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Abstract
We prove that an optional process of non-exploding realized power variation along stopping times
possesses almost surely làglàd paths. This result is useful for the analysis of some imperfect market
models in mathematical finance. In the finance applications variation naturally appears along
stopping times and not pathwise. On the other hand, if the power variation were only taken along
deterministic points in time, the assertion would obviously be wrong.

1 Introduction

In financial market models with proportional transaction costs and effective friction trading strate-
gies have to be almost surely of finite variation in order to avoid infinite losses (see Campi and
Schachermayer [2]). In models with a “large” trader having a smooth impact on the price process
of an illiquid stock, as introduced by Bank and Baum [1] and Çetin, Jarrow, and Protter [3], a
trading strategy should be of non-exploding quadratic variation. Besides the interest in its own,
the result of this note is of use for the analysis of these models. It guarantees that trading strate-
gies possess limits from the left and from the right, i.e. left and right jumps of the process can be
defined and used for the analysis, even if one does not start with càglàd strategies (resp. càdlàg,
depending on the precise interpretation of a strategy) from the very beginning. Let the real-valued
process X model the number of shares of the illiquid stock the trader plans to hold, T0 = 0, and
T1 ≤ T2 ≤ . . . the stopping times at which he rebalances his portfolio. Roughly speaking in these
models appears some transaction costs term of the order

∑

k=1,...,n(XTk
− XTk−1

)2. Thus the re-
alized quadratic variation, naturally arising along stopping times and not pathwise, should be
non-exploding when passing to a time-continuous limit.
In contrast to the total variation, for the quadratic variation the restriction to stopping times is
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crucial. Namely, it is well-known that for any r ∈ R+ ∪ {+∞} and for almost all paths B·(ω) of a
Brownian motion on [0, t] with t > 0 there exist sequences (τn)n∈N of grids τn = (tn

0 , tn
1 , . . . , tn

kn
)

(depending on ω) with 0 = tn
0 ≤ tn

1 ≤ . . . ≤ tn
kn
= t and maxk |tn

k − tn
k−1| → 0 such that

limn→∞
∑kn

k=1(Btn
k
(ω) − Btn

k−1
(ω))2 = r (see the footnote on page 192 of Lévy [7] and Freed-

man [5], Proposition 70 and the arguments given on pages 48 and 49). This means that in a
pathwise sense the quadratic variation does not exist and is exploding, but of course if grid points
are restricted to stopping times the realized quadratic variation converges to t in probability.
On the other hand, if the power variation is only taken along deterministic points in time, a
non-exploding variation does obviously not imply that paths possess left and right limits, see
Example 3.1 for an easy counterexample. The reason for this is that for processes having neither
left- nor right-continuous paths arbitrary sequences of grids with vanishing mesh do not always
capture the entire variation.

2 Main part

Throughout the note we fix a terminal time T ∈ R+ and a complete probability space (Ω,F , P)
equipped with a filtration (Ft)t∈[0,T] satisfying the usual conditions. The optional σ-field is the
σ-field O on Ω× [0, T] that is generated by all adapted processes with càdlàg paths (considered
as mappings on Ω× [0, T]). A stochastic process that is O -measurable is called optional.

Definition 2.1 (Non-exploding realized power variation). Let p > 0. We say that a real-valued op-
tional process X has non-exploding realized power variation of order p > 0 if for any sequence (τn)n∈N
of grids τn = (T n

0 , T n
1 , . . . , T n

kn
)with 0= T n

0 ≤ T n
1 ≤ . . .≤ T n

kn
= T stopping times and maxk=1,...,kn

|T n
k−

T n
k−1| → 0 in probability we have that

P






lim sup

n→∞

∑

k=1,...,kn

|XT n
k
− XT n

k−1
|p <∞






= 1.

Definition 2.2. A function f : [0, T]→ R is called làglàd (“avec des limites à gauche et des limites à
droite”) if for any t ∈ (0, T] the limit lims<t,s→t f (s) exists as an element of R and for any t ∈ [0, T )
the limit lims>t,s→t f (s) exists as an element of R.

Theorem 2.3. Let X be a real-valued optional process. We have that
{ω ∈ Ω | X ·(ω) is làglàd} ∈ F . If X has non-exploding realized power variation of some order
p > 0 (in the sense of Definition 2.1), then P({ω ∈ Ω | X ·(ω) is làglàd}) = 1.

The proof of Theorem 2.3 uses a section theorem for optional sets. Example 3.2 shows that the
assertion of Theorem 2.3 would not hold under the slightly weaker assumption that X is only
progressively measurable instead of optional.

Lemma 2.4. A function x : [0, T]→ R is not làglàd if and only if there exists an M > 0 such that
for all l ∈ N, l ≥ 2, and δ > 0 there exist an η > 0 and points 0 < t1 < t2 < . . . < t l < T with
η≤ |tk − tk−1| ≤ δ and |x(tk)− x(tk−1)|p ≥ M for k = 2, . . . , l.

The proof of implication “⇐” shows that the equivalence also holds without introducing a maximal
distance δ between two neighboring points, but the lemma is needed in the current form.
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Proof of Lemma 2.4. “⇒”: Assume that x has no limit from the left at t ∈ (0, T] or this limit lies in
{−∞,∞}. In both cases there exists a sequence (tn)n∈N strictly increasing to t s.t. (x(tn))n∈N is no
Cauchy sequence. Thus there exists an M > 0 and a subsequence (tnk

)k∈N s.t. |x(tnk
)−x(tnk−1

)|p ≥
M for all k ∈ N. As |t − tnk

| → 0 we can find for any l ≥ 2 and δ > 0 a k0 s.t. |tnk
− tnk−1

| ≤ δ for
k = k0+ 1, . . . , k0+ l and the finitely many non-vanishing distances are bounded away from zero.
In the case of a missing (finite) limit from the right the argument is the same.
“⇐”: Assume that there is an M > 0 s.t. for all l ∈ N, l ≥ 2, there are 0 < t1 < t2 <
. . . < t l < T with |x(tk) − x(tk−1)|p ≥ M for k = 2, . . . , l. For given n ∈ N we choose l
large enough s.t. [(l − 1)/3]/n > T where [r] := max {m ∈ N∪ {0} | m≤ r}. Then, there is a
l0 ∈ {1, 2, . . . , l − 3} s.t. t l0 < t l0+1 < t l0+2 < t l0+3 ≤ t l0 + 1/n. Thus there is a sequence of
quadruples ((t1,n, t2,n, t3,n, t4,n))n∈N with

t1,n < t2,n < t3,n < t4,n, |t2,n − t1,n| ≤
1

n
, |t3,n − t2,n| ≤

1

n
, |t4,n − t3,n| ≤

1

n
and

|x(t2,n)− x(t1,n)|p ≥ M , |x(t3,n)− x(t2,n)|p ≥ M , |x(t4,n)− x(t3,n)|p ≥ M ∀n ∈ N.

By compactness of [0, T], the sequence possesses a subsequence such that all components con-
verge to some t∗ ∈ [0, T]. Either t2,n < t∗ for infinitely many n from the subsequence or t3,n > t∗

for infinitely many n from the subsequence. By t2,n−1/n≤ t1,n < t2,n and |x(t2,n)− x(t1,n)|p ≥ M ,
the former would contradict to the existence of the left limit of x at t∗. The latter would contradict
to the existence of the right limit of x at t∗.

Definition 2.5. Let x : [0, T] → R, M ≥ 0, η > 0, and δ > η. A collection of points s0, s1, . . . , si ,
i ∈ N, with s0 = 0 and si = T is called admissible if it satisfies the following: if B j 6= ; then s j ∈ B j
and if B j = ; then s j = (s j−1 + 3δ+η/2)∧ T, where

B j =
�

s ∈ [s j−1 +η/2, (u j +η/2)∧ T] | |x(s)− x(s j−1)|p ≥
M

2p

�

(2.1)

and u j = inf
�

s ≥ s j−1 +η/2 | |x(s)− x(s j−1)|p ≥
M

2p

�

∧
�

s j−1 + 3δ
�

∧ T (2.2)

for j = 1, . . . , i.

Lemma 2.6. Let x : [0, T]→ R, M ≥ 0, η > 0, and δ > η. There exists an i ∈ N and an admissible
collection s0, s1, . . . , si in the sense of Definition 2.5. Any admissible collection s0, s1, . . . , si , i ∈ N,
satisfies

|s j − s j−1| ≤ 4δ, j = 1, . . . , i, (2.3)

and

if s j < T then s j ≥ s j−1 +
η

2
, j = 1, . . . , i. (2.4)

Assume that there are points 0< t1 < t2 < . . .< t l < T for some l ∈ N, l ≥ 2, with

η≤ |t j − t j−1| ≤ δ and |x(t j)− x(t j−1)|p ≥ M for j = 2, . . . , l. (2.5)

Then, any admissible collection s0, s1, . . . , si also satisfies

i
∑

j=1

|x(s j)− x(s j−1)|p ≥
M

2p

�

l

4

�

, (2.6)

where [r] :=max {n ∈ N∪ {0} | n≤ r}.
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Proof of Lemma 2.6. s0, s1, . . . can be constructed recursively. We have that s j ≥ s j−1+η/2 as long
as s j < T . Thus T is attained after finitely many steps. By η ≤ δ, (2.3) and (2.4) are obviously
statisfied. Now assume the existence of 0< t1 < t2 < . . .< t l < T satisfying (2.5).
Step 1: Let us firstly prove (2.6) only for the case that l = 4. Let j0 be such that s j0 < t1 ≤ s j0+1.
Case 1: t1 < s j0 +η/2. Then,

s j0 +η/2≤ t2 < t3 ≤ (s j0 + 3δ)∧ T (2.7)

holds true (note that the first inequality holds due to s j0 +η/2≤ t1+η/2≤ t2−η+η/2≤ t2). In
addition, by |x(t3)−x(t2)|p ≥ M , we have that either |x(t2)−x(s j0)|

p ≥ M2−p or |x(t3)−x(s j0)|
p ≥

M2−p. This implies that u j0+1 ≤ t3 and by (2.7) B j0+1 6= ;. Thus |x(s j0+1)− x(s j0)|
p ≥ M2−p.

Case 2: t1 ≥ s j0 + η/2. If t2 ≤ s j0 + 3δ we can argue as in Case 1, but with t1, t2 satisfying (2.7)
instead of t2, t3. Otherwise either B j0+1 6= ; and we are done anyway or s j0+1 + η/2 ≤ t3 < t4 ≤
s j0+1 + 3δ and we can argue as in Case 1, but with t3, t4, s j0+1 instead of t2, t3, s j0 .
Step 2: Let us now prove (2.6) for arbitrary l ∈ N. If l ≥ 5 we have by Step 1 that the variation
up to some s j with s j ≤ t4 + η/2 is at most M2−p. It remains to show that the variation on the

interval [s j , T] is at most M2−p
�h

l
4

i

− 1
�

. As t5 > t4+η/2≥ s j the points t5, . . . , t l ∈ (s j , T ) are
available and the assertion follows by induction over [l/4].

Proof of Theorem 2.3. Step 1: By Lemma 2.4 we have

�

ω ∈ Ω | X ·(ω) is not làglàd
	

=
⋃

m∈N

⋂

l∈N\{1}

⋂

n∈N

⋃

k∈N

Am,l,n,k (2.8)

where

Am,l,n,k :=
¦

ω ∈ Ω | ∃0< t1 < t2 < . . .< t l < T with 1
k
≤ |t i − t i−1| ≤

1
n

and |X t i
(ω)− X t i−1

(ω)|p ≥ 1
m

for i = 2, . . . , l.
©

.

As X is optional it is (F⊗B)−B-measurable. Thus the mapping (ω, t1, t2) 7→ (X t1
(ω), X t2

(ω)) is
(F⊗B2)−B2-measurable. Furthermore the mapping (x1, x2) 7→ |x2−x1|p isB2−B-measurable
by continuity. Thus the composition (ω, t1, t2) 7→ |X t2

(ω)−X t1
(ω)|p is (F⊗B2)−B-measurable.

This implies that the mapping

(ω, t1, . . . , t l) 7→ (|X t2
(ω)− X t1

(ω)|p, . . . , |X t l
(ω)− X t l−1

(ω)|p)

is (F ⊗B l)−B l -measurable and we obtain that
�

(ω, t1, . . . , t l) |
1

k
≤ |t i − t i−1| ≤

1

n
, |X t i

(ω)− X t i−1
(ω)|p ≥

1

m
, i = 1, . . . , l

�

∈ F ⊗B l .

By completeness of F , the projection of a set in F ⊗B l onto Ω is in F (see e.g. Theorem 1.32
combined with Theorem 1.36 of He, Wang, and Yan [6]). This means that Am,l,n,k ∈ F and thus
by (2.8) {ω ∈ Ω | X ·(ω) is làglàd} ∈ F .
Step 2: Assume that

P({ω ∈ Ω | X ·(ω) is not làglàd})> 0 (2.9)

and let p > 0. We have to show that X is not of non-exploding realized power variation of order p
in the sense of Definition 2.1.
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The idea of the proof is as follows. We want to construct a sequence of grids (eτi)i∈N with |eT i
j −

eT i
j−1| ≤

1
i

such that on a set of positive probability the power variation of X along eτi exceeds i for
all i ∈ N. For this we use a section theorem to construct recursively stopping times that constitute
an admissible collection in the sense of Definition 2.5 for approximately all paths. By Lemma 2.4
the paths which are not làglàd possess „enough” power variation. It follows from Lemma 2.6
that the variation also appears along the timepoints of an admissible collection which we have
constructed with stopping times.
Let us now start with the formal proof. By (2.9), there exists an m ∈ N such that
P
�
⋂

l∈N\{1}

⋂

n∈N

⋃

k∈N Am,l,n,k

�

=: r > 0. Given i ∈ N, choose n = n(i) = 4i and l = l(i) ≥ 2
large enough such that

1

2pm

�

l(i)
4

�

≥ i.

Choose k = k(i) ∈ N such that k(i)> 4i and

P







⋂

l∈N\{1}

⋂

n∈N

⋃

k∈N

Am,l,n,k \ Am,l(i),n(i),k(i)






≤ r2−(i+2)

(by choosing k(i) large enough the latter can be achieved as Am,l(i),n(i),k ↑ ∪κ∈NAm,l(i),n(i),κ for k ↑ ∞
and ∪κ∈NAm,l(i),n(i),κ ⊃ ∩l∈N\{1} ∩n∈N ∪κ∈NAm,l,n,κ).
For every i ∈ N we want to construct stopping times T i

0 ≤ T i
1 ≤ . . .. Assuming that the stopping

time T i
j−1 is already specified we define

S i
j := inf

�

t ≥ T i
j−1 +

1

2k
| |X t − XT i

j−1
|p ≥

1

2pm

�

∧
�

T i
j−1 +

3

4i

�

∧ T

and

Γi
j :=

�

(ω, t) | T i
j−1(ω) +

1

2k
≤ t ≤

�

S i
j(ω) +

1

2k

�

∧ T, |X t(ω)− XT i
j−1(ω)

(ω)|p ≥
1

2pm

�

.

S i
j and Γi

j are the “random versions” of u j and B j in (2.2) resp. (2.1). Note that XT i
j−1

is FT i
j−1

-

measurable as X is optional (see e.g. Theorem 3.12 of He, Wang, and Yan [6]). Thus S i
j is the

debut of an optional set and therefore a wide-sense stopping time (see e.g. Theorem 4.30 of [6]).
Consequently, S i

j + 1/(2k) is a stopping time and Γi
j an optional set. For technical reasons define

eΓi
j :=

�

Γi
j

⋂

(Ω× [0, T ))
�
⋃
�

((Ω \πΩ(Γi
j))× [0, T ))

⋂

[[(T i
j−1 + 3/(4i) + 1/(2k))∧ T]]

�

,

where πΩ(Γi
j) denotes the projection of Γi

j ⊂ Ω × [0, T] onto Ω. eΓi
j is also optional. Now we

recursively define [0, T]-valued stopping times T i
0, T i

1, . . .. Let T i
0 := 0. By a section theorem for

optional sets (see e.g. Theorem 4.7 of [6]), there exists a [0, T]-valued stopping time T i
j with

P(T i
j < T )≥ P(πΩ(eΓi

j))− r2−(i+ j+2) such that

(ω, T i
j (ω)) ∈ eΓ

i
j for all ω with T i

j (ω)< T . (2.10)

Let us comment the construction of the set eΓi
j and the stopping time T i

j . Fixing an ω the ω-

section of eΓi
j mimics the admissibility condition from Definition 2.5. Namely, if ω ∈ πΩ(Γi

j), i.e.
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there is a s ∈ [0, T] with (ω, s) ∈ Γi
j , the next point t of the collection has to satisfy (ω, t) ∈ Γi

j . If
ω 6∈ πΩ(Γi

j), then we require that t = (T i
j−1(ω)+3/(4i)+1/(2k))∧T . In addition, Ω×{T} is taken

out of the set eΓi
j . This is one way to distinguish the case that T i

j (ω) = T occurs as the selection
of the stopping time from the optional set fails from the case that T i

j (ω) = T and T is the only
admissible successor of T i

j−1(ω) in the sense of Definition 2.5. (2.10) guarantees that T i
j (ω) = T

if T is the only admissible successor of T i
j−1(ω) or if we have that already T i

j−1(ω) = T . Putting
together, on all paths without any failing selection we obtain admissible collections of timepoints
in the sense of Definition 2.5. In the following, this idea is written down mathematically.
Denote Bi, j := {T i

j < T}
⋃

(Ω \πΩ(eΓi
j)). It follows that

P(Bi, j)≥ 1− r2−(i+ j+2).

Letω ∈
⋂

j∈N Bi, j , i.e. for any j we have either T i
j (ω)< T orω 6∈ πΩ(eΓi

j). In the case that T i
j (ω)<

T (2.10) yields that (ω, T i
j (ω)) ∈ Γ

i
j if ω ∈ πΩ(Γi

j) and T i
j (ω) = T i

j−1(ω) + 3/(4i) + 1/(2k) if

ω 6∈ πΩ(Γi
j). In the case that ω 6∈ πΩ(eΓi

j) we have by (2.10) that T i
j (ω) = T and either (ω, T ) ∈ Γi

j

or ((ω, T ) 6∈ Γi
j and (T i

j−1(ω) + 3/(4i) + 1/(2k)) ∧ T = T). This shows that T i
0(ω), T i

1(ω), . . .
is an admissible collection of points in the sense of Definition 2.5 for the parameters M = 1/m,
η= 1/k(i), and δ = 1/(4i). Namely, theω-section of Γi

j corresponds to B j and (T i
j−1(ω)+3/(4i)+

1/(2k))∧T corresponds to (s j−1+3δ+η/2)∧T in the lemma. (2.4) tells us that at the latest after
[2kT] + 1 steps (which does not depend on ω) T is attained. If ω 6∈

⋂

j∈N Bi, j , T is also attained
at the latest after [2kT]+1 steps by (2.10). To guarantee that neighboring points have a distance
not greater than 1/i everywhere we recursively define new stopping times eT i

0, eT i
1, . . . , eT i

[2kT]+1. Let
eT i

0 := 0. Given eT i
j−1 define eT i

j := T i
j ∧(eT

i
j−1+1/i). However, by (2.3), eT i

j = T i
j on the set

⋂

j′∈N Bi, j′ .

Thus we have that |eT i
j − eT

i
j−1| ≤ 1/i and for any ω ∈

⋂

j∈N Bi, j eT
i
0(ω), eT

i
1(ω), . . . , eT i

[2T k]+1(ω) is an
admissible collection of points in the sense of Definition 2.5 as well.

Let ω ∈ Am,l(i),n(i),k(i)
⋂

�

⋂

j∈N Bi, j

�

. For the mapping t 7→ X t(ω) (2.5) is satisfied, with the
parameters M = 1/m, l = l(i), η= 1/k(i), and δ = 1/(4i). It follows from Lemma 2.6 that

[2kT]+1
∑

j=1

|X
eT i

j (ω)
(ω)− X

eT i
j−1(ω)

(ω)|p ≥
1

2pm

�

l

4

�

≥ i, i ∈ N. (2.11)

We arrive at

P



limsup
i∈N

[2k(i)T]+1
∑

j=1

|X
eT i

j
− X

eT i
j−1
|p =∞





≥ P







⋂

i∈N






Am,l(i),n(i),k(i)

⋂







⋂

j∈N

Bi, j



















≥ r − r
∞
∑

i=1

2−(i+2) − r
∞
∑

i=1

∞
∑

j=1

2−(i+ j+2) =
r

2
> 0. (2.12)

Together with |eT i
j − eT

i
j−1| ≤ 1/i, (2.12) shows that the variation is not non-exploding in the sense

of Definition 2.1.
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3 Counterexamples

The following easy example shows that the assertion of Theorem 2.3 would be wrong, if the
variation were only considered along deterministic points in time.

Example 3.1. Let (ξn)n∈N be an i.i.d. sequence of random variables which are uniformly distributed
on [0, T]. Define

X t(ω) :=
�

1 : if t = ξn(ω) for some n ∈ N.
0 : otherwise.

For simplicity defineFt for all t ∈ [0, T] as the completion of the sigma-algebra generated by (ξn)n∈N.
Then, X is optional as it can be written as X = supn∈N infm∈N X n,m with the càdlàg adapted pro-
cesses X n,m defined by

X n,m :=
2m
∑

k=1

1n
ω∈Ω | ξn(ω)∈

�

k−1
2m T, k

2m T
�o

×
�

k−1
2m T, k

2m T
�.

Adaptedness of X n,m holds as already F0 contains all information about ξn. The variation of X along
deterministic times vanishes with probability one as for any fixed t X t vanishes with probability one.
On the other hand, for almost all ω (ξn(ω))n∈N is dense in [0, T]. Thus, with probability one the
paths of X are not làglàd.

The following example shows that the assertion of Theorem 2.3 would not hold under the slightly
weaker assumption that X is only progressively measurable instead of optional. A process X is called
progressively measurable if for any t ∈ [0, T] the restriction of X on Ω× [0, t] is Ft ⊗B([0, t])-
measurable whereB([0, t]) denotes the Borel σ-field on [0, t].

Example 3.2. Let (Bt)t∈[0,T] be a standard one-dimensional Brownian motion and (F B
t )t∈[0,T] be the

usual augmentation of the natural filtration of B, i.e. (F B
t )t∈[0,T] is right-continuous and complete.

For each ω the set {t | Bt(ω) 6= 0} is the disjoint union of open intervals, the excursion intervals of
the path B·(ω) from 0. Now define

A := {(ω, t) | t is the left-hand endpoint of an excursion interval of the path B·(ω)},

i.e. for each (ω, t) ∈ A we have that Bt(ω) = 0 and there exists an ε > 0 s.t. Bs(ω) 6= 0 for all
s ∈ (t, t + ε).
The set A is an example due to Dellacherie and Meyer for a progressive set which is not optional (see
[4], page 128). The progressively measurable process X := 1A is not làglàd as for almost all ω there
are both infinitely many timepoints s with (ω, s) ∈ A and infinitely many timepoints s with (ω, s) 6∈ A
in any right neighbourhood of t = 0. On the other hand, the power variation of X does not explode
along stopping times in the sense of Definition 2.1 as we have P(Xτ = 0) = 1 for any stopping time τ.
The latter follows by the strong Markov property of B w.r.t. (F B

t )t∈[0,T]. The process (Bt+τ − Bτ)t≥0
is a standard Brownian motion and stochastically independent of τ which implies that τ cannot be
the starting point of an excursion with positive probability.

Acknowledgments

We would like to thank an anonymous associate editor and two anonymous referees for their
valuable comments from which the manuscript greatly benefited.



8 Electronic Communications in Probability

References

[1] P. Bank, D. Baum. Hedging and Portfolio Optimization in Financial Markets with a Large
Trader. Mathematical Finance 14 (2004), 1-18. MR2030833

[2] L. Campi, W. Schachermayer. A super-replication theorem in Kabanov’s model of transaction
costs. Finance and Stochastics 10 (2006), 579-596. MR2276320

[3] U. Çetin, R. Jarrow, P. Protter. Liquidity Risk and Arbitrage Pricing Theory. Finance and Stochas-
tics 8 (2004), 311–341. MR2213255

[4] C. Dellacherie. Capacités et processus stochastiques. Springer-Verlag, Berlin, 1972.
MR0448504

[5] D. Freedman. Brownian motion and diffusion. Holden-Day, San Francisco, 1971. MR0297016

[6] S. He, J. Wang, J. Yan. Semimartingale theory and stochastic calculus. CRC Press, Boca Raton,
1992. MR1219534

[7] P. Lévy. Processus Stochastiques et Mouvement Brownien. Gauthier Villars, Paris, 1965.
MR0190953

http://www.ams.org/mathscinet-getitem?mr=2030833
http://www.ams.org/mathscinet-getitem?mr=2276320
http://www.ams.org/mathscinet-getitem?mr=2213255
http://www.ams.org/mathscinet-getitem?mr=0448504
http://www.ams.org/mathscinet-getitem?mr=0297016
http://www.ams.org/mathscinet-getitem?mr=1219534
http://www.ams.org/mathscinet-getitem?mr=0190953

