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Abstract
For a zero-delayed random walk on the real line, let τ(x), N(x) and ρ(x) denote the first passage
time into the interval (x ,∞), the number of visits to the interval (−∞, x] and the last exit time
from (−∞, x], respectively. In the present paper, we provide ultimate criteria for the finiteness
of exponential moments of these quantities. Moreover, whenever these moments are finite, we
derive their asymptotic behaviour, as x →∞.

1 Introduction and main results

Let (Xn)n≥1 be a sequence of i.i.d. real-valued random variables and X := X1. Further, let (Sn)n≥0
be the zero-delayed random walk with increments Sn − Sn−1 = Xn, n ≥ 1. For x ∈ R, define the
first passage time into (x ,∞)

τ(x) := inf{n ∈ N0 : Sn > x},

the number of visits to the interval (−∞, x]

N(x) := #{n ∈ N : Sn ≤ x} =
∑

n≥1

1{Sn≤x},

and the last exit time from (−∞, x]

ρ(x) :=
�

sup{n ∈ N : Sn ≤ x}, if infn≥1 Sn ≤ x ,
0, if infn≥1 Sn > x .

Note that, for x ≥ 0,
ρ(x) = sup{n ∈ N0 : Sn ≤ x}.
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For typographical ease, throughout the text we write τ for τ(0), N for N(0) and ρ for ρ(0).
Our aim is to find criteria for the finiteness of the exponential moments of τ(x), N(x) and ρ(x),
and to determine the asymptotic behaviour of these moments, as x →∞.
Assuming that 0< EX <∞, Heyde [11, Theorem 1] proved that

Eeaτ(x) <∞ for some a > 0 iff EebX− <∞ for some b > 0.

See also [3, Theorem 2] and [6, Theorem II] for relevant results.
When P{X ≥ 0}= 1 and P{X = 0}< 1,

τ(x)− 1 = N(x) = ρ(x), x ≥ 0. (1)

Plainly, in this case, criteria for all the three random variables are the same (Proposition 1.1). An
intriguing consequence of our results in the case when P{X < 0}> 0 and P{X > 0}> 0, in which

τ(x)− 1 ≤ N(x) ≤ ρ(x), x ≥ 0, (2)

is that provided the abscissas of convergence of the moment generating functions of τ(x), N(x)
and ρ(x) are positive there exists a unique value R> 0 such that

Eeaτ(x) <∞, EeaN(x) <∞ iff a ≤ R, and Eeaρ(x) <∞ if a < R

whereas EeRρ(x) is finite in some cases and infinite in others. Also we prove that whenever the
exponential moments are finite they exhibit the following asymptotics:

Eeaτ(x) ∼ C1eγx , EeaN(x) ∼ C2eγx , Eeaρ(x) ∼ C3eγx , x →∞,

for an explicitly given γ > 0 and distinct positive constants Ci , i = 1,2, 3 (when the law of X
is lattice with span λ > 0 the limit is taken over x ∈ λN). Our results should be compared (or
contrasted) to the known facts concerning power moments (see [13, Theorem 2.1 and Section
4.2] and [13, Theorem 2.2], respectively): for p > 0

E(τ(x))p+1 <∞ ⇔ E(N(x))p <∞ ⇔ E(ρ(x))p <∞;

E(τ(x))p � E(N(x))p � E(ρ(x))p �
�

x

Emin(X+, x)

�p

, x →∞

where f (x)� g(x) means that 0< lim inf
x→∞

f (x)
g(x)
≤ lim sup

x→∞

f (x)
g(x)

<∞.

Proposition 1.1 is due to Beljaev and Maksimov [2, Theorem 1]. A shorter proof can be found in
[12, Theorem 2.1].

Proposition 1.1. Assume that P{X ≥ 0} = 1 and let β := P{X = 0} ∈ [0,1). Then for a > 0 the
following conditions are equivalent:

Eeaτ(x) <∞ for some (hence every) x ≥ 0;

a <− logβ

where − logβ :=∞ if β = 0. The same equivalence holds for N(x) and ρ(x).
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Our first theorem provides sharp criteria for the finiteness of exponential moments of τ(x) and
N(x) in the case when P{X < 0}> 0. Before we present it, we introduce some notation. Let

ϕ : [0,∞)→ (0,∞], ϕ(t) := Ee−tX (3)

be the Laplace transform of X and
R :=− log inf

t≥0
ϕ(t). (4)

Theorem 1.2. Let a > 0 and P{X < 0}> 0. Then the following conditions are equivalent:

∑

n≥1

ean

n
P{Sn ≤ x} < ∞ for some (hence every) x ≥ 0; (5)

Eeaτ(x) <∞ for some (hence every) x ≥ 0; (6)

EeaN(x) <∞ for some (hence every) x ≥ 0; (7)

a ≤ R. (8)

Our next theorem provides the corresponding result for the last exit time ρ(x).

Theorem 1.3. Let a > 0 and P{X < 0}> 0. Then the following conditions are equivalent:
∑

n≥0

eanP{Sn ≤ x}<∞ for some (hence every) x ≥ 0; (9)

Eeaρ(x) <∞ for some (hence every) x ≥ 0; (10)

a < R or a = R and ϕ′(γ0)< 0 (11)

where γ0 is the unique positive number such that ϕ(γ0) = e−R.

It is worth pointing out that Theorem 1.3 and Proposition 1.1 could be merged into one result.
Indeed, if one sets γ0 :=∞ and ϕ′(∞) := limt→∞ϕ

′(t)(= 0) in the case that P{X < 0} = 0, then
(11) includes the criterion given in Proposition 1.1 for the finiteness of Eeaτ(x) which, in this case,
is equivalent to the finiteness of Eeaρ(x) due to Eq. (1).
Now we turn our attention to the asymptotic behaviour of Eeaτ(x), EeaN(x) and Eeaρ(x) and start
by quoting a known result which, given in other terms, can be found in [12, Theorem 2.2]. In
view of equality (1) we only state it for Eeaτ(x). The phrase ‘The law of X is λ-lattice’ used in
Proposition 1.4 and Theorem 1.5 is a shorthand for ‘The law of X is lattice with span λ > 0’.

Proposition 1.4. Let a > 0, P{X ≥ 0} = 1 and P{X = 0} < 1. Assume that Eeaτ(x) <∞ for some
(hence every) x ≥ 0. Then, as x →∞,

Eeaτ(x) ∼ eγx ×

(

1−e−a

γEX e−γX , if the law of X is non-lattice,
λ(1−e−a)

(1−e−λγ)EX e−γX , if the law of X is λ-lattice

where γ is the unique positive number such that ϕ(γ) = Ee−γX = e−a, and in the λ-lattice case the
limit is taken over x ∈ λN.

When 0< a ≤ R and P{X < 0}> 0, there exists a minimal γ > 0 such that ϕ(γ) = e−a. This γ can
be used to define a new probability measure Pγ by

Eγh(S0, . . . , Sn) = eanEe−γSnh(S0, . . . , Sn), n ∈ N, (12)
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for each nonnegative Borel function h on Rn+1, where Eγ denotes expectation with respect to
Pγ. Since EγX = EγS1 = −eaϕ′(γ) (where ϕ′ denotes the left derivative of ϕ) and since ϕ is
decreasing and convex on [0,γ], there are only two possibilities:

Either EγX ∈ (0,∞) or EγX = 0. (13)

When a < R, then the first alternative in (13) prevails. When a = R, then typically ϕ′(γ) = 0
since γ is then the unique minimizer of ϕ on [0,∞). In particular, EγX = 0. But even if a = R it
can occur that EγX > 0 or, equivalently, ϕ′(γ) < 0. Of course, then γ is the right endpoint of the
interval {t ≥ 0 : ϕ(t)<∞}. We provide an example of this situation in Section 3.
Now we are ready to formulate the last result of the paper.

Theorem 1.5. Let a > 0 and P{X < 0}> 0.

(a) Assume that Eeaτ(x) <∞ for some (hence every) x ≥ 0. Then EγSτ is positive and finite, and,
as x →∞,

Eeaτ(x) ∼ eγx ×







E(eaτ−1)
γEγSτ

, if the law of X is non-lattice,
λE(eaτ−1)
(1−e−λγ)EγSτ

, if the law of X is λ-lattice.
(14)

(b) Assume that EeaN(x) <∞ for some (hence every) x ≥ 0. Then EγSτ is positive and finite, and,
as x →∞,

EeaN(x) ∼ eγx ×







e−aEγ
∫ Sτ

0
eγyE[eaN(−y)]dy

EγSτ
, if the law of X is non-lattice,

λe−aEγ
∑Sτ/λ

k=1 eγλkE[eaN(−λk)]
EγSτ

, if the law of X is λ-lattice.
(15)

(c) Assume that Eeaρ(x) <∞ for some (hence every) x ≥ 0. Then M := infn≥1 Sn is positive with
positive probability, and, as x →∞,

Eeaρ(x) ∼ eγx ×







e−a(1−Ee−γM+ )
γEX e−γX , if the law of X is non-lattice,

λe−a(1−Ee−γM+ )
(1−e−λγ)EX e−γX , if the law of X is λ-lattice.

(16)

In the λ-lattice case the limit is taken over x ∈ λN.

The rest of the paper is organized as follows. Section 2 is devoted to the proofs of Theorems 1.2,
1.3 and 1.5. In Section 3 we provide three examples illustrating our main results.

2 Proofs of the main results

Proof of Theorem 1.2. (8)⇒ (5). Pick any a ∈ (0, R] and let γ be as defined on p. 367. With this
γ, the equality

Zγ(A) :=
∑

n≥1

Pγ{Sn ∈ A}
n
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where A⊂ R is a Borel set, defines a measure which is finite on bounded intervals. Furthermore,
according to [1, Theorem 1.2], if EγX > 0 then Zγ((−∞, 0]) <∞, whereas if EγX = 0 (this may
only happen if a = R), then the function x 7→ Zγ((−x , 0]), x > 0, is of sublinear growth. Hence,
for every x ≥ 0,

∑

n≥1

ean

n
P{Sn ≤ x} =

∑

n≥1

1

n
EγeγSn1{Sn≤x} =

∫

(−∞,x]

eγy Zγ(dy) < ∞.

(5) ⇒ (8). Suppose (5) holds for some x = x0 ≥ 0 and a > R. Pick ε ∈ (0, a − R). Then
∑

n≥0 e(a−ε)nP{Sn ≤ x0}<∞ which is a contradiction to [12, Theorem 2.1(aiii)] (reproduced here
as equivalence (9)⇔ (11) of Theorem 1.3).
(5)⇒ (6). The argument given below will also be used in the proof of Theorem 1.5.
If (5) holds for some x ≥ 0 then, according to the already proved equivalence (5) ⇔ (8), first,
a ≤ R and, secondly, (5) holds for every x ≥ 0. For 0< a ≤ R and x ≥ 0, we have

Eeaτ(x) = 1+ (ea − 1)
∑

n≥0

eanP{τ(x)> n}

= 1+ (ea − 1)
∑

n≥0

eanP{Mn ≤ x} (17)

where Mn :=max0≤k≤n Sk, n ∈ N0. According to [6, Formula (2.9)],

∑

n≥0

eanP{Mn ≤ x} =
Eeaτ − 1

ea − 1

∑

j≥0

ea jP{L j = j, S j ≤ x} (18)

where L j = inf{i ∈ N0 : Si = M j}, j ∈ N0. Since a ≤ R, we can use the exponential measure
transformation introduced in (12), which gives

ea jP{L j = j, S j ≤ x} = EγeγS j1{L j= j,S j≤x}.

Observe that L j = j holds iff j = σk for some k ∈ N0 where σk (σ0 := 0) denotes the kth strictly
ascending ladder epoch of the random walk (Sn)n≥0. Thus,

∑

j≥0

ea jP{L j = j, S j ≤ x} =
∑

j≥0

EγeγS j1{L j= j,S j≤x}

=
∑

j≥0

Eγ
∑

k≥0

eγSσk1{σk= j,Sσk
≤x} = Eγ

∑

k≥0

eγSσk1{Sσk
≤x}

= eγx

∫

R
e−γ(x−y)

1[0,∞)(x − y)U>γ (dy) =: eγx Z>γ (x) (19)

where U>γ denotes the renewal function of the random walk (Sσk
)k≥0 under Pγ, that is, U>γ (·) =

∑

k≥0 Pγ{Sσk
∈ ·}. Thus, Z>γ (x) is finite for all x ≥ 0 since it is the integral of a directly Riemann

integrable function with respect to U>γ .
(6)⇒ (5) and (7)⇒ (5). Since τ(y) ≤ N(y) + 1, y ≥ 0, it suffices to prove the first implication.
To this end, let

K(a) :=
∑

n≥1

ean

n
P{Sn ≤ 0}.
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By a generalization of Spitzer’s formula [6, Formula (2.6)], the assumption Eeaτ <∞ immediately
entails the finiteness of K(a):

∞ > Eeaτ = 1+ (ea − 1)
∑

n≥0

eanP{Mn = 0} = 1+ (ea − 1)eK(a).

We already know that if the series in (5) converges for x = 0, i.e., if K(a) <∞, then it converges
for every x ≥ 0.
(6)⇒ (7). By the equivalence (5)⇔ (6), Eeaτ(x) <∞ for every x ≥ 0. According to [13, Formula
(3.54)],

P{N = k} = P{ inf
n≥1

Sn > 0}P{τ > k}, k ∈ N0,

where P{infn≥1 Sn > 0}> 0, since, under the present assumptions, (Sn)n≥0 drifts to+∞ a.s. Hence,
EeaN <∞. Further, for y ∈ R,

bN(x , y) :=
∑

n>τ(x)

1{Sn−Sτ(x)≤y} (20)

is a copy of N(y) that is independent of (τ(x), Sτ(x)). We have

N(x) = τ(x)− 1+ bN(x , x − Sτ(x)) ≤ τ(x) + bN(x , 0) (21)

Hence, EeaN(x) <∞, for every x ≥ 0. The proof is complete.

Proof of Theorem 1.3. The equivalence (9)⇔ (11) has been proved in [12, Theorem 2.1].
(9)⇒ (10). According to the just mentioned equivalence, if (9) holds for some x ≥ 0 it holds for
every x ≥ 0. It remains to note that for x ≥ 0

P{ρ(x) = n} =
∫

(−∞,x]

P{inf
k≥1

Sk > x − y}P{Sn ∈ dy} ≤ P{Sn ≤ x}. (22)

(10) ⇒ (11). Suppose Eeaρ(x0) < ∞ for some x0 ≥ 0 and a > 0. Since Eeaρ(x) is increasing in
x , we have Eeaρ < ∞. Condition a ≤ R must hold in view of (2) and implication (6) ⇒ (8) of
Theorem 1.2. If a < R, we are done. In the case a = R it remains to show that

EX e−γ0X > 0. (23)

Define the measure V by
V (A) :=

∑

n≥0

eRnP{Sn ∈ A}, (24)

for Borel sets A⊂ R. Then from (22) we infer that

∞ > EeRρ =

∫

(−∞,0]

P{ inf
n≥1

Sn >−y}V (dy). (25)

Under the present assumptions, the random walk (Sn)n≥0 drifts to+∞ a.s. Therefore, P{infn≥1 Sn >
ε}> 0 for some ε > 0. With such an ε,

∞ >

∫

(−ε,0]

P{ inf
n≥1

Sn >−y}V (dy) ≥ P{ inf
n≥1

Sn > ε}V ((−ε, 0]).
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Thus,

∞ > V ((−ε, 0]) =
∞
∑

n=0

Eγ0
eγ0Sn1{Sn∈(−ε,0]} ≥ e−γ0ε

∞
∑

n=0

Pγ0
{−ε < Sn ≤ 0}.

Hence (Sn)n≥0 must be transient under Pγ0
, which yields the validity of (11) in view of (13) and

Eγ0
S1 = eREX e−γ0X . The proof is complete.

Proof of Theorem 1.5. (a) In view of (17), (18) and (19), in order to find the asymptotics of
Eeaτ(x), it suffices to determine the asymptotic behaviour of Z>γ (x) defined in (19). By the key
renewal theorem on the positive half-line,

Z>γ (x) →x→∞







1
γEγSτ

if the law of X is non-lattice,
λ

(1−e−λγ)EγSτ
if the law of X is λ-lattice

(26)

where the limit x →∞ is taken over x ∈ λN when the law of X is lattice with span λ > 0.
It remains to check that EγSτ is finite. As pointed out in (13), either EγX ∈ (0,∞) or EγX = 0. In
the first case, Sn → ∞ a.s. under Pγ and, therefore, Eγτ < ∞, see, for instance, [4, Theorem 2,
p. 151], which yields EγSτ <∞ by virtue of Wald’s identity. If, on the other hand, EγX = 0, then
Eγτ =∞ and we cannot argue as above. But in this case, by [5, Formula (4a)], Eγ(S+1 )

2 <∞ is
sufficient for EγSτ <∞ to hold. Now the finiteness of

EγeγS1 = ϕ(γ)−1 < ∞,

implies the finiteness of Eγ(S+1 )
2, and the proof of part (a) is complete.

(b) We only consider the case when the law of X is non-lattice since the lattice case can be treated
similarly. Denote by Rx := Sτ(x) − x the overshoot. Since Eeaτ(x) = EγeγSτ(x) , we have in view of
the already proved part (a)

lim
x→∞
EγeγRx =

Eeaτ − 1

γEγSτ
. (27)

By Theorem 1.2, if EeaN(x) < ∞, then Eeaτ(x) < ∞. Therefore, according to part (a), we have
0 < EγSτ <∞. This implies (see, for instance, [10, Theorem 10.3 on p. 103]) that, as x →∞, Rx
converges in distribution to a random variable R∞ satisfying

Pγ{R∞ ≤ x} =
1

EγSτ

∫ x

0

Pγ{Sτ > y}dy, x ≥ 0.

In particular, under Pγ, eγRx converges in distribution to eγR∞ . Further,

EγeγR∞ =
1

EγSτ

∫ ∞

0

eγyPγ{Sτ > y}dy =
EγeγSτ − 1

γEγSτ
=
Eeaτ − 1

γEγSτ
.

Therefore, (27) can be rewritten as follows:

lim
x→∞
EγeγRx = EγeγR∞ . (28)

Now we invoke a variant of Fatou’s lemma sometimes called Pratt’s lemma [14, Theorem 1]. To
this end, note that, by a standard coupling argument, we can assume w.l.o.g. that Rx → R∞ Pγ-a.s.
From (21) we infer that for f (y) := EeaN(y), y ∈ R we have

f (x) = EeaN(x) = e−aEeaτ(x) f (−Rx) = eγx e−aEγeγRx f (−Rx).
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f is an increasing function and, therefore, has only countably many discontinuities. Hence
eγRx f (−Rx) converges Pγ-a.s. to eγR∞ f (−R∞). Further,

eγRx f (−Rx) ≤ eγRx f (0)

and eγRx f (0) converges Pγ-a.s. to eγR∞ f (0). Finally,

lim
x→∞
EγeγRx f (0) = EγeγR∞ f (0).

Therefore the assumptions of Pratt’s lemma are fulfilled and an application of the lemma yields

lim
x→∞

e−γx f (x) = e−a lim
x→∞
EγeγRx f (−Rx) = e−aEγeγR∞ f (−R∞)

=
e−a

EγSτ

∫ ∞

0

eγy f (−y)Pγ{Sτ > y}dy

=
e−aEγ

∫ Sτ
0

eγy f (−y)dy

EγSτ
.

(c) >From (22) and (24) (with R replaced by a and M = infk≥1 Sk), we infer

Eeaρ(x) =

∫

(−∞,x]

P{M > x − y}V (dy)

= V (x)P{M > 0} −
∫

(0,∞)

V (x − y)P{M ∈ dy}, x ≥ 0.

Assume that the law of X is non-lattice and set D1 := e−a

γEX e−γX . It follows from (11) that D1 ∈ (0,∞)
and from [12, Theorem 2.2] that

V (x) ∼ D1eγx , x →∞. (29)

The latter implies that for any ε > 0 there exists an x0 > 0 such that

(D1 − ε)eγy ≤ V (y) ≤ (D1 + ε)e
γy

for all y ≥ x0. Fix one such x0. Then for all x ≥ x0,

(D1 − ε) eγx

∫

(0,x−x0]

e−γy P{M ∈ dy} ≤
∫

(0,x−x0]

V (x − y)P{M ∈ dy}

≤ (D1 + ε) e
γx

∫

(0,x−x0]

e−γy P{M ∈ dy},

and
∫

(x−x0,∞) V (x − y)P{M ∈ dy} ∈ [0, V (x0)]. Letting first x →∞ and then ε→ 0 we conclude
that

lim
x→∞

e−γx

∫

(0,∞)

V (x − y)P{M ∈ dy} = D1Ee−γM
1{M>0}.
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Together with (29) the latter yields

Eeaρ(x) ∼ D1
�

P{M > 0} −Ee−γM
1{M>0}

�

eγx

= D1
�

1−Ee−γM+�

eγx , x →∞.

Under the present assumptions, the random walk (Sn)n≥0 drifts to +∞ a.s. Therefore, P{M >

0}> 0 which implies that 1−Ee−γM+
> 0 and completes the proof in the non-lattice case.

The proof in the lattice case is based on the lattice version of [12, Theorem 2.2] and follows the
same path.

3 Examples

In this section, retaining the notation of Section 1, we illustrate the results of Theorem 1.2 and
Theorem 1.3 by three examples.

Example 3.1 (Simple random walk). Let 1/2< p < 1 and P{X = 1}= p = 1−P{X =−1}=: 1−q.
Then the Laplace transform ϕ of X is given by ϕ(t) = pe−t+qet and R=− log(2ppq). According
to [8, Formula (3.7) on p. 272] and [7, Example 1], respectively,

P{τ= 2n− 1} =
1

2q

�2n
n

�

22n(2n− 1)
(2
p

pq)2n, P{τ= 2n}= 0, n ∈ N;

P{ρ = 2n} = (p− q)
�

2n

n

�

(pq)n, P{ρ = 2n+ 1}= 0, n ∈ N0.

Stirling’s formula yields
�2n

n

�

22n ∼
1
p
πn

, n→∞, (30)

which implies that
EeRτ <∞ and EeRρ =∞.

Example 3.2. Let X
d
= Y1−Y2 where Y1 and Y2 are independent r.v.’s with exponential distributions

with parameters α and κ, respectively, 0 < α < κ. Then ϕ(t) = Ee−tX = ακ

(α+t)(κ−t)
and R =

− log( 4ακ
(α+κ)2

). According to [9, Formula (8.4) on p. 193], for a ∈ (0, R],

Eeaτ = (2α)−1(α+κ−
p

(α+κ)2 − 4ακea) < ∞.

Further, for n ∈ N0,

P{ρ = n} =

∫

(−∞,0]

P{inf
k≥1

Sk >−x}P{Sn ∈ dx}

=

∫

(−∞,0]

∫

(−x ,∞)

P{inf
k≥0

Sk >−x − y}P{S1 ∈ dy}P{Sn ∈ dx}.

According to [9, Formula (5.9) on p. 410],

P{inf
k≥0

Sk >−x − y} = P{sup
k≥0
(−Sk)< x + y} = 1−

α

κ
e−(κ−α)(x+y).
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Note that Sn has the same law as the difference of two independent random variables with gamma
distribution with parameters (n,α) and (n,κ), respectively, which particularly implies that, for
x > 0, the density of S1 takes the form ακe−αx

α+κ
. Thus2, for n ∈ N,

P{ρ = n} =

∫

(−∞,0]

∫ ∞

−x

�

1−
α

κ
e−(κ−α)(x+y)

� ακe−αy

α+κ
dy P{Sn ∈ dx}

=
κ−α
κ

∫

(−∞,0]

eαx P{Sn ∈ dx}

=
κ−α
κ

∫ ∞

0

∫ t

0

eα(s−t)α
nsn−1e−αs

(n− 1)!
κn tn−1e−κt

(n− 1)!
ds dt

=
κ−α
κ

αnκn

n!(n− 1)!

∫ ∞

0

t2n−1e−(α+κ)tdt

=
κ−α
(κ+α)2nα

nκn−1
�

2n− 1

n

�

,

and

P{ρ = 0}=
κ−α
κ

.

Hence,

EeRρ =
κ−α
κ

�

1+
∑

n≥1

4−n
�

2n− 1

n

��

= ∞,

since relation (30) implies that the summands are of order 1/
p

n, as n→∞.

Finally, we point out an explicit form of distribution of X for which EeRρ(x) <∞ for every x ≥ 0.

Example 3.3. Fix h > 0 and take any probability law µ1 on R such that the Laplace-Stieltjes
transform

ψ(t) :=

∫

R
e−t xµ1(dx), t ≥ 0,

is finite for 0 ≤ t ≤ h and infinite for t > h, and the left derivative of ψ at h, ψ′(h), is finite and
positive. For instance, one can take

µ1(dx) := ce−h|x |/(1+ |x |r)dx , x ∈ R

where r > 2 and c :=
�

∫

R e−h|x |(1+ |x |r)−1dx
�−1

> 0.
Now choose s sufficiently large such that ψ′(h) < sψ(h). Then ϕ(t) = e−stψ(t) is the Laplace-
Stieltjes transform of the distribution µ := δs ∗ µ1. Let X be a random variable with distribution
µ. Plainly, ϕ(t) is finite for 0≤ t ≤ h but infinite for t > h. Furthermore,

ϕ′(t) = e−st(ψ′(t)− sψ(t)), |t| ≤ h.

In particular, ϕ′(h) < 0 which, among other things, implies that R = − logϕ(h) and that γ0 = h.
Therefore, EX e−γ0X =−ϕ′(h)> 0, and by Theorem 1.2, EeRρ(x) <∞ for all x ≥ 0.

2We do not claim that this formula is new, but we have not been able to locate it in the literature.
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