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Abstract
We first study the probabilistic properties of the spectral norm of scaled eigenvalues of large di-
mensional Toeplitz, circulant and symmetric circulant matrices when the input sequence is inde-
pendent and identically distributed with appropriate heavy tails.
When the input sequence is a stationary two sided moving average process of infinite order, we
scale the eigenvalues by the spectral density at appropriate ordinates and study the limit for their
maximums.

1 Introduction

Matrices with suitable patterned random inputs where the dimension tends to infinity are known
as large dimensional random matrices. In this article we focus on the (symmetric) Toeplitz, cir-
culant, reverse circulant and symmetric circulant matrices defined as follows: let {Z0, Z1, . . .} be a
sequence of real random variables, which will be called the input sequence.
(Symmetric) Toeplitz matrix Tn. This n× n symmetric matrix with input {Zi} is the matrix with
(i, j)-th entry Z|i− j| for all i, j. Toeplitz matrices appear as the covariance matrix of stationary pro-
cesses, in shift-invariant linear filtering and in many aspects of combinatorics, time series and har-
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monic analysis. [Bai(1999)] proposed the study of the large Toeplitz matrix with independent in-
puts. For results in the non random situation we refer the reader to [Grenander and Szegő(2001)].
Circulant matrix Cn. The first row is (Z0 Z1 . . . Zn−1) and the ( j+1)-th row is obtained by giving
its j-th row a right circular shift by one position. This is not a symmetric matrix and its (i, j)-th
element is given by Z( j−i+n)mod n.
One of the usefulness of the circulant matrix is due to its deep connection to the Toeplitz matrix.
The former has an explicit easy formula for its eigenvalues. The spectral analysis of the latter is
much harder and challenging. If the input {Zl}l≥0 is square summable, then the circulant matrix
approximates the corresponding Toeplitz matrix in several senses when the dimension grows. See
[Gray (2006)] for a recent and relatively easy account.
The circulant matrices are diagonalized by the Fourier matrix F = ((Fs,t)), Fs,t = e2πist/n, 0≤ s, t <
n. Their eigenvalues are the discrete Fourier transform of the input sequence {al}0≤l<n and are
given by λt =

∑n−1
l=0 al e

−2πi t/n, 0 ≤ t < n. The eigenvalues of the circulant matrices arise cru-
cially in time series analysis. For instance, the periodogram of a sequence {al}l≥0 is defined as
n−1|

∑n−1
l=0 al e

2πi j/n|2, −b n−1
2
c ≤ j ≤ b n−1

2
c and is a straightforward function of the eigenvalues of

the corresponding circulant matrix. The study of the properties of the periodogram is fundamental
in the spectral analysis of time series. See for instance [Fan and Yao(2003)]. The maximum of the
perdiogram, in particular, has been studied in [Davis and Mikosch(1999)]. Some recent develop-
ments on random circulant matrices are available in [Meckes (2009)] and [Bose et al.(2009a)].
Symmetric circulant matrix SCn. This matrix is a symmetric version of the usual circulant matrix.
The first row (Z0 Z1 Z2 . . . Z2 Z1) is a palindrome and the ( j + 1)-th row is obtained by giving its
j-th row a right circular shift by one position. Its (i, j)-th element is given by Zn/2−|n/2−|i− j||.
When the input sequence is i.i.d. with positive variance, then it is no longer square summable. In
that case, the spectral behaviour of the symmetric circulant and the symmetric Toeplitz are quite
different. Compare for example, the limiting spectral distribution results of
[Bose and Mitra(2002)] and [Massey et al.(2007)] for the symmetric circulant matrix, and of
[Bryc, Dembo and Jiang (2006)] and [Hammond and Miller(2005)] for the Toeplitz matrix.
On the other hand, consider the random symmetric band Toeplitz matrix, where the banding
parameter m, which essentially is a measure of the number of nonzero entries, satisfies m→∞ and
m/n→ 0. Then again its spectral distribution is approximated well by the corresponding banded
symmetric circulant matrix. See for example [Kargin(2009)] and [Basak and Bose(2009)].
Reverse circulant matrix RCn. The first row of this matrix is (Z0 Z1 . . . Zn−1) and the ( j + 1)-th
row is obtained by giving its j-th row a left circular shift by one position. This is a symmetric
matrix and its (i, j)-th entry is given by Z(i+ j−2)mod n. This matrix arises in various applications of
time series. The eigenvalue structure of this matrix is very closely related to the periodogram of
the input sequence. The LSD of the reverse circulant was derived in [Bose and Mitra(2002)]. This
has been used in the study of the symmetric band Hankel matrices. See [Basak and Bose(2009)]
for details.
Spectral norm. The spectral norm ‖A‖ of a matrix A with complex entries is the square root of the
largest eigenvalue of the positive semidefinite matrix A∗A:

‖A‖=
p

λmax(A∗A)

where A∗ denotes the conjugate transpose of A. Therefore if A is an n× n real symmetric matrix or
A is a normal matrix then

‖A‖= max
1≤i≤n

|λi |

where λ1,λ2, . . . ,λn are the eigenvalues of A.
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Existing limit results for the spectral norm. For the existing limit results on spectral norms of the
Toeplitz and circulant matrices, see [Bose and Sen(2007)], [Meckes(2007)], [Bryc and Sethuraman(2009)],
[Bose et al.(2009b)] and [Adamczak(2010)]. For spectral norm and radii of non-central random
matrices see [Silverstein(1994)]. The maximum eigenvalues of the Wigner and the sample covari-
ance matrix have been extensively studied, see [Bai and Yin (1988)] and [Yin et al.(1988)] for
details. All these works are for the situation when the entries have finite moment of at least order
two.
[Soshnikov (2004)] shows the distributional convergence of the maximum eigenvalue of an ap-
propriately scaled Wigner matrix with heavy tailed entries {x i j} satisfying P(|x i j | > x) = h(x)x−α

where h is a slowly varying function at infinity (that is, h(t x)/h(x)→ 1 as x →∞) and 0< α < 2.
The limiting distribution is Φα(x) = exp(−x−α). A similar result was proved for the sample covari-
ance matrices in [Soshnikov (2006)] with Cauchy entries. These results on the Wigner and the
sample covariance matrices were extended in [Auffinger et al.(2009)] to the case 0≤ α≤ 4.
Our results. We focus on the above listed four matrices when the input sequence is heavy tailed,
and 0 < α < 1. We establish the distributional convergence of the spectral norm of the three
circulant matrices. Though we are unable to obtain the exact limit in the Toeplitz case, we provide
upper and lower bounds. Our approach is to exploit the structure of the matrices and use existing
methods on the study of maximum of periodograms for heavy tailed sequences.
It seems to be a nontrivial problem to derive properties of the spectral norm in the case of mov-
ing average process inputs. We resort to scaling each eigenvalue by the power transfer function
(defined in Section 3) at the appropriate ordinate as described below and then consider their
maximum. For any of the above mentioned matrix An, we define M(An, f ) = max1≤k≤n

|λk |p
2π f (ωk)

where f is the power transfer function corresponding to {xn} and {λk} are the eigenvalues of
An. Similar scaling has been used in the study of periodograms (see [Davis and Mikosch(1999)],
[Mikosch et al.(2000)], [Lin and Liu(2009)]). We show the distributional convergence of M(An, f )
for the three circulant matrices. Any general result without the scaling seems difficult to derive
without further assumptions. However in this setup the results are immediate from the results on
the spectral norm of their i.i.d. counterparts.

2 Results for i.i.d. input

Notation and preliminaries. Let {Zt , t ∈ Z} be a sequence of i.i.d random variables with common
distribution F where F is in the domain of attraction of an α-stable random variable with 0< α < 1.
Thus, there exist p, q ≥ 0 with p+ q = 1 and a slowly varying function L(x), such that

lim
x→∞

P(Z1 > x)
P(|Z1|> x)

= p, lim
x→∞

P(Z1 ≤−x)
P(|Z1|> x)

= q and P(|Z1|> x)∼ x−αL(x) as x →∞. (1)

A random variable Yα is said to have a stable distribution Sα(σ,β ,µ) if there are parameters
0< α≤ 2,σ ≥ 0,−1≤ β ≤ 1 and µ real such that its characteristic function has the form

E[exp(i tYα)] =
�

exp{iµt −σα|t|α(1− iβ sgn(t) tan(πα/2))}, if α 6= 1,
exp{iµt −σ|t|(1+ (2iβ/π) sgn(t) ln |t|)}, if α= 1.

If β = µ= 0, then Yα is symmetric α-stable SαS. For details on stable processes see [Samorodnitsky and Taqqu (1994)].
In the description of our results, we shall need the following: let {Γ j}, {U j} and {B j} be three
independent sequences defined on the same probability space where {Γ j} is the arrival sequence
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of a unit rate poisson process on R, U j are i.i.d U(0,1) and B j are i.i.d. satisfying

P(B1 = 1) = p and P(B1 =−1) = q, (2)

where p and q are as defined in (1). We also define

Yα =
∞
∑

j=1

Γ−1/α
j ∼ Sα(C

− 1
α

α , 1, 0) where Cα =

�
∫ ∞

0

x−α sin xd x

�−1

. (3)

For a nondecreasing function f on R, let f ←(y) = inf{s : f (s) > y}. Then the scaling sequence
{bn} is defined as

bn =
�

1

P[|Z1|> ·]

�←

(n)∼ n1/αL0(n) for some slowly varying function L0.

Define

ωk =
2πk

n
for 0≤ k ≤ n.

The reverse circulant and the circulant. The eigenvalues {λk, 0 ≤ k ≤ n− 1} of b−1
n RCn are

given by (see [Bose and Mitra(2002)]):






λ0 = b−1
n

∑n−1
t=0 Zt

λn/2 = b−1
n

∑n−1
t=0 (−1)t Zt , if n is even

λk =−λn−k =
p

In(ωk), 1≤ k ≤ [ n−1
2
],

(4)

where

In(ωk) =
1

b2
n

|
n−1
∑

t=0

Zt e
−i tωk |2.

The eigenvalues of b−1
n Cn are given by

λ j = b−1
n

n
∑

t=1

Zt e
i tω j , 0≤ j ≤ n− 1.

Note that {|λk|2; 1 ≤ k < n/2} is the periodogram of {Zi} at the frequencies {ωk; 1 ≤ k < n/2}.
From the eigenvalue structure of Cn and RCn, it is clear that ‖b−1

n Cn‖ = ‖b−1
n RCn‖ and therefore

they have identical limiting behavior which is stated in the following result.

Theorem 1. Assume that the input sequence is i.i.d. {Zt} satisfying (1). Then for α ∈ (0, 1),
‖b−1

n Cn‖ ⇒ Yα and ‖b−1
n RCn‖ ⇒ Yα, where Yα is as in (3).

The symmetric circulant. The eigenvalues {λk, 0≤ k ≤ n− 1} of b−1
n SCn are given by:

(i) for n odd:
(

λ0 = b−1
n

�

Z0 + 2
∑[n/2]

j=1 Z j
�

λk = b−1
n

�

Z0 + 2
∑[n/2]

j=1 Z j cos(ωk j)
�

, 1≤ k ≤ [n/2]
(5)

(ii) for n even:






λ0 = b−1
n

�

Z0 + 2
∑

n
2
−1

j=1 Z j + Zn/2
�

λk = b−1
n

�

Z0 + 2
∑

n
2
−1

j=1 Z j cos(ωk j) + (−1)k Zn/2
�

, 1≤ k ≤ n
2

(6)

with λn−k = λk in both cases.
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Theorem 2. Assume that the input sequence is i.i.d. {Zt} satisfying (1). Then for α ∈ (0,1),
‖b−1

n SCn‖ ⇒ 21−1/αYα, where Yα is as in (3).

Remark 1. (i) Theorem 1 and 2 are rather easy to derive when p = 1, that is, when the left tail is
negligible compared to the right tail. Let us consider ‖b−1

n RCn‖ and note from the eigenvalue structure
that,

‖b−1
n RCn‖ ≤ b−1

n

n
∑

t=1

|Zt |.

For the lower bound note that

P(‖b−1
n RCn‖> x)≥ P(λ0 > x) = P(b−1

n

n
∑

t=1

Zt > x).

Now since P(|Z1| > x) ∼ P(Z1 > x) as x → ∞, the upper and lower bound converge with the
same scaling constant and hence Theorem 1 holds. The details on these convergence can be found in
Chapter 1 of [Samorodnitsky and Taqqu (1994)]. Similar conclusion can be drawn for the symmetric
circulant matrices too when p = 1.
(ii) When the input sequence {Zi} are i.i.d. non negative and satisfies (1) with α ∈ (1, 2) then
from above it is easy to derive the distributional behavior spectral norm. In particular if k j =
α

α−1

�

j
α−1
α − ( j− 1)

α−1
α

�

and fYα =
∑∞

j=1(Γ j − k j)∼ Sα(C
− 1
α

α , 1, 0) then,

P
�‖RCn‖− n E[Z1]

bn
> x
�

→ P(fYα > x) as n→∞,

and

P
�‖SCn‖− n E[Z1]

bn
> x
�

→ P(21−1/α
fYα > x) as n→∞.

When α= 1, and {Zi} are non negative

P







‖RCn‖− nbn

∫∞
0

sin( x
bn
)P(Z1 ∈ d x)

bn
> x






→ P(ffYα > x),

where ffYα is a S1(2/π, 1, 0) random variable. Similar results hold for symmetric circulant matrices.

The Toeplitz. Resolving the question of the exact limit of the Toeplitz spectral norm seems to very
difficult. Here we provide a good upper and lower bound in the distribution sense.

Theorem 3. Suppose that the input sequence is i.i.d. {Zt} satisfying (1). Then for α ∈ (0,1) and
γ > 0,

P
�

2
∞
∑

j=1

(1−U j)Γ
−1/α
j > γ

�

≤ lim inf
n

P
�

b−1
n ‖Tn‖> γ

�

≤ limsup
n

P
�

b−1
n ‖Tn‖> γ

�

≤ P
�

2
∞
∑

j=1

Γ−1/α
j > γ

�

.

Remark 2. The case when α ∈ [1,2) and p 6= 1 and {Zi} are not necessarily non negative appears to
be a non trivial problem. In the reverse circulant case we saw that the eigenvalue structure is similar
to the square root of the periodogram and the maximum of the periodogram is not tight with the
scaling b1/α

n when α≥ 1 (even with input sequence as i.i.d. SαS random variables). Instead it is tight
with a different scaling (see [Mikosch et al.(2000)], Section 3 for details).
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3 Results for dependent inputs

Now suppose that the input sequence is a linear process {X t , t ∈ Z} given by

X t =
∞
∑

j=−∞
a j Zt− j , t ∈ Z, where

∞
∑

j=−∞
|a j |α−ε <∞ for some 0< ε < α. (7)

Suppose that {Zi} are i.i.d random variables satisfying (1) with 0 < α < 1. Using E |Z |α−ε < ∞
and the assumption on the {a j} we have,

E |X t |α−ε ≤
∞
∑

j=−∞
|a j |α−ε E |Zt− j |α−ε = E |Z1|α−ε

∞
∑

j=−∞
|a j |α−ε <∞.

Hence X t is finite a.s. Let

ψ(x) =
∞
∑

j=−∞
a j exp(−i2πx j), x ∈ [0, 1]

be the transfer function of the linear filter {a j} and fX (x) be the power transfer function of {X t}.
Then

fX (x) = |ψ(x)|2.

Define

M(RCn, fX ) = max
0≤k< n

2

|λk|
p

fX (k/n)
, M(Cn, fX ) = max

0≤k< n
2

|λk|
p

fX (k/n)
, M(SCn, fX ) = max

0≤k< n
2

|λk|
p

fX (k/n)

where in each case {λk} are the eigenvalues of the corresponding matrix. From the eigenvalue
structure of Cn and RCn, M(Cn, fX ) =M(RCn, fX ).

Theorem 4. Assume that {Xn} and {a j} satisfy (7) and {Zt} is i.i.d satisfying (1). Suppose fX is
strictly positive on [0, 1/2]. Then
(a) M(b−1

n Cn, fX )⇒ Yα and M(b−1
n RCn, fX )⇒ Yα.

(b) Further, if a j = a− j then M(b−1
n SCn, fX )⇒ 21−1/αYα.

4 Proofs of the results

Some auxiliary results. The main idea of the proofs is taken from [Mikosch et al.(2000)] who
show weak convergence of the maximum of the periodogram based on heavy tailed sequence for
α < 1. Let εx(·) denote the point measure which gives unit mass to any set containing x and let
E = [0, 1]× ([−∞,∞]\{0}). Let Mp(E) be the set of point measures on E, topologized by vague
convergence. The following convergence result follows from Proposition 3.21 of [Resnick(1987)]:

Nn :=
n
∑

k=1

ε(k/n,Zk/bn)⇒ N :=
∞
∑

j=1

ε(U j ,B jΓ
−1/α
j ) in Mp(E). (8)

Suppose f is a bounded continuous complex valued function defined on R and without loss of
generality assume | f (x)| ≤ 1 for all x ∈ R. Now pick η > 0 and define Tη : Mp(E)−→ C[0,∞) as
follows:

(Tηm)(x) =
∑

j

v j1{|v j |>η} f (2πx t j)
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if m=
∑

j ε(t j ,v j) ∈ Mp(E) and v j ’s are finite. Elsewhere, set (Tηm)(x) = 0.
In C[0,∞) the metric is taken to be ‖x(·)− y(·)‖∞ where

‖x(·)− y(·)‖∞ =
∞
∑

n=1

1

2n

�

‖x(·)− y(·)‖n ∧ 1
�

, where ‖x(·)− y(·)‖n = sup
t∈[0,n]

|x(t)− y(t)|.

The following Lemma was proved in [Mikosch et al.(2000)] (Lemma 2.3) with the function f (x) =
exp(−i x). Same proof works in our case.

Lemma 1. Tη : Mp(E) −→ C[0,∞) is continuous a.s. with respect to the distribution of N given in
(8).

The proof of the following result is similar to the proof of Proposition 2.2 of [Mikosch et al.(2000)].
We briefly sketch the proof in our case.

Lemma 2. For 0< α < 1, as n→∞ the following convergence holds in C[0,∞):

Jn,Z(x/n) :=
n
∑

j=1

Z j

bn
f (2πx j/n)⇒ J∞(x) :=

∞
∑

j=1

B jΓ
−1/α
j f (2πxU j), 0≤ x <∞.

Proof. Applying Lemma 1 on (8) we have

J (η)n,Z (x/n) :=
n
∑

j=1

Z j

bn
f (2πx j/n)1{|Z j |>ηbn}

⇒
∞
∑

j=1

B jΓ
−1/α
j f (2πxU j)1{Γ−1/α

j >η} := J (η)∞ (x) in C[0,∞).

Also, as η→ 0 by dominated convergence theorem we have

J (η)∞ (x)⇒ J∞(x) :=
∞
∑

j=1

B jΓ
−1/α
j f (2πxU j).

So using Theorem 3.2 of [Billingsley(1999)], the proof will be complete if for any ε > 0,

lim
η→0

lim sup
n→∞

P
�

‖J (η)n,Z − Jn,Z‖∞ > ε
�

= 0, (9)

where ‖x(·)− y(·)‖∞ is the metric distance in C[0,∞). Now since | f (x)| ≤ 1, we have

lim
η→0

lim sup
n→∞

P
�

‖J (η)n,Z − Jn,Z‖∞ > ε
�

≤ lim
η→0

limsup
n→∞

P
�

n
∑

j=1

�

�

Z j

bn

�

�1{|Z j |≤ηbn} > ε
�

≤ lim
η→0

limsup
n→∞

nε−1 E
�

�

�

Z1

bn

�

�1{|Z j |≤ηbn}

�

.

By an application of Karamata’s theorem (see [Resnick(1987)] Exercise 0.4.2.8) we get

n E
�

�

�

Z1

bn

�

�1{|Z j |≤ηbn}

�

∼n→∞
α

1−α
nηP(|Z1|> ηbn)∼n→∞

α

1−α
η1−α

and α

1−αη
1−α→ 0 as η→ 0. This completes the proof of the lemma.
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Proof of Theorem 1. We use Lemma 1 and 2 with f (x) = exp(−i x). It is immediate that

b−1
n ‖Cn‖ ≤ b−1

n

n
∑

t=1

|Zt |. (10)

It is well known that

b−1
n

n
∑

t=1

|Zt | ⇒ Yα =
∞
∑

j=1

Γ−1/α
j ∼ Sα(C

−1/α
α , 1, 0). (11)

Hence it remains to show that for γ > 0,

lim inf
n→∞

P(b−1
n ‖Cn‖> γ)≥ P(Yα > γ). (12)

Now observe that for any integer K and sufficiently large n,

P
�

sup
j=1,...,[n/2]

|Jn,Z( j/n)|> γ
�

≥ P
�

sup
j=1,...,K

|Jn,Z( j/n)|> γ
�

.

Now from Lemma 2 we have
�

Jn,Z( j/n), 1≤ j ≤ K
�

⇒
�

J∞( j), 1≤ j ≤ K
�

in RK . Hence
sup

j=1,...,K
|Jn,Z( j/n)| ⇒ sup

j=1,...,K
|J∞( j)|

and so letting K →∞,

lim inf
n→∞

P
�

sup
j=1,...,[n/2]

|Jn,Z( j/n)|> γ
�

≥ P
�

sup
j=1,...,∞

|J∞( j)|> γ
�

.

Now the theorem follows from Lemma 3 given below.

This lemma is similar to Lemma 2.4 of [Mikosch et al.(2000)] and hence we skip the proof.

Lemma 3.

sup
j=1,...,∞

|J∞( j)|= sup
j=1,...,∞

�

�

∞
∑

t=1

BtΓ
−1/α
t exp(−2πi jUt)

�

�= Yα a.s.

Proof of Theorem 2. The proof is similar to the proof of Theorem 1. We provide the proof for n
odd, and for n even the changes needed are minor. Define

Jn,Z(x) := 2b−1
n

q
∑

t=1

Zt cos(2πx t) and Mn,Z := max
0≤k≤q

�

�Jn,Z(k/n)
�

�, (13)

where q = qn = [
n
2
]. Since

�

�‖b−1
n SCn‖ − Mn,Z

�

� → 0 almost surely, it is enough to show Mn,Z ⇒
21−1/αYα. Note that (8) holds with [0, 1] replaced by [0, 1/2], and letting Nn =

∑q
k=1 ε(k/n,Zk/bq),

N =
∑∞

j=1 ε(U j ,B jΓ
−1/α
j ) and U j to be i.i.d. U[0,1/2]. Now following the argument given in Lemma

2.3 of [Mikosch et al.(2000)], Lemma 2 and taking f (x) = cos x it is easy to establish that

Jn,Z(x/n) = 2b−1
n

q
∑

k=1

Zk cos
2πkx

n
⇒ 21−1/α

∞
∑

j=1

B jΓ
−1/α
j cos(2πxU j) := J∞(x). (14)
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It is obvious that

Mn,Z ≤ 2b−1
n

q
∑

t=1

|Zt | ⇒ 21−1/α
∞
∑

j=1

Γ−1/α
j = 21−1/αYα.

It remains to show that for η > 0,

lim inf
n→∞

P(Mn,Z > η)≥ P(21−1/αYα > η).

Now following the arguments given to prove (12), we can establish this relation. This completes
the proof of the theorem.

Proof of Theorem 3. Following [Meckes(2007)], Tn is a submatrix of the infinite Laurent matrix

Ln =
�

Z| j−k|1| j−k|≤n−1
�

j,k∈Z

so ‖Tn‖ ≤ ‖Ln‖ , where ‖Ln‖ denotes the operator norm of Ln acting in the standard way on l2(Z).
If we use the Fourier basis to identify l2(Z) with L2[0,1], it turns out that Ln corresponds to a
multiplication operator with the multiplier

g(x) =
n−1
∑

j=−(n−1)

Z| j|e
2πi j x = Z0 + 2

n−1
∑

j=1

cos(2π j x)Z j .

Therefore
‖Tn‖ ≤ ‖Ln‖= ‖g‖∞ = sup

0≤x≤1
|g(x)|.

Hence as n→∞,

b−1
n ‖Tn‖ ≤ b−1

n

�

|Z0|+ 2
n−1
∑

j=0

|Z j |
�

⇒ 2
∞
∑

j=1

Γ−1/α
j

and we have for γ > 0

limsup
n

P
�

b−1
n ‖Tn‖> γ

�

≤ P
�

2
∞
∑

j=1

Γ−1/α
j > γ

�

.

By another argument of [Meckes(2007)], we get the following estimate

‖Tn‖= sup
v∈Cn\{0}

〈Tnv, v〉
〈v, v〉

≥ sup
0≤x≤1

1

n
|〈Tnvx , vx〉|,

where vx ∈ Cn is defined as (vx) j = e2πi x j for j = 1,2, . . . , n and 〈·, ·〉 is the standard inner product
on Cn. Therefore

‖Tn‖ ≥
1

n
sup

0≤x≤1

�

�

n
∑

j,k=1

Z| j−k|e
2πi( j−k)x

�

�

=
1

n
sup

0≤x≤1

�

�

n−1
∑

j=−(n−1)

(n− | j|)Z| j|e2πi j x
�

�

= sup
0≤x≤1

�

�Z0 + 2
n−1
∑

j=1

�

1−
j

n
�

Z j cos(2π j x)
�

�.
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Now

lim inf
n

P
�

b−1
n ‖Tn‖> γ

�

≥ lim inf
n

P
�

b−1
n sup

0≤x≤1

�

�Z0 + 2
n−1
∑

j=1

�

1−
j

n
�

Z j cos(2π j x)
�

�> γ
�

= lim
n

P
�

b−1
n sup

0≤x≤1

�

�2
n−1
∑

j=1

�

1−
j

n
�

Z j cos(2π j x)
�

�> γ
�

To find the limit in the last expression, pick η > 0 and define Tη : Mp(E)−→ C[0,∞), as follows:

(Tηm)(x) =

¨
∑

j(1− t j)v j cos(2πx t j)1(|v j |> η) if m=
∑

j ε(t j ,v j), all v′js are finite
0 otherwise

Following the argument given in Lemma 2.3 of [Mikosch et al.(2000)], it is easy to see that Tη is
continuous a.s. with respect to the distribution of N and then using an argument from Lemma 2,
we can show that for fixed x

2b−1
n

n−1
∑

j=1

(1− j/n)Z j cos(2π j x/n)⇒ 2
∞
∑

j=1

(1− U j)B jΓ
−1/α
j cos(2πxU j). (15)

Now for any fixed T where n> T > 0, using (15),

sup
0≤x≤1

�

�2b−1
n

n−1
∑

j=1

�

1−
j

n
�

Z j cos(2π j x)
�

� = sup
0≤x≤n

�

�2b−1
n

n−1
∑

j=1

�

1−
j

n
�

Z j cos
2π j x

n

�

�

≥ sup
0≤x≤T

�

�2b−1
n

n−1
∑

j=1

�

1−
j

n
�

Z j cos
2π j x

n

�

�

⇒ sup
0≤x≤T

�

�2
∞
∑

j=1

(1− U j)B jΓ
−1/α
j cos(2πxU j)

�

�,

and hence

lim inf
n

P
�

b−1
n ‖Tn‖> γ

�

≥ P
�

sup
0≤x≤T

�

�2
∞
∑

j=1

(1− U j)B jΓ
−1/α
j cos(2πxU j)

�

�> γ
�

.

Since this is true for any T , we obtain

lim inf
n

P
�

b−1
n ‖Tn‖> γ

�

≥ P
�

sup
0≤x<∞

�

�2
∞
∑

j=1

(1− U j)B jΓ
−1/α
j cos(2πxU j)

�

�> γ
�

.

Now to identify the distribution of the random variable appearing in the right side of the inequality,
we follow Lemma 2.4 of [Mikosch et al.(2000)]. Here we use the fact

�

(xU1(ω), . . . , xUm(ω)), x ≥ 0
	

is dense in [0,1]m and we get

sup
0≤x<∞

�

�2
∞
∑

j=1

(1− U j)B jΓ
−1/α
j cos(2πxU j)

�

�⇒
∞
∑

j=1

(1− U j)Γ
−1/α
j .

This completes the proof.
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Remark 3. The assumption of α < 1 is crucially used only in the lower bound argument. It is clear
from the above proof that the upper bound can be derived when α ∈ (1, 2). Indeed, it easily follows
that

limsup
n→∞

P
�‖Tn‖− 2n E[|Z1|]

bn
> x
�

≤ P(2fYα > x),

where fYα is as in Remark 1(ii).

Proof of Theorem 4(a). The proof is along the lines of the proof of Lemma 2.6 in [Mikosch et al.(2000)].
Let cCn be the circulant matrix formed with independent entries {Zi}. To prove the result it is
enough to show that

�

�M(b−1
n Cn, fX )−‖b−1

n
cCn‖
�

�

P−→ 0.

Let Jn,Z(x) = b−1
n

∑n
t=1 Zt exp(−i2πx t). Note

�

�M(b−1
n Cn, fX )−‖b−1

n
cCn‖
�

� =
�

� sup
1≤k≤n

( fX (k/n))
−1/2|Jn,X (k/n)| − sup

1≤k≤n
|Jn,Z(k/n)|

�

�

≤ sup
1≤k≤n

�

�|ψ(k/n)−1Jn,X (k/n)| − |Jn,Z(k/n)|
�

�

≤ sup
1≤k≤n

�

�ψ(k/n)−1Jn,X (k/n)− Jn,Z(k/n)
�

�

and

Jn,X (x) = b−1
n

n
∑

t=1

X t exp(−i2πx t)

= b−1
n

∞
∑

j=−∞
a j exp(−i2πx j)

�

n
∑

t=1

Zt exp(−i2πx t) + Vn, j
�

= ψ(x)Jn,Z(x) + Yn(x), (16)

where

Vn, j =
n− j
∑

t=1− j

Zt exp(−i2πx t)−
n
∑

t=1

Zt exp(−i2πx t), Yn(x) = b−1
n

∞
∑

j=−∞
a j exp(−i2πx j)Vn, j .

Since fX is bounded away from 0 and (16) holds, it is enough to show that max1≤k≤n |Yn(k/n)|
P→ 0.

Now

Yn(x) = b−1
n

∞
∑

j=n+1

a j exp(−i2πx j)Vn, j + b−1
n

n
∑

j=1

a j exp(−i2πx j)Vn, j

+ b−1
n

−n−1
∑

j=−∞
a j exp(−i2πx j)Vn, j + b−1

n

−1
∑

j=−n

a j exp(−i2πx j)Vn, j

= S1(x) + S2(x) + S3(x) + S4(x).

Now following an argument similar to that given in the proof of Lemma 2.6 in [Mikosch et al.(2000)],
we can show that

max
1≤k≤n

|Si(k/n)|
P→ 0 for i = 1,2.
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The behavior of S3(x) and S4(x) are similar to S1(x) and S2(x) respectively. Therefore, following

similar argument we can show that max1≤k≤n |S j(k/n)|
P→ 0 for j = 3,4. This completes the proof

of part (a).

Proof of Theorem 4(b). Let dSCn be the symmetric circulant matrix formed with independent
entries {Zi}. In view of Theorem 2, it is enough to show that

�

�M(b−1
n SCn, fX )−‖b−1

n
dSCn‖

�

�

P→ 0.

Let q = qn = [
n
2
] and

Jn,Z(x) := 2b−1
n

q
∑

t=1

Zt cos(2πx t)

= b−1
n

q
∑

t=1

Zt exp(i2πx t) + b−1
n

q
∑

t=1

Zt exp(−i2πx t).

Then using a j = a− j we have

Jn,X (x) := b−1
n

q
∑

t=1

X t exp(i2πx t) + b−1
n

q
∑

t=1

X t exp(−i2πx t)

= b−1
n

∞
∑

j=−∞
a j exp(−i2πx j)

�

q
∑

t=1

Zt exp(i2πx t) + Un, j
�

+b−1
n

∞
∑

j=−∞
a j exp(−i2πx j)

�

q
∑

t=1

Zt exp(−i2πx t) + Vn, j
�

= ψ(x)Jn,Z(x) + Y1n(x) + Y2n(x),

where

Un, j =
q+ j
∑

t=1+ j

Zt exp(i2πx t)−
q
∑

t=1

Zt exp(i2πx t), Vn, j =
q− j
∑

t=1− j

Zt exp(−i2πx t)−
q
∑

t=1

Zt exp(−i2πx t),

Y1n = b−1
n

∞
∑

j=−∞
a j exp(−i2πx j)Un, j , Y2n = b−1

n

∞
∑

j=−∞
a j exp(−i2πx j)Vn, j .

Since fX is bounded away from 0, it is enough to show that

sup
1≤k≤q

�

�Jn,X (k/n)−ψ(k/n)Jn,Z(k/n)
�

� ≤ sup
1≤k≤q

�

�Y1n(k/n)
�

�+ sup
1≤k≤q

�

�Y2n(k/n)
�

�

P→ 0.
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Now

Y1n(x) = b−1
n

∞
∑

j=−∞
a j exp(−i2πx j)Un, j

= b−1
n

∞
∑

j=q+1

a j exp(−i2πx j)Un, j + b−1
n

q
∑

j=1

a j exp(−i2πx j)Un, j

+ b−1
n

−q−1
∑

j=−∞
a j exp(−i2πx j)Un, j + b−1

n

−1
∑

j=−q

a j exp(−i2πx j)Un, j

= S1(x) + S2(x) + S3(x) + S4(x).

Again following an argument similar to that in the proof of Lemma 2.6 in [Mikosch et al.(2000)],
we can show that sup1≤k≤q

�

�Si(k/n)
�

�

P→ 0 for 1 ≤ i ≤ 4. Hence sup1≤k≤q

�

�Y1n(k/n)
�

�

P→ 0. Similarly

sup1≤k≤q

�

�Y2n(k/n)
�

�

P→ 0. This completes the proof of part (b).
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