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Abstract
We consider the maximum of the discrete two dimensional Gaussian free field in a box, and prove
the existence of a (dense) deterministic subsequence along which the maximum, centered at its
mean, is tight. The method of proof relies on an argument developed by Dekking and Host for
branching random walks with bounded increments and on comparison results specific to Gaussian
fields.

1 Introduction and main result

We consider the discrete Gaussian Free Field (GFF) in a two-dimensional box of side N + 1, with
Dirichlet boundary conditions. That is, let VN = ([0, N]∩Z)2, V o

N = ((0, N)∩Z)2, and let {wm}m≥0
denote a simple random walk started in VN and killed at τ = min{m : wm ∈ ∂ VN} (that is, killed
upon hitting the boundary ∂ VN = VN \ V o

N ). For x , y ∈ VN , define GN (x , y) = E x(
∑τ

m=0 1wm=y),
where E x denotes expectation with respect to the random walk started at x . The GFF is the
zero-mean Gaussian field {X N

z }z indexed by z ∈ VN with covariance GN .
Throughout, for any finite set T and random field {Wz}z∈T , we write W ∗ = maxz∈T Wz . In partic-
ular, we write X ∗N =maxz∈VN

X N
z . It was proved in [2] that X ∗N/(log N)→ c with c = 2

p

2/π, and
the proof is closely related to the proof of the law of large numbers for the maximal displacement
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of a branching random walk (in R). Based on the analogy with the maximum of independent
Gaussian variables and the case of branching random walks, the following is a natural conjecture.

Conjecture 1. The sequence of random variables YN := X ∗N − EX ∗N is tight.

To the best of our knowledge, the sharpest result in this direction (prior to this paper) is due to
[8], who shows that the variance of YN is o(log N); in the same paper, Chatterjee also analyzes
related Gaussian fields, but in all these examples, does not prove tightness. We defer to Section
3 for some pointers to the relevant literature concerning the Gaussian free field and the origin of
Conjecture 1.
The goal of this note is to prove a weak form of the conjecture. Namely, we will prove the
following.

Theorem 1. There is a deterministic sequence {Nk}k≥1 such that the sequence of random variables
{YNk
}k≥1 is tight.

More information on the sequence {Nk}k≥1 is provided below in Remark 1.
It is of course natural to try to improve the tightness from subsequences to the full sequence. As
will be clear from the proof, for that it is enough to prove the existence of a constant C such that
EX ∗2N ≤ EX ∗N + C . This is weaker than, and implied by, the conjectured behavior of EX ∗N , which is

EX ∗N = c log N − c2 log log N +O(1), (1)

for c = 2
p

2/π and an appropriate c2, see e.g. [7] and Remark 3. (After this work was completed,
the conjecture (1) was proved by Bramson and Zeitouni [6], consequently establishing Theorem
1 without the need for taking subsequences.)
Finally, although we deal here exclusively with the GFF, it should be clear from the proof that the
analysis applies to a much wider class of models.

2 Preliminary considerations

Our approach is motivated by the Dekking-Host [10] proof of tightness of branching random walks
(BRW) with independent bounded increments (see also the argument in [4]). Although the GFF
cannot be represented as a branching random walk, it does possess a branching-like structure that
we describe in this section; this structure plays a crucial role in the proof of Theorem 1.

2.1 The basic branching structure

We consider N = 2n in what follows, write Zn = X ∗N and identify an integer m=
∑n−1

i=0 mi+12i ≤ N
with its binary expansion (mn, mn−1, . . . , m1), where mi ∈ {0,1}. For k ≥ 1, introduce the sets of
k-diadic integers

Ak = {m ∈ {1, . . . , N} : m= (2l + 1)N/2k for some integer l}.

Note that if m ∈ Ak then mi = 0 for i ≤ n− k and mn−k = 1. Set

Bk = {z = (x , y) ∈ VN , x or y ∈ Ak}.

Then, define the σ-algebras
A k = σ(X

N
z : z ∈ ∪i≤kBi).
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Figure 1: Indices in B1 (dashed lines) and B2 (dotted lines). A2 is the σ-algebra generated by
variables with indices on either dashed or dotted lines.

Finally, for every z = (x , y) ∈ V o
N , write zi = (x i , yi) with x i , yi denoting as above the ith digit in

the binary expansion of x , y . We introduce the random variables

ξz1,...,zk
zk+1,...,zn

= E[X N
z |Ak]. (2)

Define
X z1

z2,...,zn
= X N

z − ξ
z1
z2,...,zn

. (3)

Note that the random variables {X z1
z2,...,zn

} are independent ofA1. Further, by the Markov property
of the GFF, the collections {X z1

· }z1∈V1
are i.i.d. copies of the GFF in the box VN/2. Iterating, we have

the representation
X N

z = ξ
z1
z2,...,zn

+ ξz1,z2
z3,...,zn

+ . . .+ ξz1,z2,...,zn−1
zn

, (4)

where all the summands in the right side of (4) are independent.
For motivation purpose, we explain the relation with branching random walks; this is not used in
the sequel. Let {gz1,...,zk}k≥1,zi∈Vi

be independent random variables and define

BN
z = gz1 + gz1,z2 + . . .+ gz1,...,zn .

Then BN
z determines a branching random walk (on a quaternary tree), possibly with time-dependent

increments. Thus, should the random variables in the right side of (4) not depend on the subscript,
(4) would correspond to a branching random walk. For such a BRW, a functional recursion for the
law of X ∗N can be written down, and used to prove tightness (see [5] and [1]). Unfortunately, no
such simple functional recursions are available in the case (4). For this reason, we only use (3),
and then adapt an argument of [10], originally presented in the context of BRW.
Returning to the setup of the GFF, note that with w ∈ VN/2 identified with the sequence (z2, . . . , zn)
and Dz,N

w = {ξz
z2,...,zn

}, (3) implies that

Zn = X ∗N =max
z∈V1

((X N/2,z + Dz,N )∗), (5)

where the random fields {(X N/2,z)w}w∈VN/2
, z ∈ V1, are four i.i.d. copies of X N/2, and the {(Dz,N )w}w∈VN/2

,

z ∈ V1, are complicated zero-mean Gaussian fields, independent of the fields {X N/2,z}. Unfortu-
nately, the Dz,N random fields are far from being uniformly bounded, and this fact prevents the
application of the argument from [10].
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2.2 Two basic lemmas

In this subsection we present two preliminary lemmas that will allow for a comparison of the GFF
between different scales. The first shows that the maximum of the sum of two zero mean fields
tends to be larger than each of the fields.

Lemma 1. Let {X i}i∈VN
and {Yi}i∈VN

be two independent, random fields, indexed by VN , with E|X i |<
∞ and EYi = 0 for all i. Then,

E max
i∈VN

(X i + Yi)≥ E max
i∈VN

X i . (6)

Proof Let α ∈ VN be such that maxi∈VN
X i = Xα (in case several αs satisfy the above equality,

choose the first according to lexicographic order). We then have

E max
i∈VN

(X i + Yi)≥ E(Xα + Yα) = EXα + EYα = EXα = E max
i∈VN

X i ,

where the second equality is due to the independence of the fields and the fact that EYi = 0 for all
i. �
By (5) and Lemma 1, we have that

EZn+1 ≥ EZn . (7)

The following lemma gives a control in the opposite direction.

Lemma 2. There exists a sequence nk →∞ and a constant C such that

EZnk+1 ≤ EZnk
+ C . (8)

Proof From [2] there exists a constant c > 0 so that EZn/n→ c. Fixing arbitrary K and defining
In,K = {i ∈ [n, 2n] : EZi+1 > EZi + K}, one has from (7) and the existence of the limit EZn/n→ c
that

lim sup
n→∞

|In,K |
2n
≤

c

K
.

In particular, choosing K = 3c it follows that for all n large, there exists an n′ ∈ [n, 2n] so that

EZn′ ≤ EZn′−1 + K ,

as claimed.�

2.3 Proof of Theorem 1

By (5) and Lemma 1, we get that

EX ∗2N ≥ E max
z∈V1

(X ∗N )
z ≥ E max(X ∗N , X̃ ∗N ) ,

where X̃ ∗N is an independent copy of X ∗N . Using the equality max(a, b) = (a+ b+ |a− b|)/2, we
get that

EZn+1 − EZn ≥ E|X ∗N − X̃ ∗N |/2 .

For the sequence nk and the constant C from Lemma 2, we thus get that

2C ≥ E|X ∗2nk − X̃ ∗2nk | ≥ E|X ∗2nk − EX̃ ∗2nk |= E|X ∗2nk − EX ∗2nk | ,

where the second inequality follows from Jensen’s inequality and the independence of X ∗N and X̃ ∗N .
This shows that the sequence {X ∗2nk − EX ∗2nk }k≥1 is tight and completes the proof of Theorem 1. �
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Remark 1. The subsequence nk provided in Lemma 2 can be taken with density arbitrary close to 1,
as can be seen from the following modification of the proof. Fixing arbitrary K and ε and defining
In,ε,K = {i ∈ [n, n(1 + ε)] : EZn+1 > EZn + K}, one has from (7) and the existence of the limit

EZn/n→ c (with c = 2
p

2/π) that

limsup
n→∞

|In,ε,K |
nε

≤
c

K
.

It is of course of interest to see whether one can take nk = k. Minor modifications of the proof of
Theorem 1 would then yield Conjecture 1.

Remark 2. Minor modifications of the proof of Theorem 1 also show that if there exists a constant C
so that EX ∗2N ≤ EX ∗N + C for all integer N, then Conjecture 1 holds.

Remark 3. For Branching Random Walks, under suitable assumptions it was established in [1]
that (1) holds. Running the argument above then immediately implies the tightness of the minimal
(maximal) displacement, centered around its mean.

3 Some bibliographical remarks

The Gaussian free field has been extensively studied in recent years, in both its continuous and
discrete forms. For an accessible review, we refer to [14]. The fact that the GFF has a logarithmic
decay of correlation invites a comparison with branching random walks, and through this analogy
a form of Conjecture 1 is implicit in [7]. This conjecture is certainly “folklore”, see e.g. open
problem #4 in [8]. For some one-dimensional models (with logarithmic decay of correlation)
where the structure of the maxima can be analyzed, we refer to [11, 12]. The analogy with
branching random walks has been reinforced by the study of the so called thick points of the GFF,
both in the discrete form [9] and in the continuous form [13].
Acknowledgment A proof of Theorem 1 was first provided in [3]. In that proof some additional
estimates controlling the field Dz,N , see (5), are provided. Yuval Peres observed that these esti-
mates are redundant, and suggested the simpler proof presented here. We thank Yuval for this
observation and for his permission to use it here. We also thank an anonymous referee for a
careful reading of the manuscript and useful comments.
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