Elect. Comm. in Probab. 16 (2011), 189–191

ELECTRONIC COMMUNICATIONS in PROBABILITY

CORRECTION TO "THE MEASURABILITY OF HITTING TIMES"

RICHARD F. BASS¹

Department of Mathematics, University of Connecticut, Storrs, CT 06269-3009 email: r.bass@uconn.edu

Submitted February 7, 2011, accepted in final form March 15, 2011

AMS 2000 Subject classification: Primary: 60G07; Secondary: 60G05, 60G40 Keywords: Stopping time, hitting time, progressively measurable, optional, predictable, debut theorem, section theorem

Abstract

We correct an error in [1].

There is an error in the proof of Theorem 2.1, which was pointed out to me by K. Szczypkowski. On page 101, line 18, although $A_n \setminus L_n \subset \bigcup_{i=1}^n (A_i \setminus K_i)$, the assertion concerning the projections is not necessarily true.

The following should replace the proof of Theorem 2.1, from line 6 of page 101 through the line that is 7 lines before the end of page 101.

A The correction

A set *A* is a \mathbb{P} -null set if $\mathbb{P}^*(A) = 0$. The following lemma is well known; see, e.g., [2, p. 94].

Lemma A.1. (a) If $A \subset \Omega$, there exists $C \in \mathscr{F}$ such that $A \subset C$ and $\mathbb{P}^*(A) = \mathbb{P}(C)$. (b) Suppose $A_n \uparrow A$. Then $\mathbb{P}^*(A) = \lim_{n \to \infty} \mathbb{P}^*(A_n)$.

Proof. (a) By the definition of $\mathbb{P}^*(A)$, for each *n* there exists $C_n \in \mathscr{F}$ such that $A \subset C_n$ and $\mathbb{P}(C_n) \leq \mathbb{P}^*(A) + (1/n)$. Setting $C = \bigcap_n C_n$, we have $A \subset C$, $C \in \mathscr{F}$, and $\mathbb{P}(C) \leq \mathbb{P}(C_n) \leq \mathbb{P}^*(A) + (1/n)$ for each *n*, hence $\mathbb{P}(C) \leq \mathbb{P}^*(A)$.

(b) Choose $C_n \in \mathscr{F}$ with $A_n \subset C_n$ and $\mathbb{P}^*(A_n) = \mathbb{P}(C_n)$. Let $D_n = \bigcap_{k \ge n} C_k$ and $D = \bigcup_n D_n$. We see that $D_n \uparrow D$, $D \in \mathscr{F}$, and $A \subset D$. Then

$$\mathbb{P}^*(A) \ge \sup_n \mathbb{P}^*(A_n) = \sup_n \mathbb{P}(C_n) \ge \sup_n \mathbb{P}(D_n) = \mathbb{P}(D) \ge \mathbb{P}^*(A).$$

Let $\mathscr{T}_t = [0, t] \times \Omega$. Given a compact Hausdorff space *X*, let $\rho^X : X \times \mathscr{T}_t \to \mathscr{T}_t$ be defined by $\rho^X(x, (s, \omega)) = (s, \omega)$. Let

 $\mathscr{L}_0(X) = \{A \times B : A \subset X, A \text{ compact}, B \in \mathscr{K}(t)\},\$

1

¹RESEARCH PARTIALLY SUPPORTED BY NSF GRANT DMS-0901505

 $\mathcal{L}_1(X)$ the class of finite unions of sets in $\mathcal{L}_0(X)$, and $\mathcal{L}(X)$ the class of intersections of countable decreasing sequences in $\mathcal{L}_1(X)$. Let $\mathcal{L}_{\sigma}(X)$ be the class of unions of countable increasing sequences of sets in $\mathcal{L}(X)$ and $\mathcal{L}_{\sigma\delta}(X)$ the class of intersections of countable decreasing sequences of sets in $\mathcal{L}_{\sigma}(X)$.

Lemma A.2. If $A \in \mathscr{B}[0, t] \times \mathscr{F}_t$, there exists a compact Hausdorff space X and $B \in \mathscr{L}_{\sigma\delta}(X)$ such that $A = \rho^X(B)$.

Proof. If $A \in \mathcal{K}(t)$, we take X = [0, 1], the unit interval with the usual topology and $B = X \times A$. Thus the collection \mathcal{M} of subsets of $\mathcal{B}[0, t] \times \mathcal{F}_t$ for which the lemma is satisfied contains $\mathcal{K}(t)$. We will show that \mathcal{M} is a monotone class.

Suppose $A_n \in \mathcal{M}$ with $A_n \downarrow A$. There exist compact Hausdorff spaces X_n and sets $B_n \in \mathcal{L}_{\sigma\delta}(X_n)$ such that $A_n = \rho^{X_n}(B_n)$. Let $X = \prod_{n=1}^{\infty} X_n$ be furnished with the product topology. Let $\tau_n : X \times \mathcal{T}_t \to X_n \times \mathcal{T}_t$ be defined by $\tau_n(x, (s, \omega)) = (x_n, (s, \omega))$ if $x = (x_1, x_2, ...)$. Let $C_n = \tau_n^{-1}(B_n)$ and let $C = \bigcap_n C_n$. It is easy to check that $\mathcal{L}(X)$ is closed under the operations of finite unions and intersections, from which it follows that $C \in \mathcal{L}_{\sigma\delta}(X)$. If $(s, \omega) \in A$, then for each *n* there exists $x_n \in X_n$ such that $(x_n, (s, \omega)) \in B_n$. Note that $((x_1, x_2, ...), (s, \omega)) \in C$ and therefore $(s, \omega) \in$ $\rho^X(C)$. It is straightforward that $\rho^X(C) \subset A$, and we conclude $A \in \mathcal{M}$.

Now suppose $A_n \in \mathcal{M}$ with $A_n \uparrow A$. Let X_n and B_n be as before. Let $X' = \bigcup_{n=1}^{\infty} X_n \times \{n\}$ with the topology generated by $\{G \times \{n\} : G \text{ open in } X_n\}$. Let X be the one point compactification of X'. We can write $B_n = \bigcap_m B_{nm}$ with $B_{nm} \in \mathcal{L}_{\sigma}(X_n)$. Let

$$C_{nm} = \{((x,n),(s,\omega)) \in X \times \mathscr{T}_t : x \in X_n, (x,(s,\omega)) \in B_{nm}\},\$$

 $C_n = \cap_m C_{nm}$, and $C = \bigcup_n C_n$. Then $C_{nm} \in \mathscr{L}_{\sigma}(X)$ and so $C_n \in \mathscr{L}_{\sigma\delta}(X)$.

If $((x, p), (s, \omega)) \in \bigcap_m \cup_n C_{nm}$, then for each *m* there exists n_m such that $((x, p), (s, \omega)) \in C_{n_m m}$. This is only possible if $n_m = p$ for each *m*. Thus $((x, p), (s, \omega)) \in \bigcap_m C_{pm} = C_p \subset C$. The other inclusion is easier and we thus obtain $C = \bigcap_m \cup_n C_{nm}$, which implies $C \in \mathscr{L}_{\sigma\delta}(X)$. We check that $A = \rho^X(C)$ along the same lines, and therefore $A \in \mathscr{M}$.

If $\mathscr{I}^0(t)$ is the collection of sets of the form $[a, b) \times C$, where $a < b \le t$ and $C \in \mathscr{F}_t$, and $\mathscr{I}(t)$ is the collection of finite unions of sets in $\mathscr{I}^0(t)$, then $\mathscr{I}(t)$ is an algebra of sets. We note that $\mathscr{I}(t)$ generates the σ -field $\mathscr{B}[0,t] \times \mathscr{F}_t$. A set in $\mathscr{I}^0(t)$ of the form $[a,b) \times C$ is the union of sets in $\mathscr{K}^0(t)$ of the form $[a, b - (1/m)] \times C$, and it follows that every set in $\mathscr{I}(t)$ is the increasing union of sets in $\mathscr{K}(t)$. Since \mathscr{M} is a monotone class containing $\mathscr{K}(t)$, then \mathscr{M} contains $\mathscr{I}(t)$. By the monotone class theorem, $\mathscr{M} = \mathscr{B}[0,t] \times \mathscr{F}_t$.

The works of Suslin and Lusin present a different approach to the idea of representing Borel sets as projections; see, e.g., [4, p. 88] or [3, p. 284].

Lemma A.3. If $A \in \mathscr{B}[0, t] \times \mathscr{F}_t$, then A is t-approximable.

Proof. We first prove that if $H \in \mathcal{L}(X)$, then $\rho^X(H) \in \mathcal{K}_{\delta}$. If $H \in \mathcal{L}_1(X)$, this is clear. Suppose that $H_n \downarrow H$ with each $H_n \in \mathcal{L}_1(X)$. If $(s, \omega) \in \bigcap_n \rho^X(H_n)$, there exist $x_n \in X$ such that $(x_n, (s, \omega)) \in H_n$. Then there exists a subsequence such that $x_{n_k} \to x_\infty$ by the compactness of X. Now $(x_{n_k}, (s, \omega)) \in H_{n_k} \subset H_m$ for n_k larger than m. For fixed ω , $\{(x,s) : (x, (s, \omega)) \in H_m\}$ is compact, so $(x_\infty, (s, \omega)) \in H_m$ for all m. This implies $(x_\infty, (s, \omega)) \in H$. The other inclusion is easier and therefore $\bigcap_n \rho^X(H_n) = \rho^X(H)$. Since $\rho^X(H_n) \in \mathcal{K}_{\delta}(t)$, then $\rho^X(H) \in \mathcal{K}_{\delta}(t)$. We also observe that for fixed ω , $\{(x,s) : (x, (s, \omega)) \in H\}$ is compact.

Now suppose $A \in \mathscr{B}[0, t] \times \mathscr{F}_t$. Then by Lemma A.2 there exists a compact Hausdorff space *X* and $B \in \mathscr{L}_{\sigma\delta}(X)$ such that $A = \rho^X(B)$. We can write $B = \bigcap_n B_n$ and $B_n = \bigcup_m B_{nm}$ with $B_n \downarrow B$, $B_{nm} \uparrow B_n$, and $B_{nm} \in \mathscr{L}(X)$.

Let $a = \mathbb{P}^*(\pi(A)) = \mathbb{P}^*(\pi \circ \rho^X(B))$ and let $\varepsilon > 0$. By Lemma A.1,

$$\mathbb{P}^*(\pi \circ \rho^X(B \cap B_{1m})) \uparrow \mathbb{P}^*(\pi \circ \rho^X(B \cap B_1)) = \mathbb{P}^*(\pi \circ \rho^X(B)) = a.$$

Take *m* large enough so that $\mathbb{P}^*(\pi \circ \rho^X(B \cap B_{1m})) > a - \varepsilon$, let $C_1 = B_{1m}$, and $D_1 = B \cap C_1$. We proceed by induction. Suppose we are given sets C_1, \ldots, C_{n-1} and sets D_1, \ldots, D_{n-1} with $D_{n-1} = B \cap (\bigcap_{i=1}^{n-1} C_i)$, $\mathbb{P}^*(\pi \circ \rho^X(D_{n-1})) > a - \varepsilon$, and each $C_i = B_{im_i}$ for some m_i . Since $D_{n-1} \subset B \subset B_n$, by Lemma A.1

$$\mathbb{P}^*(\pi \circ \rho^X(D_{n-1} \cap B_{nm})) \uparrow \mathbb{P}^*(\pi \circ \rho^X(D_{n-1} \cap B_n)) = \mathbb{P}^*(\pi \circ \rho^X(D_{n-1})).$$

We can take *m* large enough so that $\mathbb{P}^*(\pi \circ \rho^X(D_{n-1} \cap B_{nm})) > a - \varepsilon$, let $C_n = B_{nm}$, and $D_n = D_{n-1} \cap C_n$.

If we let $G_n = C_1 \cap \cdots \cap C_n$ and $G = \bigcap_n G_n = \bigcap_n C_n$, then each G_n is in $\mathscr{L}(X)$, hence $G \in \mathscr{L}(X)$. Since $C_n \subset B_n$, then $G \subset \bigcap_n B_n = B$. Each $G_n \in \mathscr{L}(X)$ and so by the first paragraph of this proof, for each fixed ω and n, $\{(x,s):(x,(s,\omega))\in G_n\}$ is compact. Hence by a proof very similar to that of Lemma 2.2, $\pi \circ \rho^X(G_n) \downarrow \pi \circ \rho^X(G)$. Using the first paragraph of this proof and Lemma 2.2, we see that

 $\mathbb{P}(\pi \circ \rho^X(G)) = \lim \mathbb{P}(\pi \circ \rho^X(G_n)) \ge \lim \mathbb{P}^*(\pi \circ \rho^X(D_n)) \ge a - \varepsilon.$

Using the first paragraph of this proof once again, we see that *A* is *t*-approximable.

Proof of Theorem 2.1. Let *E* be a progressively measurable set and let $A = E \cap ([0, t] \times \Omega)$. By Lemma A.3, *A* is *t*-approximable. By Proposition 2.3, $(D_E \leq t) = \pi(A) \in \mathscr{F}_t$. Because *t* was arbitrary, we conclude D_E is a stopping time.

Acknowledgement. I would like to thank the referee for valuable suggestions.

References

- [1] R.F. Bass. The measurability of hitting times. *Electron. Comm. Prob.* 15 (2010) 99-105. MR2606507, http://www.math.washington.edu/~ejpecp/ECP/viewarticle.php?id= 2181&layout=abstract..
- [2] K. Bichteler. Integration: a Functional Approach. Birkhäuser, Basel, 1998. MR1635816
- [3] D.L. Cohn. Measure Theory. Birkhäuser, Boston, 1980. MR0578344
- [4] I. Fonseca and G. Leoni. Modern Methods in the Calculus of Variations: L^p Spaces. Springer, New York, 2007. MR2341508