MOMENT ESTIMATES FOR SOLUTIONS OF LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS DRIVEN BY ANALYTIC FRACTIONAL BROWNIAN MOTION

JÉRÉMIE UNTERBERGER

Université Henri Poincaré - Laboratoire de mathématiques - B.P. 239-54506 Vandoeuvre lès Nancy Cedex - France
email: jeremie.unterberger@iecn.u-nancy.fr
Submitted March 2,10, accepted in final form September 14, 2010
AMS 2000 Subject classification: 60G15, 60H05, 60H10
Keywords: stochastic differential equations, fractional Brownian motion, analytic fractional Brownian motion, rough paths, Hölder continuity, Chen series

Abstract

As a general rule, differential equations driven by a multi-dimensional irregular path Γ are solved by constructing a rough path over Γ. The domain of definition - and also estimates - of the solutions depend on upper bounds for the rough path; these general, deterministic estimates are too crude to apply e.g. to the solutions of stochastic differential equations with linear coefficients driven by a Gaussian process with Hölder regularity $\alpha<1 / 2$.
We prove here (by showing convergence of Chen's series) that linear stochastic differential equations driven by analytic fractional Brownian motion [6, 7] with arbitrary Hurst index $\alpha \in(0,1)$ may be solved on the closed upper half-plane, and that the solutions have finite variance.

1 Introduction

Assume $\Gamma_{t}=\left(\Gamma_{t}(1), \ldots, \Gamma_{t}(d)\right)$ is a smooth d-dimensional path, and $V_{1}, \ldots, V_{d}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ be smooth vector fields. Then (by the classical Cauchy-Lipschitz theorem for instance) the differential equation driven by Γ

$$
\begin{equation*}
d y(t)=\sum_{i=1}^{d} V_{i}(y(t)) d \Gamma_{t}(i) \tag{1.1}
\end{equation*}
$$

admits a unique solution with initial condition $y(0)=y_{0}$. The usual way to prove this is by showing (by a functional fixed-point theorem) that iterated integrals

$$
\begin{equation*}
y_{n}(t) \rightarrow y_{n+1}(t):=y_{0}+\int_{0}^{t} \sum_{i} V_{i}\left(y_{n}(s)\right) d \Gamma_{s}(i) \tag{1.2}
\end{equation*}
$$

converge when $n \rightarrow \infty$.

Expanding this expression to all orders yields formally for an arbitrary analytic function f

$$
\begin{equation*}
f\left(y_{t}\right)=f\left(y_{s}\right)+\sum_{n=1}^{\infty} \sum_{1 \leq i_{1}, \ldots, i_{n} \leq d}\left[V_{i_{1}} \ldots V_{i_{n}} f\right]\left(y_{s}\right) \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right), \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right):=\int_{s}^{t} d \Gamma_{t_{1}}\left(i_{1}\right) \int_{s}^{t_{1}} d \Gamma_{t_{2}}\left(i_{2}\right) \ldots \int_{s}^{t_{n-1}} d \Gamma_{t_{n}}\left(i_{n}\right) \tag{1.4}
\end{equation*}
$$

provided, of course, the series converges. By specializing to the identity function $f=\operatorname{Id}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$, $x \rightarrow x$, one gets a series expansion for the solution $\left(y_{t}\right)$.
Let

$$
\begin{equation*}
\mathscr{E}_{V}^{N, t, s}\left(y_{s}\right)=y_{s}+\sum_{n=1}^{N} \sum_{1 \leq i_{1}, \ldots, i_{n} \leq d}\left[V_{i_{1}} \ldots V_{i_{n}} \operatorname{Id}\right]\left(y_{s}\right) \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \tag{1.5}
\end{equation*}
$$

be the N-th order truncation of (1.3). It may be interpreted as one iteration of the numerical Euler scheme of order N, which is defined by

$$
\begin{equation*}
y_{t_{k}}^{\text {Euler } ; D}:=\mathscr{E}_{V}^{N, t_{k}, t_{k-1}} \circ \ldots \circ \mathscr{E}_{V}^{N, t_{1}, t_{0}}\left(y_{0}\right) \tag{1.6}
\end{equation*}
$$

for an arbitrary partition $D=\left\{0=t_{0}<\ldots<t_{n}=T\right\}$ of the interval [0,T]. When Γ is only α-Hölder with $\frac{1}{N+1}<\alpha \leq \frac{1}{N}$, the iterated integrals $\Gamma^{n}\left(i_{1}, \ldots, i_{n}\right), n=2, \ldots, N$ do not make sense a priori and must be substituted with a geometric rough path over Γ. A geometric rough path over Γ is a family

$$
\begin{equation*}
\left(\left(\Gamma_{t s}^{1}\left(i_{1}\right)\right)_{1 \leq i_{1} \leq d},\left(\Gamma_{t s}^{2}\left(i_{1}, i_{2}\right)\right)_{1 \leq i_{1}, i_{2} \leq d}, \ldots,\left(\Gamma_{t s}^{N}\left(i_{1}, \ldots, i_{N}\right)_{1 \leq i_{1}, \ldots, i_{N} \leq d}\right)\right) \tag{1.7}
\end{equation*}
$$

of functions of two variables such that: $\Gamma_{t s}^{1}=\Gamma_{t}^{1}-\Gamma_{s}^{1}$ and satisfying a natural Hölder regularity condition, namely, $\sup _{s, t \in \mathbb{R}}\left(\frac{\left|\Gamma_{t s}^{k}\left(i_{1}, \ldots, i_{k}\right)\right|}{|t-s|^{k \alpha}}\right)<\infty, k=1, \ldots, N$, along with two algebraic compatibility properties (Chen/multiplicativity and shuffle/geometricity properties) for which we refer e.g. to [2]. To such data one may associate a theory of integration along Γ, so that (1.1), rewritten in its integral form, makes sense, see e.g. [2] or [3] for local solutions of differential equations in this setting.

In this article, we prove convergence of the series 1.3 when the vector fields V_{i} are linear and Γ is analytic $f B m$ (afBm for short). This process - first defined in [7] -, depending on an index $\alpha \in(0,1)$, is a complex-valued process, a.s. κ-Hölder for every $\kappa<\alpha$, which has an analytic continuation to the upper half-plane $\Pi^{+}:=\{z=x+\mathrm{i} y \mid x \in \mathbb{R}, y>0\}$. Its real part ($2 \operatorname{Re} \Gamma_{t}, t \in \mathbb{R}$) has the same law as fBm with Hurst index α. Trajectories of Γ on the closed upper half-plane $\bar{\Pi}^{+}=\Pi^{+} \cup \mathbb{R}$ have the same regularity as those of fBm , namely, they are κ-Hölder for every $\kappa<\alpha$. As shown in [6], the regularized rough path - constructed by moving inside the upper half-plane through an imaginary translation $t \rightarrow t+\mathrm{i} \varepsilon$ - converges in the limit $\varepsilon \rightarrow 0$ to a geometric rough path over Γ for any $\alpha \in(0,1)$, which makes it possible to produce strong, local pathwise solutions of stochastic differential equations driven by Γ with analytic coefficients.
We do not enquire about the convergence of the series (1.3) in the general case (as mentioned before, it diverges e.g. when V is quadratic), but only in the linear case. One obtains, see section 3:

Main Theorem.

Let V_{1}, \ldots, V_{d} be linear vector fields on \mathbb{C}^{r}. Then the series (1.3), associated to afBm Γ with Hurst index $\alpha \in(0,1)$, converges in $L^{2}(\Omega)$ on the closed upper half-plane $\bar{\Pi}^{+}=\Pi^{+} \cup \mathbb{R}$. Furthermore, there exists a constant C such that the solution $\left(y_{t}\right)_{t \in \bar{\Pi}^{+}}$, defined as the limit of the series, satisfies

$$
\begin{equation*}
\mathbb{E}\left|y_{t}-y_{s}\right|^{2} \leq C|t-s|^{2 \alpha}, \quad s, t \in \bar{\Pi}^{+} \tag{1.8}
\end{equation*}
$$

The Main Theorem depends essentially on an explicit estimate of the variance of iterated integrals of Γ proved in Lemma 2.2 below, which states the following:
Lemma 2.2.
There exists a constant C^{\prime} such that, for every $s, t \in \bar{\Pi}^{+}=\Pi^{+} \cup \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Var} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \leq \frac{\left(C^{\prime}|t-s|\right)^{2 n \alpha}}{n!} \tag{1.9}
\end{equation*}
$$

Notation. Constants (possibly depending on α) are generally denoted by $C, C^{\prime}, C_{1}, c_{\alpha}$ and so on.

2 Definition of afBm and first estimates

We briefly recall to begin with the definition of the analytic fractional Brownian motion Γ, which is a complex-valued process defined on the closed upper half-plane $\bar{\Pi}^{+}$[6]. Its introduction was initially motivated by the possibility to construct quite easily iterated integrals of Γ by a contour deformation. Alternatively, its Fourier transform is supported on \mathbb{R}_{+}, which makes the regularization procedure in [8, 9] void.
Proposition 2.1. There exists a unique analytic Gaussian process $\left(\Gamma_{z}^{\prime}, z \in \Pi^{+}\right)$with the following properties (see [6] or [7] for its definition):
(1) Γ^{\prime} is a well-defined analytic process on Π^{+}, with Hermitian covariance kernel

$$
\begin{equation*}
\mathbb{E} \Gamma_{z}^{\prime} \Gamma_{w}^{\prime}=0, \quad \mathbb{E} \Gamma_{z}^{\prime} \bar{\Gamma}_{w}^{\prime}=\frac{\alpha(1-2 \alpha)}{2 \cos \pi \alpha}(-\mathrm{i}(z-\bar{w}))^{2 \alpha-2} . \tag{2.1}
\end{equation*}
$$

(2) Let $\gamma:(0,1) \rightarrow \Pi^{+}$be any continuous path with endpoints $\gamma(0)=0$ and $\gamma(1)=z$, and set $\Gamma_{z}=\int_{\gamma} \Gamma_{u}^{\prime} d u$. Then Γ is an analytic process on Π^{+}. Furthermore, as z runs along any path in Π^{+} going to $t \in \mathbb{R}$, the random variables Γ_{z} converge almost surely to a random variable called again Γ_{t}. (3) The family $\left\{\Gamma_{t} ; t \in \mathbb{R}\right\}$ defines a Gaussian centered complex-valued process, whose covariance function is given by:

$$
\mathbb{E}\left[\Gamma_{s} \Gamma_{t}\right]=0, \quad \mathbb{E}\left[\Gamma_{s} \bar{\Gamma}_{t}\right]=\frac{e^{-\mathrm{i} \pi \alpha \operatorname{sgn}(s)}|s|^{2 \alpha}+e^{\mathrm{i} \pi \alpha \operatorname{sgn}(t)}|t|^{2 \alpha}-e^{\mathrm{i} \pi \alpha \operatorname{sgn}(t-s)}|s-t|^{2 \alpha}}{4 \cos (\pi \alpha)}
$$

The paths of this process are almost surely κ-Hölder for any $\kappa<\alpha$.
(4) Both real and imaginary parts of $\left\{\Gamma_{t} ; t \in \mathbb{R}\right\}$ are (non independent) fractional Brownian motions indexed by \mathbb{R}, with covariance given by

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{Re} \Gamma_{s} \operatorname{Im} \Gamma_{t}\right]=-\frac{\tan \pi \alpha}{8}\left[-\operatorname{sgn}(s)|s|^{2 \alpha}+\operatorname{sgn}(t)|t|^{2 \alpha}-\operatorname{sgn}(t-s)|t-s|^{2 \alpha}\right] . \tag{2.2}
\end{equation*}
$$

Definition 2.2. Let $Y_{t}:=\operatorname{Re} \Gamma_{i t}, t \in \mathbb{R}_{+}$. More generally, $Y_{t}=\left(Y_{t}(1), \ldots, Y_{t}(d)\right)$ is a vector-valued process with d independent, identically distributed components.

The above results imply that Y_{t} is real-analytic on \mathbb{R}_{+}^{*}.
Lemma 2.3. The infinitesimal covariance function of Y_{t} is:

$$
\begin{equation*}
\mathbb{E} Y_{s}^{\prime} Y_{t}^{\prime}=\frac{\alpha(1-2 \alpha)}{4 \cos \pi \alpha}(s+t)^{2 \alpha-2} \tag{2.3}
\end{equation*}
$$

Proof. Let $X_{t}:=\operatorname{Im} \Gamma_{i t}$. Since $\mathbb{E} \Gamma_{s} \Gamma_{t}=0,\left(Y_{s}, s \geq 0\right)$ and $\left(X_{s}, s \geq 0\right)$ have same law, with covariance kernel $\mathbb{E} Y_{s} Y_{t}=\mathbb{E} X_{s} X_{t}=\frac{1}{2} \operatorname{Re} \Gamma_{i s} \bar{\Gamma}_{i t}$. Hence

$$
\begin{equation*}
\mathbb{E}\left[Y_{s}^{\prime} Y_{t}^{\prime}\right]=\frac{1}{2} \operatorname{Re} \mathbb{E} \Gamma_{i s}^{\prime} \bar{\Gamma}_{i t}^{\prime}=\frac{\alpha(1-2 \alpha)}{4 \cos \pi \alpha}(s+t)^{2 \alpha-2} . \tag{2.4}
\end{equation*}
$$

Note that $\mathbb{E} Y_{s}^{\prime} Y_{t}^{\prime}>0$. From this simple remark follows (see proof of a similar statement in [5] concerning usual fractional Brownian motion with Hurst index $\alpha>1 / 2$):

Lemma 2.4. Let $\mathbf{Y}_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right), n \geq 2$ be the iterated integrals of Y. Then there exists a constant C >0 such that

$$
\begin{equation*}
\operatorname{Var} Y_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \leq C \frac{(C|t-s|)^{2 n \alpha}}{n!} \tag{2.5}
\end{equation*}
$$

Proof. Let Π be the set of all pairings π of the set $\{1, \ldots, 2 n\}$ such that $\left(\left(k_{1}, k_{2}\right) \in \pi\right) \Rightarrow\left(i_{k_{1}^{\prime}}=i_{k_{2}^{\prime}}\right)$, where $k_{1}^{\prime}=k_{1}$ if $k_{1} \leq n, k_{1}-n$ otherwise, and similarly for k_{2}^{\prime}. By Wick's formula,

$$
\begin{align*}
& \operatorname{Var} Y_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \\
&= \sum_{\pi \in \Pi}\left(\int_{s}^{t} d x_{1} \ldots \int_{s}^{x_{n-1}} d x_{n}\right)\left(\int_{s}^{t} d x_{n+1} \cdots \int_{s}^{x_{2 n-1}} d x_{2 n}\right) \\
& \prod_{\left(k_{1}, k_{2}\right) \in \pi} \mathbb{E}\left[Y_{x_{k_{1}}^{\prime}}^{\prime} Y_{x_{k_{2}}}^{\prime}\right] . \tag{2.6}
\end{align*}
$$

Since the process Y^{\prime} is positively correlated, and Π is largest when all indices i_{1}, \ldots, i_{n} are equal, one gets $\operatorname{Var} \mathbf{Y}_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \leq \operatorname{Var} \mathbf{Y}_{t s}^{n}(1, \ldots, 1)$. On the other hand, $\mathbf{Y}_{t s}^{n}(1, \ldots, 1)=\frac{1}{n!}\left(Y_{t}-Y_{s}\right)^{n}$, hence

$$
\begin{equation*}
\operatorname{Var} Y_{t s}^{n}(1, \ldots, 1)=\frac{\left[\operatorname{Var}\left(Y_{t}-Y_{s}\right)\right]^{n}}{(n!)^{2}} \cdot \frac{(2 n)!}{2^{n} \cdot n!} \leq \frac{\left[2 \operatorname{Var}\left(Y_{t}-Y_{s}\right)\right]^{n}}{n!} \tag{2.7}
\end{equation*}
$$

Now (assuming for instance $0<s<t$)

$$
\begin{equation*}
\operatorname{Var}\left(Y_{t}-Y_{s}\right)=c_{\alpha} \int_{s}^{t} \int_{s}^{t}(u+v)^{2 \alpha-2} d u d v \leq c_{\alpha} s^{2 \alpha-2}(t-s)^{2} \leq c_{\alpha}(t-s)^{2 \alpha} \tag{2.8}
\end{equation*}
$$

if $\frac{t}{2} \leq s \leq t$, and

$$
\begin{equation*}
\operatorname{Var}\left(Y_{t}-Y_{s}\right)=\frac{c_{\alpha}}{2 \alpha(2 \alpha-1)}\left[(2 t)^{2 \alpha}+(2 s)^{2 \alpha}-2(t+s)^{2 \alpha}\right] \leq C t^{2 \alpha} \leq C^{\prime}(t-s)^{2 \alpha} \tag{2.9}
\end{equation*}
$$

if $s<t / 2$. Hence the result.

3 Estimates for iterated integrals of Γ

The main tool for the study of Γ is the use of contour deformation. Iterated integrals of Γ are particular cases of analytic iterated integrals, see [7] or [6]. In particular, the following holds:

Lemma 3.1. Let $\gamma:(0,1) \rightarrow \Pi^{+}$be the piecewise linear contour with affine parametrization defined by :
(i) $\gamma([0,1 / 3])=[s, s+i|\operatorname{Re}(t-s)|]$;
(ii) $\gamma([1 / 3,2 / 3])=[s+\mathrm{i}|\operatorname{Re}(t-s)|, t+\mathrm{i}|\operatorname{Re}(t-s)|]$;
(iii) $\gamma([2 / 3,1])=[t+\mathrm{i}|\operatorname{Re}(t-s)|, t]$.

If $z=\gamma(x) \in \gamma([0,1])$, we let γ_{z} be the same path stopped at z, i.e. $\gamma_{z}=\gamma([0, x])$, with the same parametrization. Then (letting $c_{\alpha}=\frac{\alpha(1-2 \alpha)}{2 \cos \pi \alpha}$)

$$
\begin{align*}
& \operatorname{Var} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right)= \\
& c_{\alpha}^{n} \sum_{\sigma \in \Sigma_{I}} \int_{\gamma} d z_{1} \int_{\bar{\gamma}} d \bar{w}_{1}\left(-\mathrm{i}\left(z_{1}-\bar{w}_{\sigma(1)}\right)\right)^{2 \alpha-2} \cdot \int_{\gamma_{z_{1}}} d z_{2} \int_{\bar{\gamma}_{\bar{w}_{1}}} d \bar{w}_{2}\left(-\mathrm{i}\left(z_{2}-\bar{w}_{\sigma(2)}\right)\right)^{2 \alpha-2} \ldots \\
& \quad \int_{\gamma_{z_{n-1}}} d z_{n} \int_{\bar{\gamma}_{\bar{w}_{n-1}}} d \bar{w}_{n}\left(-\mathrm{i}\left(z_{n}-\bar{w}_{\sigma(n)}\right)\right)^{2 \alpha-2} \tag{3.1}
\end{align*}
$$

where Σ_{I} is the subset of permutations of $\{1, \ldots, n\}$ such that $\left(i_{j}=i_{k}\right) \Rightarrow(\sigma(j)=\sigma(k))$.
Proof. Note first that, similarly to eq. 2.6,

$$
\begin{align*}
& \operatorname{Var} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right)= \sum_{\sigma \in \Sigma_{I}}\left(\int_{1}^{t} d z_{1} \ldots \int_{s}^{z_{n-1}} d z_{n}\right)\left(\int_{\bar{s}}^{\bar{t}} d \bar{w}_{1} \ldots \int_{\bar{s}}^{\bar{w}_{n-1}} d \bar{w}_{n}\right) \\
& \prod_{j=1}^{n} \mathbb{E}\left[\Gamma_{z_{j}}^{\prime} \bar{\Gamma}_{\bar{w}_{\sigma(j)}}^{\prime}\right] \tag{3.2}
\end{align*}
$$

(the difference with respect to eq. 2.6 comes from the fact that contractions only operate between Γ 's and $\bar{\Gamma}$'s, since $\mathbb{E}\left[\Gamma_{z_{j}} \Gamma_{z_{k}}\right]=\mathbb{E}\left[\bar{\Gamma}_{\bar{w}_{j}} \bar{\Gamma}_{\bar{w}_{k}}\right]=0$ by Proposition 2.1$]$. Now the result comes from a deformation of contour, see [7].

Lemma 3.2. There exists a constant C^{\prime} such that, for every $s, t \in \bar{\Pi}^{+}=\Pi^{+} \cup \mathbb{R}$,

$$
\begin{equation*}
\operatorname{Var} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \leq \frac{\left(C^{\prime}|t-s|\right)^{2 n \alpha}}{n!} \tag{3.3}
\end{equation*}
$$

Proof. We assume (without loss of generality) that $\operatorname{Im} s \leq \operatorname{Im} t$. If $|\operatorname{Im}(t-s)| \geq c \operatorname{Re}|t-s|$ for some positive constant c (or equivalently $|\operatorname{Re}(t-s)| \leq c^{\prime}|t-s|$ for some $0 \leq c^{\prime}<1$) then it is preferable to integrate along the straight line $[s, t]=\{z \in \mathbb{C} \mid z=(1-u) s+u t, 0 \leq u \leq 1\}$ instead of γ, and use the parametrization $y=\operatorname{Im} z$. If $z_{1}, z_{2} \in[s, t], y_{1}=\operatorname{Im} z_{1}, y_{2}=\operatorname{Im} z_{2}$, then $\left|\left(-\mathrm{i}\left(z_{1}-\bar{z}_{2}\right)\right)^{2 \alpha-2}\right| \leq C\left(y_{1}+y_{2}\right)^{2 \alpha-2}$, hence $\operatorname{Var} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \leq C^{\prime n} \operatorname{Var}_{y_{2}, y_{1}}^{n}\left(i_{1}, \ldots, i_{n}\right)$, which yields the result by Lemma 2.4 . So we shall assume that $|\operatorname{Re}(t-s)|>c|t-s|$ for some constant $c>0$.

Let us use as new variable the parametrization coordinate x along γ. Then formula (3.1) reads

$$
\begin{gather*}
\operatorname{Var} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right)=c_{\alpha}^{n} \sum_{\sigma \in \Sigma_{I}} \int_{0}^{1} d x_{1} \int_{0}^{1} d y_{1} K^{\prime}\left(x_{1}, y_{\sigma(1)}\right) \cdot \int_{0}^{x_{1}} d x_{2} \int_{0}^{y_{1}} d y_{2} K^{\prime}\left(x_{2}, y_{\sigma(2)}\right) \ldots \\
\int_{0}^{x_{n-1}} d x_{n} \int_{0}^{x_{n}} d y_{n} K^{\prime}\left(x_{n}, y_{\sigma(n)}\right) \tag{3.4}
\end{gather*}
$$

where $K^{\prime}(x, y)=(3|\operatorname{Re}(t-s)|)^{2}(3(x+y)|\operatorname{Re}(t-s)|+2 \operatorname{Im} s)^{2 \alpha-2}$ if $0<x, y<1 / 3$, $(3 \mid \operatorname{Re}(t-$ $s) \mid)^{2}(3((1-x)+(1-y))|\operatorname{Re}(t-s)|+2 \operatorname{Im} t)^{2 \alpha-2}$ if $2 / 3<x, y<1$, and is bounded by a constant times $|t-s|^{2 \alpha}$ otherwise thanks to the condition $|\operatorname{Re}(t-s)|>c|t-s|$. Note that $(x+y)^{2 \alpha-2}>2^{2 \alpha-2}$ if $0<x, y<1$. Hence (if $0<x, y<1)\left|K^{\prime}(x, y)\right| \leq\left(C_{1}|t-s|\right)^{2 \alpha}\left[(x+y)^{2 \alpha-2}+((1-x)+(1-y))^{2 \alpha-2}\right]$, which is (up to a coefficient) the infinitesimal covariance of $|t-s|^{\alpha}\left(Y_{x}+\tilde{Y}_{1-x}, 0<x<1\right)$ if $\tilde{Y} \stackrel{\text { (law) }}{=} Y$ is independent of Y. A slight modification of the argument of Lemma 2.4 yields

$$
\begin{align*}
\operatorname{Var} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) & \leq\left(C_{1}|t-s|\right)^{2 n \alpha} \frac{\left[\operatorname{Var}\left(Y_{1}-Y_{0}\right)+\operatorname{Var}\left(\tilde{Y}_{1}-\tilde{Y}_{0}\right)\right]^{n}}{(n!)^{2}} \cdot \frac{(2 n)!}{2^{n} \cdot n!} \\
& \leq C_{1}^{2 n \alpha} \cdot \frac{(2 C|t-s|)^{2 n \alpha}}{n!} \tag{3.5}
\end{align*}
$$

4 Proof of main theorem

We now prove the theorem stated in the introduction, which is really a simple corollary of Lemma 3.2 .

Let C be the maximum of the matrix norms $\left\|\mid V_{i}\right\|\left\|=\sup _{\|x\|_{\infty}=1}\right\| V_{i} x \|_{\infty}$ for the supremum norm $\|x\|_{\infty}=\sup \left(\left|x_{1}\right|, \ldots,\left|x_{r}\right|\right)$. Rewrite eq. (1.5) as

$$
\begin{equation*}
\mathscr{E}_{V}^{N, t, s}\left(y_{s}\right)=y_{s}+\sum_{n=1}^{N} \sum_{1 \leq i_{1}, \ldots, i_{n} \leq d} a_{i_{1}, \ldots, i_{n}} \Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right) \tag{4.1}
\end{equation*}
$$

Then $\left\|a_{i_{1}, \ldots, i_{n}}\right\|_{\infty} \leq C^{n}$ and $\mathbb{E}\left|\Gamma_{t s}^{n}\left(i_{1}, \ldots, i_{n}\right)\right|^{2} \leq \frac{(C|t-s|)^{2 n \alpha}}{n!}$. Hence (by the Cauchy-Schwarz inequality)

$$
\begin{align*}
\mathbb{E}\left(\mathscr{E}_{V}^{N, t, s}\left(y_{s}\right)-y_{s}\right)^{2} & \leq \sum_{m, n=1}^{N} \frac{\left(C^{\prime \prime}|t-s|\right)^{(m+n) \alpha}}{\sqrt{m!n!}} \\
& =\left(\sum_{m=1}^{N} \frac{\left(C^{\prime \prime}|t-s|\right)^{m \alpha}}{\sqrt{m!}}\right)^{2} \leq C^{\prime \prime \prime} .|t-s|^{2 \alpha} \tag{4.2}
\end{align*}
$$

independently of N. The series obviously converges and yields eq. (1.8) for $p=1$. It should be easy to prove along the same lines that the series defining $\mathbb{E}\left|y_{t}-y_{s}\right|^{2 p}$ converges for every $p \geq 1$, and that there exists a constant C_{p} such that $\mathbb{E}\left|y_{t}-y_{s}\right|^{2 p} \leq C_{p}|t-s|^{2 \alpha p}$ for every $s, t \in \bar{\Pi}^{+}$. The most obvious consequence - using Kolmogorov's lemma - would be that y_{t} has Hölder regularity of any order less than α. But this follows from standard rough path theory, so we skip the proof.

References

[1] F. Baudoin, L. Coutin. Operators associated with a stochastic differential equation driven by fractional Brownian motions, Stoch. Proc. Appl. 117 (5), 550-574 (2007). MR2320949
[2] P. Friz, N. Victoir: Multidimensional dimensional processes seen as rough paths. Cambridge University Press (2010). MR2604669
[3] M. Gubinelli. Controlling rough paths, J. Funct. Anal. 216, 86-140 (2004). MR2091358
[4] A. Lejay. Global solutions to rough differential equations with unbounded vector fields. Preprint hal available on: http://hal.archives-ouvertes.fr/inria-00451193.
[5] A. Neuenkirch, I. Nourdin, A. Rössler, S. Tindel. Trees and asymptotic developments for fractional stochastic differential equations. Preprint arXiv:math.PR/0611306.
[6] S. Tindel, J. Unterberger. The rough path associated to the multidimensional analytic $f B m$ with any Hurst parameter. Preprint arXiv:0810.1408. To appear in: Collectanea Mathematica.
[7] J. Unterberger. Stochastic calculus for fractional Brownian motion with Hurst exponent H larger than 1/4: a rough path method by analytic extension, Ann. Probab. 37 (2), 565-614 (2009). MR2510017
[8] J. Unterberger. A stochastic calculus for multidimensional fractional Brownian motion with arbitrary Hurst index, Stoch. Proc. Appl. 120 (8), 1444-1472 (2010).
[9] J. Unterberger. Hölder-continuous rough paths by Fourier normal ordering, Comm. Math. Phys. 298 (1), 1-36 (2010).

