does not depend on Y and is generated by the one-dimensional
operator

L x =
1

2
∇(Dx(x)∇·),

while Y is solution to the equation

Yt = y +

∫ t

0

p

D y(Xs)dW y
s +

∫ t

0

U y(Xs)ds,

where W y is a Brownian motion independent from X . The discontinuities of D may be seen as
interfaces. From the heuristic point of view, these interfaces play the rôle of permeable barriers.
However, this can only be said from a “mesoscopic” and not microscopic point of view, due to the
irregularity of the paths of X . In particular, claims such that “the particle passes on one side with
a given probability” makes no senses unless one says precisely where and when the particle goes.

The simulation of one-dimensional stochastic processes generated by a divergence form operator
with discontinuous coefficients has now been the subject of a large literature and several algo-
rithms have been proposed (See [23, 7, 8, 9, 13, 15, 22, 27, 28, 37, 40] for a non-exhaustive
list of possible algorithms). Some of these schemes generate random variates with the true distri-
bution of X t . Others only provide some approximations. Yet the multi-dimensional case remains
largely open and challenging (However, see [21] for some possible schemes, in general for locally
isotropic coefficients).
Here, we consider a Euler type scheme which computes X t+δt from X t for small values of δt.
The probability that the particle leaves a ball of radius R

p
δt centered on X t during [t, t + δt] is

exponentially small as R increases. Hence, if
p
δt is much smaller than the distance between two

discontinuities, then the behavior of the particle is mostly influence by the closest interface.

Following the previous discussion and for the sake of simplicity, we also assume:

(H2) There is only one interface at x1 = 0.

At time t +δt, the y-component given (Xs)s∈[t,t+δt] is then

Yt+δt = Yt + G+ U ,

where U =
∫ t+δt

t
U y(Xs)ds and G is a Gaussian random variable independent from (Xs)s∈[t,t+δt]

with mean 0 and variance

σ2 = Var(G|(Xs)s∈[t,t+δt]) =

∫ t+δt

t

D y(Xs)ds.



766 Electronic Communications in Probability

The possible values of D y(Xs) (resp. V y(Xs)) are D y
+ and D y

− (resp. U y
+ and U y

−) according to the
sign of Xs. Hence

σ2 = D y
+A+(t, t +δt) + D y

−A−(t, t +δt) and U = U y
+A+(t, t +δt) + U y

−A−(t, t +δt)

where A+(t, t +δt) and A−(t, t +δt) are the occupation times:

A+(t, t +δt) =

∫ t+δt

t

1{Xs≥0} ds

and A−(t, t +δt) = δt − A+(t, t +δt) =

∫ t+δt

t

1{Xs<0} ds.

Hence, the problem of simulating Yt+δt from Yt reduces to the problem of simulating the occupa-
tion times A+(t, t +δt).
Following the seminal work of P. Lévy on the occupation time for the Brownian motion and the
Arc-Sine distribution, the characterization of the occupation time distribution for general Markov
processes has been the subject to a large literature since [16] (See e.g. [41, 42, 43]). A special
branch of these researches concerns Brownian motions, Skew Brownian motions, Walsh Brownian
motions (a generalization of the Skew Brownian motion by considering a Brownian diffusion on
rays) and Skew Bessel processes. For this, the whole technology of excursions theory, scaling
property, ... can be used (See e.g. [2, 32, 33]).

The occupation time of the Skew Brownian motion has already been used in relation with mod-
elling in geophysics [1] or in population ecology [31]. In particular, the trivariate density of
the position of the Skew Brownian motion, its occupation time and its local time is given in [1].
However, it does not give rise to straightforward simulation algorithms.

Hence, we combine techniques that consists in transforming X into a Skew Brownian motion as
in [7, 22], in using the Brownian bridge properties to determine the first hitting time of zero, and
then use some known densities for the last passage of zero and the occupation time for the Skew
Brownian motion.
This technique may also be seen as a refinement of the one proposed in [18], which was a variant
of [12] for the simulation of Reflected Stochastic Differential Equations.

Since our key point is the reduction to the Skew Brownian motion, all that is said in this article
could also be applied to the process generated by a non-divergence form operator

1

2

d
∑

i, j=1

Di, j
∂ 2

∂ x i∂ x j
+

d
∑

i, j=1

Ui
∂

∂ x i

under the same assumptions on D and U as above. In this case, θ given in Eq. (3) shall be changed
into −θ in Eq. (4) (See [22]).

2 The Stochastic Differential Equation the process solves

The existence of a diffusion (Feller process) associated to the divergence form operator L follows
from Gaussian estimates on the semi-group [39]. Proposition 1 gives some insights about the
process under Hypotheses (H1) and (H2). See [5] for a closely related representation of a diffusion
process generated by a divergence form operator. For an alternative construction, see [34, 35].
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Proposition 1. Under Hypotheses (H1) and (H2),L = 1
2
∇(D∇·)+U∇ is the infinitesimal generator

of the family indexed by (x , y) ∈R2 of unique (strong) solutions (X , Y ) to the Stochastic Differential
Equation (SDE) with local time











X t = x +

∫ t

0

p

Dx(Xs)dW x
s +

Dx
+ − Dx

−

Dx
+ + Dx

−
L0

t (X ),

Yt = y +

∫ t

0

p

D y(Xs)dW y
s +

∫ t

0

U y(Xs)ds,
(2)

where L0
t (X )

def
= limε→0(2ε)−1

∫ t

0
1Xs∈[−ε,ε] ds is the symmetric local time of X and (W x , W y) is a

two-dimensional Brownian motion.

Proof. Since Y is a Gaussian process whose variance and mean at any time depend only on the
couple (X , W y), the problem of existence and uniqueness of (2) reduces to the problem of exis-
tence of the SDE solved by X . The x-component of the SDE may be interpreted as a particular
case of SDE with local time whose theory is developed in [17]. In particular, it follows from [17,
Theorem 2.3, p. 61] that strong existence and uniqueness for X , and then for Y .

It remains to show that L is the infinitesimal generator of the two-dimensional process (X , Y ).
For this, we use a regularization of the coefficients.

Let us consider a smooth family of approximations (Dn, Un) of the coefficients (D, U). The di-
vergence form operator Ln =

1
2
∇(Dn∇·) + Un∇ may be transformed into a non-divergence form

operator. The stochastic process (X n, Y n) generated by Ln is the the solution to











X n
t = x +

∫ t

0

p

Dx
n (X

n
s )dW x

s +
1

2

∫ t

0

dDx
n

dx
(X n

s )ds,

Y n
t = y +

∫ t

0

Æ

D y
n (X n

s )dW y
s +

∫ t

0

U y
n (X

n
s )ds,

where Dx
n , D y

n and U y
n are smooth approximations of Dx , D y and U y . In particular, X n is gener-

ated by the one-dimensional divergence form operator 1
2

�

d
dx

Dx
n

d
dx

�

. As n goes to infinity, (X n, Y n)
converges to the process generated by L under P(x ,y) for any starting point (x , y) ∈R2 (See [39,
Theorem II.3.13] for the convergence of the corresponding semi-groups from which the conver-
gence of the distribution is easily deduced thanks to the Markov property or [36, Theorem 7.3]).

It is also known that X n converges to X given by the first component of (2) [22, Proposition 3,
p. 116 and Proposition 5, p. 118] or [17, Theorem 3.1, p. 64]. The convergence of Y n to the
second component of (2) follows from standard convergence results in this case (See for example
[19, Lemmas 5 and 6] for similar computations). Hence, (X n, Y n) converges in distribution to
(X , Y ) under P(x ,y) for any (x , y) ∈ R2 and this allows one to identify (X , Y ) with the process
generated by L .
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3 The x-component and the Skew Brownian motion

Let us set

Ψ(x) =
1

p

Dx
+

1x≥0 +
1

p

Dx
−

1x<0

and θ =

p

Dx
+ −

p

Dx
−

p

Dx
+ +

p

Dx
−

∈ (−1,1). (3)

Under Hypotheses (H1) and (H2), let us denote as above by (X , Y ) the process generated by L
and then solution to Eq. (2).
The main point of our analysis is the following result on the process V = Ψ(X ). This transform
has already been used for example in [7, 22, 30, 34, 35]. The proof of Proposition 2 below is a
direct consequence of the Itô-Tanaka formula and some manipulations on the local time L0

t (X ) to
the local time L0

t (V ).

Proposition 2. Under Hypotheses (H1) and (H2), the process Vt =Ψ(X t) is a Skew Brownian motion
of parameter θ , which means it is the unique strong solution to the SDE with local time

Vt =Ψ(x) +W x
t + θ L0

t (V ). (4)

The Skew Brownian motion (SBM) was introduced by K. Itô and H.P. McKean [14, Problem 1,
p. 115] by the following way: a SBM is constructed by choosing the sign of each excursion of
a Reflected Brownian motion independently with a Bernoulli random variable of parameter α =
(1 + θ)/2 ∈ (0,1). That is, with probability α, the excursion has a positive sign. Otherwise,
it has a negative sign. Its relationship with the solution of (4) was proved by J. Harrison and
L. Shepp [11]. For a summary of the possible constructions of the SBM and its main property, see
[20].
In the case of multiple discontinuities, the same kind of transform may be applied but it gives rise
to a SDE with local time at different points.

Let us note that the occupation time for the SBM V is the same as for the process X . Hence, we
still denote by A±(s, t) the occupation time of V .

4 The occupation time

Using the strong Markov property, simulating A±(s, t)when Xs = 0 reduces to the simulation of the
occupation time A+(0, t) when X0 = 0. Besides, using the scaling property for the SBM, A+(0, t) is
equal in distribution to tA+(0,1) for any t > 0.
Let us also note the trivial relation: A+(0, 1) + A−(0, 1) = 1.
The density and the distribution of the occupation time for the Skew Brownian motion of parame-
ter α is explicitly known. We will not use Theorem 1 below under its full form, yet we recall it for
it contains the density of the Arc-Sine distribution that will be used for simulating the last-passage
time.

Theorem 1 ([16, Theorem 1]). The density f (α)(x) of A+(0,1) is

f (α)(x) =
α(1−α)
π

(x(1− x))−1/2

α2(1− x) + (1−α)2 x
, x ∈ (0,1)
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and its distribution function is

F (α)(x) =
2

π
arcsin

È

(1−α)2 x

(1−α)2 x +α2(1− x)
, x ∈ [0, 1].

Note also that the triple (A+(0,1), A−(0,1), L0
1(V )

2) may also be represented in term of indepen-
dent stable positive random variables of indice 1/2 [2, Theorem 1].
Hence, A+(0, 1) is easily simulated by inverting its distribution function: If U ∼ U (0,1), where
U (0, 1) is the uniform distribution on [0, 1), then

A+(0, 1)
law
= (F (α))−1(U),

which means that

A+(0,1)
law
=

α2Γ
α2Γ+ (1−α)2(1−Γ)

, Γ = sin2
�

πU

2

�

.

When α = 1/2, then V is a Brownian motion. In this case, f (1/2) is the density of the Arc-Sine
distribution and Theorem 1 yields the famous result of P. Lévy [25] that the occupation time of the
Brownian motion follows the Arc-Sine distribution.

5 Decomposition of the path

We have seen that the distribution of (X t+δt , Yt+δt)when (X t , Yt) is known is deduced from the one
of (X t+δt , A+(t, t + δt)) when (X t , Yt) is known. Up to a simple transform, one may equivalently
consider the couple (Vt+δt , A+(t, t +δt)) when (Vt , Yt) is known. Using the Markov property, one
may assume without loss of generalities that t = 0.

Let us start with the simulation of Vδt when V0 is known. For this, we apply an idea already used
to simulate a Brownian motion killed at a boundary (See e.g. [10, 24]). Regarding the hitting
time of zero, see e.g. [3, pp. 2436–2438].
For this, let us simulate a guess Vδt as if there is no interface, that is Vδt = V0+ξwith ξ∼N (0,δt).
If Vδt V0 < 0, then the path (Vs)s∈[0,δt] crosses zero at a stopping time g. Using the properties
of the Brownian bridge, g = δt · ζ/(1 + ζ) where ζ follows an inverse Gaussian distribution
IG (−x/y, x2/δt) with x = V0 and y = Vδt .
The inverse Gaussian distribution IG (µ,λ) has density

r(µ,λ, x) =

r

λ

2πx3 exp

�

−λ(x −µ)2

2µ2 x

�

.

Random variates following the inverse Gaussian distribution are easily simulated using the algo-
rithm of [29] (See also [6, p. 148]).
If Vδt V0 > 0, then the path (Vs)s∈[0,δt] may cross zero. This happens with probability exp(−2x y/δt).
If this happens, then the first hitting time of 0 is g= δt · ζ/(1+ ζ) with ζ∼ IG (x/y, x2/δt).
If no crossing occurs, then we keep Vδt as the next position of the Skew Brownian motion. In this
case, A+(0,δt) = δt (resp. A+(0,δt) = 0) if V0 > 0 (resp. Vδt < 0).

Let us consider now the case where a crossing occurs at time g < δt. Using the strong Markov
property of the Skew Brownian motion and up to changing δt to δt − g, one may assume that
g= 0 and consider that V0 = 0.
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Hence, let us set d = sup{s ≤ δt |Vs = 0} be the last passage time to 0 before δt. This is not a
stopping time. Basically, d relies only on the infinite sequence of lengths of the excursions of the
Skew Brownian motion occurring before t, but not on the signs. Hence, the distribution of d is the
same as the one of the Brownian motion (See [33, p. 301] for a discussion about this approach)
and the ratio d/δt is known to be Arc-Sine distributed on [0,1] (See [2, 25, 33] or [4, IV.3.18,
p. 62]). This means that d/δt has a density f (1/2) introduced in Theorem 1. If U is a uniform

random variable on [0, 1), d
law
= δt cos2(2πU), so that d is easily simulated.

We are now in a situation similar to Williams’ decomposition of the Brownian path [4, 38, 44].
As a Skew Brownian motion may be constructed from a Brownian motion by choosing their sign
of the excursions independently, (d−1/2Vdt)t∈[0,1] is independent from the σ-algebra generated by
(Vt)t≥d and by d under P0 [2, p. 297]. The process (d−1/2Vds)s∈[0,1] has the distribution of a Skew
Brownian bridge.
The part (Vs)s∈[d,δt] is called a meander and is a part of an excursion straddling δt. Again from
the construction of the Skew Brownian motion, P[Vδt > 0|d] = α and sgn(Vδt) and |Vδt | are
independent when d is given. In addition, (|Vs|)s∈[d,δt] is equal in distribution to (|Ws|)s∈[d,δt] for
a Brownian motion W . The distribution of |Wδt | given d is the same as the distribution of eκ
with κ = δt − d, where e is a Brownian excursion whose length is greater than κ. It is also the
distribution of a 3-dimensional Bessel process at time κ and is known to have the density (See
[12] or [4, IV.3.19, p. 63]):

x

κ
exp

�

−
x2

2κ

�

.

This density is called the entrance law for the excursion. Using the corresponding distribution
function, Vδt given d is distributed as

ε
p

−2(δt − d) log(U),

where U ∼U (0, 1) and ε is an independent Bernoulli random variable with P[ε= 1] = 1−P[ε=
−1] = α. Once the sign ε = sgn(Vδt) is known, A+(d,δt) = δt − d if ε = 1 and A+(d,δt) = 0 if
ε=−1.
To conclude, it remains to simulate A+(0,d) under P0. As already noted, this random variable is
independent from Vδt given d. Under P0, A+(0,d) is equal in distribution to dAbr [33, Eq. (84)],
where Abr is the occupation time above 0 of the Skew Brownian bridge over [0,1] (which means
the path (Vs)s∈[0,1] conditioned to V0 = V1 = 0).
The density f (α),br of Abr with respect to the Lebesgue measure is known to be (See [42, Example
3.2] or [43])

f (α),br(x) =
1

2

α(1−α)
(α2(1− x) + (1−α)2 x)3/2

, x ∈ (0, 1).

For α = 1/2, f (α),br is the identity and Abr is uniformly distributed on [0, 1). If α 6= 1/2, the
distribution function is

F (α),br(x) =
α(1−α)
1− 2α





1

α
−

1
p

α2(1− x) + (1−α)2 x





and Abr is easily simulated by

Abr law
=

α2

1− 2α









1
�

1− 1−2α
1−α U

�2 − 1








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where U ∼U (0, 1).

The simulation method presented in Algorithm 1 relies then on a combination of all the previous
facts. This scheme was tested using the method given in [21] and gave good results.

Input: The position X t of the particle at time t and a time step δt.
Output: The couple (X t+δt , A+(t, t +δt) of the position X t+δt of the particle at time t +δt and

its occupation time above 0.
/* Initialization */

Set x ← X t/
p

Dx(X t);
/* First guess of the position */
Set y ← x + ξ for a random variate ξ∼N (0,δt);
if x y > 0 then Generate U1 ∼U (0, 1);
/* Check for a crossing */
if x y < 0 or U1 < exp(−2x y/δt) then

/* A crossing occurs */
/* Compute the crossing time */

Set g← δtζ/(1+ ζ) for a random variate ζ∼ IG (|x |/|y|, x2/δt);
/* Compute the last passage time */

Set d← g+ (δt − g)(F (1/2))−1(U2) for a random variate U2 ∼U (0,1);
/* Set the position at time δt */
Generate U3 ∼U (0, 1);
if U3 < α then Set ε← 1 else Set ε←−1;
Set y ← ε

p

−2(δt − d) log(U4) for a random variate U4 ∼U (0,1);
/* Compute the occupation time */

if x > 0 then Set A1← g else Set A1← 0;
Set A2← (d− g)(Fα,br)−1(U5) for a random variate U5 ∼U (0,1);
if y > 0 then Set A3← δt − d else Set A3← 0;
return (y

p

Dx(y), A1 + A2 + A3);
else

/* No crossing occurs */

return (y
p

Dx(y),δt)
end

Algorithm 1: Simulation of the couple (X t+δt , A+(t, t+δt)) when X t is given, under the Hypothe-
ses (H1) and (H2).
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