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Abstract

We introduce and study a new interacting particles model with a wall and two kinds of interactions

- blocking and pushing - which maintain particles in a certain order. We show that it involves a

random matrix model.

1 Interacting particles model

Let us consider k ordered particles evolving in discrete time on the positive real line with interac-

tions that maintain their orderings. The particles are labeled in increasing order from 1 to k. Thus

for t ∈ N, we have

0≤ X1(t)≤ · · · ≤ Xk(t),

where X i(t) is the position of the ith particle at time t ≥ 0. Particles are initially all at 0. The

particles jump at times n− 1

2
and n, n ∈ N∗. Let us consider two independent families

(ξ(i, n−
1

2
))i=1,...,k; n≥1, and (ξ(i, n))i=1,...,k; n≥1,

of independent random variables having an exponential law of mean 1. For convenience, we

suppose that there is a static particle which always stays at 0. We call it the 0th particle, and

denote X0(t) its position at time t ≥ 0.

At time n− 1/2, for i = 1, . . . , k, in that order, the i th particle tries to jump to the left according to

a jump of size ξ(i, n− 1

2
) being blocked by the old position of the (i−1)th particle. In other words

:

• If X1(n− 1)− ξ(1, n− 1

2
) < 0, then the 1st particle is blocked by 0, else it jumps at X1(n−

1)− ξ(1, n− 1

2
), i.e.

X1(n−
1

2
) =max(0, X1(n− 1)− ξ(1, n−

1

2
)).
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• For i = 2, . . . , k, if X i(n− 1)− ξ(i, n− 1

2
) < X i−1(n− 1), then the i th particle is blocked by

X i−1(n− 1), else it jumps at X i(n− 1)− ξ(i, n− 1

2
), i.e.

X i(n−
1

2
) =max(X i−1(n− 1), X i(n− 1)− ξ(i, n−

1

2
)).

At time n, particles jump successively to the right according to an exponentially distributed jump

of mean 1, pushing all the particles to their right. The order in which the particles jump is given

by their labels. Thus for i = 1, . . . , k, if X i−1(n) > X i(n− 1

2
) then the i th particle is pushed before

jumping, else it jumps from X i(n− 1

2
) to X i(n− 1

2
) + ξ(i, n):

X i(n) =max(X i−1(n), X i(n−
1

2
)) + ξ(i, n).

X3(n− 1)X2(n− 1)X1(n− 1)

bc bc ××bb

X3(n− 1

2
)X2(n− 1

2
)X1(n− 1

2
)

bc bc× × ×b b

0 X3(n)X2(n)X1(n)

Figure 1: An example of blocking and pushing interactions between times n− 1 and n for k = 3.

Different particles are represented by different kinds of dots.

There is another description of the dynamic of this model which is equivalent to the previous. At

each time n ∈ N∗, each particle successively attempts to jump first to the left then to the right,

according to independent exponentially distributed jumps of mean 1. The order in which the

particles jump is given by their labels. At time n ∈ N∗, the 1st particle jumps to the left being

blocked by 0 then immediately to the right, pushing the ith particles, i = 2, . . . , k. Then the second

particle jumps to the left, being blocked by max(X1(n− 1), X1(n)), then to the right, pushing the

ith particles, i = 3, . . . , k, and so on. In other words, for n ∈ N∗, i = 1, . . . , k,

X i(n) =max
�

X i−1(n), X i−1(n− 1), X i(n− 1)− ξ−(i, n)
�

+ ξ+(i, n), (1)

where (ξ−(i, n))i=1,...,k; n∈N, and (ξ+(i, n))i=1,...,k; n∈N are two independent families of independent

random variables having an exponential law of mean 1.

2 Results

Let us denote Mk,m the real vector space of k × m real matrices. We put on it the Euclidean

structure defined by the scalar product,

〈M , N〉= tr(MN ∗), M , N ∈Mk,m.
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Our choice of the Euclidean structure above defines a notion of standard Gaussian variable on

Mk,m. Thus a standard Gaussian random variable on Mk,m has a density with respect to the

Lebesgue measure onMk,m

M ∈Mk,m 7→
1

km
p

2π
exp
�

−
1

2
tr(M M∗)
�

.

We write Ak for the set {M ∈ Mk,k : M + M∗ = 0} of antisymmetric k × k real matrices, and

iAk for the set {iM : M ∈ Ak}. Since a matrix in iAk is Hermitian, it has real eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λk. Morever, antisymmetry implies that λk−i+1 =−λi , for i = 1, · · · , [k/2] + 1, in

particular λ[k/2]+1 = 0 when k is odd.

Our main result is that the positions of the particles of our interacting particles model can be

interpreted as eigenvalues of a random walk on the set of matrices iAk+1.

Theorem 2.1. Let k be a positive integer and (M(n), n ≥ 0), be a discrete process on iAk+1 defined

by

M(n) =

n
∑

l=1

Yl

�

0 i

−i 0

�

Y ∗
l

,

where the Yl ’s are independent standard Gaussian variables onMk+1,2. For n ∈ N, let Λ1(n) be the

largest eigenvalue of M(n). Then the processes

(Λ1(n), n≥ 0) and (Xk(n), n≥ 0),

have the same distribution.

For a matrix M ∈ iAk+1 and m ∈ {1, . . . , k+ 1}, the main minor of order m of M is the submatrix

{Mi j , 1≤ i, j ≤ m}.

Theorem 2.2. Let M(n), n≥ 0, be a discrete process on iAk+1, defined as in theorem 2.1. For n ∈ N,

m = 2, . . . , k + 1, we denote Λ
(m)

1 (n), the largest eigenvalue of the main minor of order m of M(n).

Then for each fixed n ∈ N∗, the random vectors

(Λ
(2)

1 (n), . . . ,Λ
(k+1)

1 (n)) and (X1(n), . . . , Xk(n)),

have the same distribution.

Let us notice that there already exists a version of theorem 2.1 with particles jumping by one (see

[2], or section 2.3 of [12]) and a continuous version which involves reflected Brownian motions

with a wall and Brownian motions conditioned to never collide with each other or the wall (see

[1]).

There is a variant of our model with no wall and no left-jumps which has been extensively studied

(see for instance Johansson [6], Dieker and Warren [4], or Warren and Windridge [12]). It

involves random matrices from the Laguerre Unitary Ensemble. Indeed, in that case, the position

of the rightmost particle has the same law as the largest eigenvalue of the process (M(n), n ≥ 0)

defined by

M(n) =

n
∑

l=1

Zl Z
∗
l
, n≥ 0,



62 Electronic Communications in Probability

where the
p

2 Zi ’s are independent standard Gaussian variables on Ck. Let us mention that this

model without a wall is equivalent to a maybe more famous one called the TASEP (totally asym-

metric simple exclusion process). In this last model, we consider infinitely many ordered particles

evolving on Z as follows. Initially there is one and only one particle on each point of Z−. Particles

are equipped with independent Poisson clocks of intensity 1 and each of them jumps by one to

the right only if its clock rings and the point just to its right is empty. Particles are labeled by N∗

from the right to the left. Then, the time needed for the kth particles to make n jumps is exactly

the position of the rightmost particle at time n in the model without a wall and exponential right

jumps.

3 Consequences

Thanks to the previous results we can deduce some properties of the interacting particles from the

known properties concerning the matrices M(n), n≥ 0. For instance, the next proposition follows

immediately from theorem 2.1 and theorem 5.2 of [3].

Proposition 3.1. For n≥ [ k+1

2
], the distribution function of Xk(n) is given by

P(Xk(n)≤ t) = det
�

∫ t

0

x2 j+i+n−[ k+1

2
]−3+1{k is even} e−x d x

�

[ k+1

2
]×[ k+1

2
], t ∈ R+.

Moreover, theorem 2.1 implies proposition 2 of [1]. In fact, letting X0(m) = 0 for every m ∈ N,

identity (1) implies that for n ∈ N and i = 1, . . . , k,

X i(n) = max
0≤m≤n

�

X ′
i−1
(m) +

n
∑

j=m+1

ξ(i, j)
�

, (2)

where

X ′
i−1
(0) = 0,

X ′
i−1
(m) =max
�

X i−1(m), X i−1(m− 1)
�

+ ξ+(i, m), m≥ 1,

ξ(i, j) = ξ+(i, j)− ξ−(i, j), j ≥ 1.

Identity (2) proves that when n goes to infinity the process

�

(
1
p

2n
X1([nt]), . . . ,

1
p

2n
Xk([nt])), t ≥ 0

�

converges in distribution to the process

�

(Y1(t), . . . , Yk(t)), t ≥ 0
�

defined by

Y1(t) = sup
0≤s≤t

�

B1(t)− B1(s))

Yj(t) = sup
0≤s≤t

�

Yj−1(s) + B j(t)− B j(s)), j = 2, . . . , k,
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where B1, . . . , Bk are independent real standard Brownian motion. Besides, Donsker’s theorem

implies that the process ( 1p
2n

M([nt]), t ≥ 0) converges in distribution to a standard Brownian

motion on iAk+1 when n goes to infinity. As announced proposition 2 of [1] follows then from

theorem 2.1.

4 Proofs

Theorem 2.1 is proved by proposition 4.7. Theorem 2.2 follows from propositions 4.8 and 4.9. Let

us denote by φ the function from R to R, defined by φ(x) = 1

2
ex p(−|x |), x ∈ R, and consider the

random walk Sn, n ≥ 1, on R, starting from 0, whose increments have a density equal to φ. The

next three lemmas are elementary.

Lemma 4.1. The process (|Sn|)n≥1 is a Markov process, with a transition density q given by

q(x , y) = φ(x + y) +φ(x − y), x , y ∈ R+.

Proof. This is a simple computation which holds for any symmetric random walk. �

Lemma 4.2. Let us consider a process M(n), n≥ 0, on iA2, defined by

M(n) =

n
∑

l=1

Yl

�

0 i

−i 0

�

Y ∗
l

, n≥ 0,

where the Yl ’s are independent standard Gaussian variables on M2,2. Then the process of the only

positive eigenvalue of (M(n), n≥ 0) is Markovian with transition density given by q.

Proof. The Yl ’s are 2× 2 independent real random matrices whose entries are independent stan-

dard Gaussian random variables on R. Let us write Yl =

�

Yl,1 Yl,2

Yl,3 Yl,4

�

. The matrix Yl

�

0 i

−i 0

�

Y ∗
l

is equal to
�

0 i(Yl,4Yl,1 − Yl,2Yl,3)

i(Yl,2Yl,3 − Yl,1Yl,4) 0

�

.

For α ∈ R, we have

E(e−iα(Yl,4Yl,1−Yl,2Yl,3)) =
1

1+α2
.

Thus, the random variables Yl,4Yl,1− Yl,2Yl,3, l = 1, . . . , n, are independent, with a density equal to

φ. We conclude using lemma 4.1. �

Lemma 4.3. Let r be a real number. Let us consider (ξ−
n
)n≥1 and (ξ+

n
)n≥1 two independent families of

independent random variables having an exponential law of mean 1. The Markov process Z(n), n≥ 1,

defined by

Z(n) =max(Z(n− 1)− ξ−
n

, r) + ξ+
n

, n≥ 1,

has transition density

pr(x , y) = φ(x − y) + e2rφ(x + y), x , y ≥ r.

Proof. This is a simple computation. �

Let us notice that when r = 0, the Markov process (Z(n), n ≥ 0), describes the evolution of the

first particle. As its transition kernel p0 is the same as the transition kernel q defined in lemma

4.1, theorem 2.1 follows when k = 1 from lemma 4.2. The general case is more complicated.
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Definition 4.4. We define the function dk : R[
k+1

2
]→ R by

• when k = 2p, p ∈ N∗,

dk(x) = c−1
k

∏

1≤i< j≤p

(x2
i
− x2

j
)

p
∏

i=1

x i ,

• when k = 2p− 1, p ∈ N∗,

dk(x) =

¨

1 if p = 1

c−1
k

∏

1≤i< j≤p(x
2
i
− x2

j
) otherwise,

where

ck = 2[
k

2
]
∏

1≤i< j≤p

( j − i)(k+ 1− j − i)
∏

1≤i≤p

(p+
1

2
− i)1{k=2p} .

The next proposition gives the transition density of the process of eigenvalues of the process

M(n), n ≥ 0. For the computation, we need a generalized Cauchy-Binet identity (see for instance

Johansson [7]). Let (E,B , m) be a measure space, and let φi and ψ j , 1 ≤ i, j ≤ n, be measurable

functions such that the φiψ j ’s are integrable. Then

det
�

∫

E

φi(x)ψ j(x)dm(x)
�

=
1

n!

∫

En

det
�

φi(x j)
�

det
�

ψi(x j)
�

n
∏

k=1

dm(xk). (3)

We also need an identity which expresses interlacing conditions with the help of a determinant

(see Warren [11]). For x , y ∈ Rn we write x � y if x and y are interlaced, i.e.

x1 ≥ y1 ≥ x2 ≥ · · · ≥ xn ≥ yn

and we write x ≻ y when

x1 > y1 > x2 > · · ·> xn > yn.

When x ∈ Rn+1 and y ∈ Rn we add the relation yn ≥ xn+1 (resp. yn > xn+1). Let x and y be two

vectors in Rn such that x1 > · · ·> xn and y1 > · · ·> yn. Then

1x≻y = det(1{x i>y j})n×n. (4)

For k ≥ 1, we denote by Ck the subset of R[
k+1

2
] defined by

Ck = {x ∈ R[
k+1

2
] : x1 > · · ·> x[ k+1

2
] > 0}.

Proposition 4.5. Let us consider the process (M(n), n≥ 0), defined as in theorem 2.1. For n ∈ N, let

Λ(n) be the first [ k+1

2
] largest eigenvalues of M(n), ordered such that

Λ1(n)≥ · · · ≥ Λ[ k+1

2
](n)≥ 0.

Then (Λ(n), n≥ 0), is a Markov process with a transition density Pk given by

Pk(λ,β) =
dk(β)

dk(λ)
det(φ(λi − β j) + (−1)k+1φ(λi + β j))1≤i, j≤[ k+1

2
], λ,β ∈ Ck.
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Proof. The Markov property follows from the fact that the matrices

Yl

�

0 i

−i 0

�

Y ∗
l

, l ∈ N∗,

are independent and have an invariant distribution for the action of the orthogonal group by

conjugacy. Proposition 4.8 of [3] ensures that the transition density with respect to the Lebesgue

measure of the positive eigenvalues of M(n), n≥ 1, is given by

• when k = 2p,

Pk(λ,β) =
dk(β)

dk(λ)
Ip(λ,β), λ,β ∈ Ck,

• when k = 2p− 1,

Pk(λ,β) =
dk(β)

dk(λ)

1

2
(e−|λp−βp | + e−(λp+βp))Ip−1(λ,β), λ,β ∈ Ck,

where

Ip(λ,β) =

¨

1 if p = 0
∫

R
p
+

1{λ,β≻z}e
−
∑p

i=1(λi+βi−2zi) dz otherwise.

When k is even, using identity (4), we write 1{λ,β≻z}e
−
∑p

i=1(λi+βi−2zi) as

det(1zi<λ j
e−(λ j−zi))p×p det(1zi<β j

e−(β j−zi))p×p,

and use the Cauchy-Binet identity to get the proposition.

When k is odd, we introduce the measure µ on R, defined by µ = δ0 +m, where δ0 is the Dirac

measure at 0 and m is the Lebesgue measure on R. We have the identity

φ(x − y) +φ(x + y) =

∫

R

1[0,x∧y]e
−(x+y−2z) dµ(z).

Thus using the Cauchy-Binet identity with the measure µ we get that the determinant of the

proposition is equal to

1

p!

∫

Rp

det
�

1[0,λ j]
(zi)e

−(λ j−zi)
�

det
�

1[0,β j]
(zi)e

−(β j−zi)
�

p
∏

m=1

dµ(zm).

Using identity (4), we obtain that it is equal to

∫

Rp

1λ,β≻ze−
∑p

i=1(λi+βi−2zi)

p
∏

m=1

dµ(zm).

We integrate over zp in the last integral and use the fact that the coordinates of β and λ are strictly

positive to get the proposition. �
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The next proposition gives the transition density of the Markov process (X (n), n ≥ 0) defined in

section 1. For m ≥ 0, we denote φ(m) the mth derivative of φ, and we define the function φ(−m),

by

φ(−m)(x) = (−1)m
∫ +∞

x

1

(m− 1)!
(t − x)m−1φ(t) d t, x ∈ R.

We easily obtain that

φ(m)(x) =

¨

1

2
(−1)me−x if x ≥ 0

1

2
ex otherwise.

φ(−m)(x) =

(

φ(m)(x) if x ≥ 0

−
∑[ m+1

2
]

i=1
xm−(2i−1) +φ(m)(x) otherwise.

For k ≥ 2, we denote by Dk the subset of Rk defined by

Dk = {x ∈ Rk : 0< x1 < x2 < · · ·< xk}.

Proposition 4.6. The Markov process X (n) = (X1(n), . . . , Xk(n)), n ≥ 0, has a transition density Qk

given by

Qk(y, y ′) = det(ai, j(yi , y ′
j
))1≤i, j≤k, y, y ′ ∈ D̄k,

where for x , x ′ ∈ R,

ai, j(x , x ′) = (−1)i−1φ( j−i)(x + x ′) + (−1)i+ jφ( j−i)(x − x ′).

Proof. Let us show the proposition by induction on k. For k = 1, the equality holds by lemma 4.2.

Suppose that it is true for k− 1. We write C1, . . . , Ck, and L1, . . . , Lk for the columns and the rows

of the matrix of which we compute the determinant. There are two cases :

• If y ′
k−1
≥ yk−1 then for i = 1, . . . , k− 1, yi ≤ y ′

k−1
≤ y ′

k
. A quick calculation shows that all

the components of the column Ck+ e y ′
k−1
−y ′

k Ck−1 are equal to zero except the last one, which

is equal to py ′
k−1
(y ′

k−1
∨ yk, y ′

k
), where pr is defined in lemma 4.3 for r ∈ R.

• If y ′
k−1
≤ yk−1 then for i = 1, . . . , k− 1, y ′

i
≤ yk−1 ≤ yk. We replace the last line Lk by the

line Lk − e yk−1−yk Lk−1 having all its components equal to zero except the last one, which is

equal to pyk−1
(yk, y ′

k
).

Then we conclude developing the determinant according to its last column in the first case or to

its last row in the second one, and using the induction property. �

We have now all the ingredients needed to prove theorems 2.1 and 2.2. For λ an element of the

closure C̄k of Ck, we denote GTk(λ) the subset of R[
k+1

2
][ k+2

2
] defined by

GTk(λ) = {(x (2), · · · , x (k+1)) : x (k+1) = λ, x (i) ∈ R[
i

2
]

+ , x (i) � x (i−1), 3≤ i ≤ k+ 1}.

We let

GTk = ∪λ∈C̄k
GTk(λ).
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GTk is the set of Gelfand-Tsetlin patterns for the orthogonal group. If (x (2), · · · , x (k+1)) is an

element of GTk, then (x
(2)

1 , · · · , x
(k+1)

1 ) belongs to the closure D̄k of Dk. Thus we define Lk as the

Markov kernel on C̄k × D̄k such that for λ ∈ C̄k, the probability measure Lk(λ, .) is the image of

the uniform probability measure on GTk(λ) by the projection p : GTk→Dk defined by

p((x (2), · · · , x (k+1))) = (x
(2)

1 , · · · , x
(k+1)

1 ),

where (x (2), · · · , x (k+1)) ∈ GTk. For λ ∈ Ck, the volume of GTk(λ) is given by dk(λ). Thus Lk(λ, .)

has a density with respect to the Lebesgue measure on GTk given by

1

dk(λ)
1x∈GTk(λ)

, x ∈ R[ k+1

2
][ k+2

2
].

Rogers and Pitman proved in [9] (see also lemma 4 of [1]) that it is sufficient to show that the

intertwining (5) holds, to get the equality in law of the processes (Λ1(n), n≥ 0) and (Xk(n), n≥ 0).

So theorem 2.1 follows from proposition 4.7.

Proposition 4.7.

LkQk = Pk Lk (5)

Proof. The proof is the same as the one of proposition 6 in [1]. We use the determinantal expres-

sions for Qk and Pk to show that both sides of equality (5) are equal to the same determinant. For

this we use that the coefficients ai, j ’s given in proposition 4.6 satisfy for x , x ′ ∈ R+,

ai, j(x , x ′) =

∫ +∞

x

ai−1, j(u, x ′) du,

ai, j(x , x ′) =−
∫ +∞

x ′
ai, j+1(u, x ′) du,

a2i,2 j(x , 0) = 0, a2i,2i−1(0, x) = 1, a2i, j(0, x) = 0, 2i ≤ j

The computation of the left hand side of (5) rests on the first identity. The computation of the

right hand side rests on the others. �

The measure Lk(0, .) is the Dirac measure at the null vector of GTk(0). Thus, the following propo-

sition is an immediate consequence of proposition 4.7.

Proposition 4.8.

Qn
k
(0, .) = Pn

k
Lk(0, .)

Keeping the same notations as in theorem 2.2, we have the following proposition, from which

theorem 2.2 follows.

Proposition 4.9. Pn
k

Lk(0, .) is the law of the random variable

(Λ
(2)

1 (n), . . . ,Λ
(k+1)

1 (n))).

Proof. The density of the positive eigenvalues Λ(n) of M(n) is given by Pn
k
(0, .). Then the propo-

sition follows immediately from theorem 3.4 of [3]. �



68 Electronic Communications in Probability

5 Concluding remarks

As recalled, the model with a wall that we have introduced is a variant of another one with no wall

and no left-jumps. For this last model, the proofs of the analogue results as those of theorems 2.1

and 2.2 rest on some combinatorial properties of Young tableaux. Indeed, Young tableaux are used

to describe the irreducible representations of the unitary group. The matrices from the Laguerre

Unitary Ensemble belong to the set of Hermitian matrices which is, up to a multiplication by the

complex i, the Lie algebra of the Unitary group. Their laws are invariant for the action of the

unitary group by conjugacy. It is a general result that the law of their eigenvalues can be deduced

from some combinatorial properties of the irreducible representations of the unitary group.

In our case, the distribution of the eigenvalues of (M(n), n≥ 0) can be deduced from combinatorial

properties of the irreducible representations of the orthogonal group (see [3] for details). Many

combinatorial approaches have been developed to describe these representations. Among them

we can mention the orthogonal tableaux and the analogue of the Robinson Schensted algorithm

for the orthogonal group (see Sundaram [10]), or more recently those based on the very general

theory of crystal graphs of Kashiwara [8]. None of them seems to lead to the interacting particles

model with a wall that we have introduced. It would be interesting to find what kind of tableau

involved in the description of irreducible representations of the orthogonal group would lead to

this model.
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