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Abstract
As a general rule, differential equations driven by a multi-dimensional irregular path Γ are solved
by constructing a rough path over Γ. The domain of definition – and also estimates – of the
solutions depend on upper bounds for the rough path; these general, deterministic estimates are
too crude to apply e.g. to the solutions of stochastic differential equations with linear coefficients
driven by a Gaussian process with Hölder regularity α < 1/2.
We prove here (by showing convergence of Chen’s series) that linear stochastic differential equa-
tions driven by analytic fractional Brownian motion [6, 7] with arbitrary Hurst index α ∈ (0, 1)
may be solved on the closed upper half-plane, and that the solutions have finite variance.

1 Introduction

Assume Γt = (Γt(1), . . . ,Γt(d)) is a smooth d-dimensional path, and V1, . . . , Vd : Rr → Rr be
smooth vector fields. Then (by the classical Cauchy-Lipschitz theorem for instance) the differential
equation driven by Γ

d y(t) =
d
∑

i=1

Vi(y(t))dΓt(i) (1.1)

admits a unique solution with initial condition y(0) = y0. The usual way to prove this is by
showing (by a functional fixed-point theorem) that iterated integrals

yn(t)→ yn+1(t) := y0 +

∫ t

0

∑

i

Vi(yn(s))dΓs(i) (1.2)

converge when n→∞.
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Expanding this expression to all orders yields formally for an arbitrary analytic function f

f (yt) = f (ys) +
∞
∑

n=1

∑

1≤i1,...,in≤d

�

Vi1 . . . Vin f
�

(ys)Γ
n
ts(i1, . . . , in), (1.3)

where

Γn
ts(i1, . . . , in) :=

∫ t

s

dΓt1
(i1)

∫ t1

s

dΓt2
(i2) . . .

∫ tn−1

s

dΓtn
(in), (1.4)

provided, of course, the series converges. By specializing to the identity function f = Id : Rr → Rr ,
x → x , one gets a series expansion for the solution (yt).
Let

EN ,t,s
V (ys) = ys +

N
∑

n=1

∑

1≤i1,...,in≤d

�

Vi1 . . . Vin Id
�

(ys)Γ
n
ts(i1, . . . , in) (1.5)

be the N -th order truncation of (1.3). It may be interpreted as one iteration of the numerical Euler
scheme of order N , which is defined by

y Euler;D
tk

:= EN ,tk ,tk−1
V ◦ . . . ◦ EN ,t1,t0

V (y0) (1.6)

for an arbitrary partition D = {0 = t0 < . . . < tn = T} of the interval [0, T]. When Γ is only
α-Hölder with 1

N+1
< α≤ 1

N
, the iterated integrals Γn(i1, . . . , in), n= 2, . . . , N do not make sense a

priori and must be substituted with a geometric rough path over Γ. A geometric rough path over Γ
is a family

�

(Γ1
ts(i1))1≤i1≤d , (Γ2

ts(i1, i2))1≤i1,i2≤d , . . . , (ΓN
ts(i1, . . . , iN )1≤i1,...,iN≤d)

�

(1.7)

of functions of two variables such that: Γ1
ts = Γ

1
t − Γ

1
s and satisfying a natural Hölder regularity

condition, namely, sups,t∈R

�

|Γk
ts(i1,...,ik)|
|t−s|kα

�

<∞, k = 1, . . . , N , along with two algebraic compatibility

properties (Chen/multiplicativity and shuffle/geometricity properties) for which we refer e.g. to
[2]. To such data one may associate a theory of integration along Γ, so that (1.1), rewritten in its
integral form, makes sense, see e.g. [2] or [3] for local solutions of differential equations in this
setting.

In this article, we prove convergence of the series (1.3) when the vector fields Vi are linear and
Γ is analytic fBm (afBm for short). This process – first defined in [7] –, depending on an index
α ∈ (0,1), is a complex-valued process, a.s. κ-Hölder for every κ < α, which has an analytic
continuation to the upper half-plane Π+ := {z = x+iy | x ∈ R, y > 0}. Its real part (2Re Γt , t ∈ R)
has the same law as fBm with Hurst index α. Trajectories of Γ on the closed upper half-plane
Π̄+ = Π+∪R have the same regularity as those of fBm, namely, they are κ-Hölder for every κ < α.
As shown in [6], the regularized rough path – constructed by moving inside the upper half-plane
through an imaginary translation t → t + iε – converges in the limit ε → 0 to a geometric rough
path over Γ for any α ∈ (0, 1), which makes it possible to produce strong, local pathwise solutions
of stochastic differential equations driven by Γ with analytic coefficients.
We do not enquire about the convergence of the series (1.3) in the general case (as mentioned
before, it diverges e.g. when V is quadratic), but only in the linear case. One obtains, see section
3:

Main Theorem.
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Let V1, . . . , Vd be linear vector fields on Cr . Then the series (1.3), associated to afBm Γ with Hurst
index α ∈ (0, 1), converges in L2(Ω) on the closed upper half-plane Π̄+ = Π+∪R. Furthermore, there
exists a constant C such that the solution (yt)t∈Π̄+ , defined as the limit of the series, satisfies

E|yt − ys|2 ≤ C |t − s|2α, s, t ∈ Π̄+. (1.8)

The Main Theorem depends essentially on an explicit estimate of the variance of iterated integrals
of Γ proved in Lemma 2.2 below, which states the following:
Lemma 2.2.
There exists a constant C ′ such that, for every s, t ∈ Π̄+ = Π+ ∪R,

VarΓn
ts(i1, . . . , in)≤

(C ′|t − s|)2nα

n!
. (1.9)

Notation. Constants (possibly depending on α) are generally denoted by C , C ′, C1, cα and so on.

2 Definition of afBm and first estimates

We briefly recall to begin with the definition of the analytic fractional Brownian motion Γ, which
is a complex-valued process defined on the closed upper half-plane Π̄+ [6]. Its introduction was
initially motivated by the possibility to construct quite easily iterated integrals of Γ by a contour
deformation. Alternatively, its Fourier transform is supported on R+, which makes the regulariza-
tion procedure in [8, 9] void.

Proposition 2.1. There exists a unique analytic Gaussian process (Γ′z , z ∈ Π+) with the following
properties (see [6] or [7] for its definition):

(1) Γ′ is a well-defined analytic process on Π+, with Hermitian covariance kernel

EΓ′zΓ
′
w = 0, EΓ′zΓ̄

′
w =

α(1− 2α)
2cosπα

(−i(z− w̄))2α−2. (2.1)

(2) Let γ : (0,1) → Π+ be any continuous path with endpoints γ(0) = 0 and γ(1) = z, and set
Γz =

∫

γ
Γ′u du. Then Γ is an analytic process on Π+. Furthermore, as z runs along any path in Π+

going to t ∈ R, the random variables Γz converge almost surely to a random variable called again Γt .

(3) The family {Γt ; t ∈ R} defines a Gaussian centered complex-valued process, whose covariance
function is given by:

E[ΓsΓt] = 0, E[ΓsΓ̄t] =
e−iπα sgn(s)|s|2α + eiπα sgn(t)|t|2α − eiπα sgn(t−s)|s− t|2α

4cos(πα)
.

The paths of this process are almost surely κ-Hölder for any κ < α.

(4) Both real and imaginary parts of {Γt ; t ∈ R} are (non independent) fractional Brownian motions
indexed by R, with covariance given by

E[Re ΓsIm Γt] =−
tanπα

8

�

−sgn(s)|s|2α + sgn(t)|t|2α − sgn(t − s)|t − s|2α
�

. (2.2)

Definition 2.2. Let Yt := Re Γi t , t ∈ R+. More generally, Yt = (Yt(1), . . . , Yt(d)) is a vector-valued
process with d independent, identically distributed components.



414 Electronic Communications in Probability

The above results imply that Yt is real-analytic on R∗+.

Lemma 2.3. The infinitesimal covariance function of Yt is:

EY ′s Y ′t =
α(1− 2α)
4cosπα

(s+ t)2α−2. (2.3)

Proof. Let X t := Im Γi t . Since EΓsΓt = 0, (Ys, s ≥ 0) and (Xs, s ≥ 0) have same law, with
covariance kernel EYsYt = EXsX t =

1
2
Re ΓisΓ̄i t . Hence

E[Y ′s Y ′t ] =
1

2
Re EΓ′isΓ̄

′
i t =

α(1− 2α)
4 cosπα

(s+ t)2α−2. (2.4)

�
Note that EY ′s Y ′t > 0. From this simple remark follows (see proof of a similar statement in [5]
concerning usual fractional Brownian motion with Hurst index α > 1/2):

Lemma 2.4. Let Yn
ts(i1, . . . , in), n ≥ 2 be the iterated integrals of Y . Then there exists a constant

C > 0 such that

VarYn
ts(i1, . . . , in)≤ C

(C |t − s|)2nα

n!
. (2.5)

Proof. LetΠ be the set of all pairingsπ of the set {1, . . . , 2n} such that
�

(k1, k2) ∈ π
�

⇒
�

ik′1 = ik′2

�

,

where k′1 = k1 if k1 ≤ n, k1 − n otherwise, and similarly for k′2. By Wick’s formula,

VarYn
ts(i1, . . . , in)

=
∑

π∈Π

�
∫ t

s

d x1 . . .

∫ xn−1

s

d xn

��
∫ t

s

d xn+1 . . .

∫ x2n−1

s

d x2n

�

∏

(k1,k2)∈π

E[Y ′xk1
Y ′xk2
]. (2.6)

Since the process Y ′ is positively correlated, and Π is largest when all indices i1, . . . , in are equal,
one gets VarYn

ts(i1, . . . , in)≤ VarYn
ts(1, . . . , 1). On the other hand, Yn

ts(1, . . . , 1) = 1
n!
(Yt−Ys)n, hence

VarYn
ts(1, . . . , 1) =

[Var(Yt − Ys)]n

(n!)2
.
(2n)!
2n . n!

≤
[2Var(Yt − Ys)]n

n!
. (2.7)

Now (assuming for instance 0< s < t)

Var(Yt − Ys) = cα

∫ t

s

∫ t

s

(u+ v)2α−2dudv ≤ cαs2α−2(t − s)2 ≤ cα(t − s)2α (2.8)

if t
2
≤ s ≤ t, and

Var(Yt − Ys) =
cα

2α(2α− 1)

�

(2t)2α + (2s)2α − 2(t + s)2α
�

≤ C t2α ≤ C ′(t − s)2α (2.9)

if s < t/2. Hence the result. �
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3 Estimates for iterated integrals of Γ

The main tool for the study of Γ is the use of contour deformation. Iterated integrals of Γ are
particular cases of analytic iterated integrals, see [7] or [6]. In particular, the following holds:

Lemma 3.1. Let γ : (0,1)→ Π+ be the piecewise linear contour with affine parametrization defined
by :

(i) γ([0, 1/3]) = [s, s+ i|Re (t − s)|];

(ii) γ([1/3, 2/3]) = [s+ i|Re (t − s)|, t + i|Re (t − s)|];

(iii) γ([2/3, 1]) = [t + i|Re (t − s)|, t].

If z = γ(x) ∈ γ([0, 1]), we let γz be the same path stopped at z, i.e. γz = γ([0, x]), with the same
parametrization. Then (letting cα =

α(1−2α)
2cosπα

)

VarΓn
ts(i1, . . . , in) =

cn
α

∑

σ∈ΣI

∫

γ

dz1

∫

γ̄

dw̄1(−i(z1 − w̄σ(1)))
2α−2 .

∫

γz1

dz2

∫

γ̄w̄1

dw̄2(−i(z2 − w̄σ(2)))
2α−2 . . .

∫

γzn−1

dzn

∫

γ̄w̄n−1

dw̄n(−i(zn − w̄σ(n)))
2α−2 (3.1)

where ΣI is the subset of permutations of {1, . . . , n} such that (i j = ik)⇒ (σ( j) = σ(k)).

Proof. Note first that, similarly to eq. (2.6),

VarΓn
ts(i1, . . . , in) =

∑

σ∈ΣI

�
∫ t

1

dz1 . . .

∫ zn−1

s

dzn

�

 

∫ t̄

s̄

dw̄1 . . .

∫ w̄n−1

s̄

dw̄n

!

n
∏

j=1

E
h

Γ′z j
Γ̄′w̄σ( j)

i

(3.2)

(the difference with respect to eq. (2.6) comes from the fact that contractions only operate be-
tween Γ’s and Γ̄’s, since E[Γz j

Γzk
] = E[Γ̄w̄ j

Γ̄w̄k
] = 0 by Proposition 2.1). Now the result comes

from a deformation of contour, see [7]. �

Lemma 3.2. There exists a constant C ′ such that, for every s, t ∈ Π̄+ = Π+ ∪R,

VarΓn
ts(i1, . . . , in)≤

(C ′|t − s|)2nα

n!
. (3.3)

Proof. We assume (without loss of generality) that Im s ≤ Im t. If |Im (t − s)| ≥ cRe |t − s| for
some positive constant c (or equivalently |Re (t − s)| ≤ c′|t − s| for some 0 ≤ c′ < 1) then it is
preferable to integrate along the straight line [s, t] = {z ∈ C | z = (1 − u)s + ut, 0 ≤ u ≤ 1}
instead of γ, and use the parametrization y = Im z. If z1, z2 ∈ [s, t], y1 = Im z1, y2 = Im z2, then
|(−i(z1− z̄2))2α−2| ≤ C(y1+ y2)2α−2, hence VarΓn

ts(i1, . . . , in)≤ C ′nVarYn
y2,y1
(i1, . . . , in), which yields

the result by Lemma 2.4. So we shall assume that |Re (t − s)|> c|t − s| for some constant c > 0.
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Let us use as new variable the parametrization coordinate x along γ. Then formula (3.1) reads

VarΓn
ts(i1, . . . , in) = cn

α

∑

σ∈ΣI

∫ 1

0

d x1

∫ 1

0

d y1K ′(x1, yσ(1)) .

∫ x1

0

d x2

∫ y1

0

d y2K ′(x2, yσ(2)) . . .

∫ xn−1

0

d xn

∫ xn

0

d ynK ′(xn, yσ(n)), (3.4)

where K ′(x , y) = (3|Re (t − s)|)2(3(x + y)|Re (t − s)|+ 2Im s)2α−2 if 0 < x , y < 1/3, (3|Re (t −
s)|)2(3((1− x)+ (1− y))|Re (t − s)|+ 2Im t)2α−2 if 2/3< x , y < 1, and is bounded by a constant
times |t−s|2α otherwise thanks to the condition |Re (t−s)|> c|t−s|. Note that (x+ y)2α−2 > 22α−2

if 0< x , y < 1. Hence (if 0< x , y < 1) |K ′(x , y)| ≤ (C1|t−s|)2α
�

(x + y)2α−2 + ((1− x) + (1− y))2α−2
�

,

which is (up to a coefficient) the infinitesimal covariance of |t−s|α(Yx+Ỹ1−x , 0< x < 1) if Ỹ
(law)
= Y

is independent of Y . A slight modification of the argument of Lemma 2.4 yields

VarΓn
ts(i1, . . . , in) ≤ (C1|t − s|)2nα [Var(Y1 − Y0) + Var(Ỹ1 − Ỹ0)]n

(n!)2
.
(2n)!
2n . n!

≤ C2nα
1 .

(2C |t − s|)2nα

n!
. (3.5)

�

4 Proof of main theorem

We now prove the theorem stated in the introduction, which is really a simple corollary of Lemma
3.2.
Let C be the maximum of the matrix norms |||Vi ||| = sup||x ||∞=1 ||Vi x ||∞ for the supremum norm
||x ||∞ = sup(|x1|, . . . , |x r |). Rewrite eq. (1.5) as

EN ,t,s
V (ys) = ys +

N
∑

n=1

∑

1≤i1,...,in≤d

ai1,...,inΓ
n
ts(i1, . . . , in). (4.1)

Then ||ai1,...,in ||∞ ≤ Cn and E|Γn
ts(i1, . . . , in)|2 ≤

(C |t−s|)2nα

n!
. Hence (by the Cauchy-Schwarz inequal-

ity)

E
�

EN ,t,s
V (ys)− ys

�2
≤

N
∑

m,n=1

(C ′′|t − s|)(m+n)α

p
m!n!

=

 

N
∑

m=1

(C ′′|t − s|)mα
p

m!

!2

≤ C ′′′.|t − s|2α (4.2)

independently of N . The series obviously converges and yields eq. (1.8) for p = 1. �
It should be easy to prove along the same lines that the series defining E|yt − ys|2p converges for
every p ≥ 1, and that there exists a constant Cp such that E|yt − ys|2p ≤ Cp|t − s|2αp for every
s, t ∈ Π̄+. The most obvious consequence – using Kolmogorov’s lemma – would be that yt has
Hölder regularity of any order less than α. But this follows from standard rough path theory, so
we skip the proof.
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