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Abstract

For an irreducible Markov chain (Xn)n≥0 we identify the rate function governing the large deviation
estimation of empirical mean 1

n

∑n−1
k=0 f (Xk) by means of the Donsker-Varadhan’s entropy. That

allows us to obtain the lower bound of large deviations for the empirical measure 1
n

∑n−1
k=0 δXk

in
full generality.

1 Introduction

Large deviations of Markov processes were opened by Donsker-Varadhan [8] (1975-1983) under
strong regularity conditions. Generalizations of their fundamental works are very numerous and
various. In this paper we are interested in general irreducible Markov processes. In this direction
the first general results were obtained by Ney and Nummelin [14] (1987). de Acosta [5] (1988)
derived a universal lower bound for bounded additive functionals valued in a separable Banach
space, and the boundedness condition was finally removed by de Acosta-Ney [6] (1998) : that is
a definite work for the lower bound. For related works see also Jain [10] (1990) and some recent
works [17, 18, 20] by the second named author, and Kontoyiannis-Meyn [11] and Meyn [12].
However the rate function, a basic object describing the exact exponential rate in a large deviation
estimation, is expressed by means of the convergence parameter, a quantity proper to the theory of
irreducible Markov processes. It is not related to the Donsker-Varadhan entropy, unlike the work
of Deuschel-Stroock [7] in the more classical strong mixing case.
The main purpose of this note is to identify the rate function appearing in the large deviation
results in [14, 5, 6] etc by means of the Donsker-Varadhan entropy. The key is to prove the
lower semi-continuity of the Cramer functional associated with the convergence parameter of the
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Feynman-Kac semigroup. This result is based mainly on the increasing continuity of the conver-
gence parameter due to de Acosta [5].
This paper is organized as follows. In the next section we present necessary backgrounds and
calculate the Legendre transform of the Cramer functional. We prove in section 3 the lower
semi-continuity of the Cramer functional, which gives us the desired identification of the rate
function of de Acosta-Ney [6] and as corollary we obtain the lower bound of large deviations for
the occupation measures. Finally in section 4 we present some remarks about the upper bound
of Ney-Nummelin [14] and provide a very simple counter-example to the upper bound of large
deviations for unbounded additive functionals.

2 Preliminaries and Legendre transform of the Cramer func-
tional

2.1 Preliminaries

We recall some known facts about irreducible Markov chains from Nummelin [15] and Meyn-
Tweedie [13].
Let K(x , d y) be a nonnegative kernel on a measurable space (E,B) whereB is countably gener-
ated. It is said irreducible if there is some non-zero nonnegative σ-finite measure µ such that

∀A∈B with µ(A)> 0,
+∞
∑

n=1

Kn(x , A)> 0, for all x ∈ E. (1)

Such measure µ is said to be a maximal irreducible measure of K , if µK � µ. All maximal
irreducible measures of K are equivalent. Below µ is some fixed maximal irreducible measure of
K .
A couple (s,ν) where s ≥ 0 with µ(s) :=

∫

E
s(x)dµ(x) > 0 and ν a probability measure on E is

said K-small, if there is some m0 ≥ 1 and constant c > 0 such that

Km0(x , A)≥ cs⊗ ν(x , A) = cs(x)ν(A), x ∈ E, A∈B (2)

A real measurable function s ≥ 0 with µ(s) > 0 is said to be K-small, if there is some probability
measure such that (s,ν) is K-small. A subset A∈B with µ(A)> 0 is said K-small if 1A does.
By Nummelin [15, Theorem 2.1], any irreducible kernel K has always such a small couple (s,ν).
A non-empty set F ∈ B is said K-closed, if K(x , F c) = 0 for all x ∈ F . For every K-closed F ,
µ(F c) = 0 by the irreducibility of K .
According to Nummelin [15, Definition 3.2, Proposition 3.4 and 4.7], the convergence parameter
of K , say R(K), is given by : for every K-small couple (s,ν),

R(K) = sup

(

r ≥ 0 :
+∞
∑

n=0

rnνKns <+∞

)

= sup

(

r ≥ 0 : (∃K-closed F)(∀K-small s),
+∞
∑

n=0

rnKns <+∞, x ∈ F

)

.

(3)

It is well known that 0≤ R(K)<+∞.



542 Electronic Communications in Probability

Lemma 2.1. For every K-small couple (s,ν),

− log R(K) = limsup
n→∞

1

n
logνKns

= inf
K−closed F

sup
x∈F

limsup
n→∞

1

n
log Kns(x)

= esssupx∈E lim sup
n→∞

1

n
log Kns(x).

(4)

Here and hereafter esssupx∈E is taken always w.r.t µ.

Its proof is quite easy, so omitted.

2.2 Cramer functional

Let (Xn)n≥0 be a Markov chain valued in E, defined on (Ω,F , (Fn), (Px)x∈E). Throughout this
paper we assume always that its transition kernel P(x , d y) is irreducible, and µ is a fixed maximal
irreducible measure of P.
For every V ∈ rB (the space of all real B-measurable functions on E), consider the kernel
PV (x , d y) := eV (x)P(x , d y). We have the following Feynman-Kac formula,

(PV )n f (x) = Ex f (Xn)exp

 

n−1
∑

k=0

V (Xk)

!

, 0≤ f ∈ rB . (5)

It is obvious that PV is irreducible with the maximal irreducible measure µ.
Define now our Cramer functional

Λ(V ) =− log R(PV ). (6)

Since R(PV ) ∈ [0,+∞) by [15, Theorem 3.2], Λ(V )>−∞. By (5) and Lemma 2.1, we have

Λ(V ) = lim sup
n→∞

1

n
logEν s(Xn)exp

 

n−1
∑

k=0

V (Xk)

!

= esssupx∈E limsup
n→∞

1

n
logEx s(Xn)exp

 

n−1
∑

k=0

V (Xk)

! (7)

for every PV -small couple (s,ν). From the above expression we see by Hölder’s inequality that
Λ : rB → (−∞,+∞] is convex.
We can now recall the universal lower bound of large deviation in de Acosta [5] and de Acosta-Ney
[6].

Theorem 2.2. ([5, 6]) Let f : E → B be a measurable function with values in a separable Banach
space (B,‖ · ‖). Then for every open subset G of B and every initial measure ν ,

lim inf
n→∞

1

n
logPν

 

1

n

n−1
∑

k=0

f (Xk) ∈ G

!

≥− inf
z∈G
Λ∗f (z), (8)

where Λ f (y) := Λ(〈y, f 〉), y ∈ B′ (the topological dual space of B), and
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Λ∗f (z) = sup
y∈B′
(〈y, z〉 −Λ f (y)). (9)

Here 〈y, z〉 denotes the duality bilinear relation between B and B′.

The main objective is to identify Λ∗f by means of the Donsker-Varadhan entropy.

2.3 Legendre transform of the Cramer functional on a weighted space

At first we recall the Donsker-Varadhan’s entropy J :M1(E)→ [0,+∞], whereM1(E) is the space
of all probability measures on (E,B). For any ν ∈M1(E),

J(ν) = sup
u∈U

∫

E

log
u

Pu
dν , (10)

where U = {u ∈ bB : infx∈E u(x) > 0} (bB being the space of all real and bounded measurable
functions on (E,B)). Consider the modified Donsker-Varadhan’s entropy ([17])

Jµ(ν) =
�

J(ν), ν � µ;
+∞ , otherwise. (11)

Let us now fix some reference measurable function Φ : E → R such that Φ ≥ 1 everywhere.
Introduce the weighted functions space

bΦB :=
�

V : E→ RB −measurable; ‖V‖Φ := sup
x∈E

|V (x)|
Φ(x)

<+∞
�

.

Let

Mb,Φ(E) :=

¨

(maybe signed) measure ν on E;

∫

Φd|ν |<+∞
«

where |ν |= ν++ ν− (ν+,ν− are respectively the positive and negative part of ν in Hahn-Jordan’s
decomposition). If Φ = 1, we write simplyMb(E) for Mb,Φ(E). Obviously

ν(V ) =

∫

E

V dν =: 〈ν , V 〉

is a bilinear form on bΦB ×Mb,Φ(E). The main result of this section is

Theorem 2.3. Let Φ ≥ 1 be some reference measurable function on E. Let Λ∗,Φ : Mb,Φ(E) →
R
⋃

{+∞} be the Legendre transform of Λ on bΦB , i.e.,

Λ∗,Φ(ν) := sup
�

〈ν , V 〉 −Λ(V ); V ∈ bΦB
	

. (12)

Then we have for every ν ∈ Mb,Φ(E),

Λ∗,Φ(ν) =

¨

Jµ(ν), if ν ∈M1(E)
+∞, otherwise.

(13)

We begin with
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Lemma 2.4. (de Acosta [5, lemma 6.1] ) Define for ν ∈M1(E),

J ′(ν) = sup

¨
∫

log
u

Pu
dν : u ∈B , u> 0 ever ywhere, ν({u=∞}) = 0, (log(

u

Pu
))− ∈ L1(ν)

«

.

Then J ′(ν) = J(ν) for all ν ∈M1(E).

Proof of Theorem 2.3. Step 1: ≥ in (13). This can be derived from [17, Proposition B.9], but we
will follow the argument below proposed by the referee. At first since Λ(V ) = 0 if V = 0,µ− a.s.,
one deduces easily that Λ∗,Φ(ν) = +∞ for all ν not absolutely continuous w.r.t. µ.
Fix now ν � µ. For each u ∈ bB let V := log u

Pu
. Since PV u= u, we see that Λ(V )≤ 0 by Lemma

2.1. Hence
∫

log
u

Pu
dν ≤

∫

V dν −Λ(V )≤ Λ∗,Φ(ν).

Taking the supremum over all 1≤ u ∈ bB and recalling that J(ν) = sup
1≤u∈bB

∫

log
u

Pu
dν (Donsker-

Varadhan’s formula), we get the desired result.
Step 2: Λ∗,Φ(ν) ≤ Jµ(ν) for ν ∈ M1(E). The argument below follows quite closely that of de
Acosta [5, Proof of (6.3)].
We can assume that Jµ(ν) < +∞ (trivial otherwise). Then ν � µ. For every V ∈ rB with
∫

V−dν <+∞, and λ > Λ(V ), we take

u :=
+∞
∑

k=0

e−λk(PV )ks(x),

where s is a PV -small function. Then we have ν([u=+∞]) = 0 and

u> s, e−λeV Pu= u− s.

Noting that

log
u

Pu
≥ log e−λ+V =−λ+ V ≥−λ− V− ∈ L1(ν),

by de Acosta’s Lemma 2.4 we have
∫

V dν − J(ν)≤
∫

V dν +

∫

log
Pu

u
dν

= λ+

∫

log
e−λ+V Pu

u
dν

= λ+

∫

log
u− s

u
dν

< λ.

As λ > Λ(V ) is arbitrary we have so proved
∫

V dν ≤ Jµ(ν) +Λ(V ), if V− ∈ L1(ν), ν ∈M1(E). (14)

It yields the desired claim since V ∈ bΦB =⇒ V ∈ L1(ν) for ν ∈ Mb,Φ(E).
Combining Step 1 and Step 2, we obtain (13).
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As an application, we have the following result.

Corollary 2.5. Let V be a nonnegative measurable function. If there exists δ ≥ 0 such that Λ(δV )<
+∞, then

Jµ(ν)<+∞ =⇒
∫

E

V dν <+∞.

Proof. By Theorem 2.3, we have

Jµ(ν)≥
∫

δ(V ∧ n)dν −Λ(δ(V ∧ n)), ∀n≥ 1.

Thus we have

δ

∫

V ∧ ndν ≤ Jµ(ν) +Λ(δ(V ∧ n))

≤ Jµ(ν) +Λ(δV )<+∞

Letting n→+∞, we get the result.

3 Identification of the rate function

Let Ln := 1
n

∑n−1
k=0 δXk

be the empirical measure. Assuming the existence of invariant probability
measure µ, then for every ν � µ, Pν(Ln ∈ ·) satisfies the weak∗ LDP on (M1(E),τ) with rate
function Jµ (by [17, Theorem B.1, Theorem B.5 and Proposition B.9]), where τ is the topology
σ(Mb(E), bB) restricted to M1(E). Then for a measurable function f : E → B, inspired by the
contraction principle, the rate function governing the LDP of

1

n

n−1
∑

k=0

f (Xk) =

∫

E

f (x)d Ln(x)

should be

J f
µ (z) = inf{Jµ(ν) :

∫

E

‖ f ‖dν <+∞, ν( f ) = z}, z ∈ B. (15)

That is not completely exact, but not far. The main result of this paper is

Theorem 3.1. For any measurable function f : E→ B where B is a separable Banach space, the rate
function Λ∗f given in Theorem 2.2 (due to de Acosta and Ney [6]) is exactly the lower semi-continuous

regularization eJ f
µ of z→ J f

µ (z).

It is based on the following lower semi-continuity of Λ which is of independent interest.

Proposition 3.2. Let Φ : E → [1,+∞) be a measurable function. Then Λ : bΦB → (−∞,+∞] is
lower semi-continuous w.r.t. the weak topology σ(bΦB ,Mb,Φ(E)), or equivalently for any V ∈ bΦB ,

Λ(V ) = sup
¦

〈ν , V 〉 − Jµ(ν); ν ∈M1(E),ν(Φ)<+∞
©

. (16)
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As Λ(V ) is the rate of the exponential growth of the Feynmann-Kac semigroup (PV )n, its identi-
fication is a fundamental subject in heat theory : formula of type (16) is the counterpart of the
famous Rayleigh principle (for the maximal eigenvalue of L + V where L is the generator of a
symmetric Markov semigroup) and it follows from the LDP of Donsker-Varadhan (when this last
holds) by Varadhan’s Laplace integral lemma.

Proof of Theorem 3.1 assuming Proposition 3.2. Let Φ(x) := ‖ f (x)‖+1. For every y ∈ B′ (the dual
space of B), V (x) := 〈y, f (x)〉 ∈ bΦB . Then by Proposition 3.2,

Λ f (y) = Λ(V ) = sup

¨
∫

E

〈y, f (x)〉dν − Jµ(ν); ν ∈M1(E),ν(‖ f ‖)<+∞
«

= sup
n

〈y, z〉 − J f
µ (z); z ∈ B

o

= (J f
µ )
∗(y).

Let us prove that J f
µ is convex on B. We have only to prove that J f

µ (z) ≤ [J
f
µ (z1) + J f

µ (z2)]/2 for

any z, z1, z2 ∈ B such that z = (z1 + z2)/2. We may assume that J f
µ (zk)<+∞, k = 1, 2.

Given any ε > 0, there exist ν1 and ν2 such that

νk(‖ f ‖)<+∞, νk( f ) = zk, Jµ(νk)≤ J f
µ (zk) + ε for k = 1, 2.

Let ν = ν1+ν2

2
, then ν( f ) = z. Because Jµ(ν) is convex in ν ∈M1(E), we have

Jµ(ν)≤
Jµ(ν1) + Jµ(ν2)

2
≤

J f
µ (z1) + J f

µ (z2)

2
+ ε

Hence

J f
µ (z)≤

J f
µ (z1) + J f

µ (z2)

2
+ ε

which completes the proof of the convexity of J f
µ , for ε > 0 is arbitrary.

Consequently by the famous Fenchel’s theorem in convex analysis,

Λ∗f = (J
f
µ )
∗∗

is the lower semi-continuous regularization eJ f
µ of z→ J f

µ .

Proposition 3.2 is mainly based on the following continuity of the convergence parameter due to
de Acosta.

Lemma 3.3. (de Acosta [5, Theorem 2.1]) For each j ≥ 1 let E j ∈ B and assume E j ↑ E. Let
B j = {A ∈ B : A ⊂ E j}. Let K be an irreducible kernel on E j ∈ B j and for j ≥ 1, let K j be an
irreducilbe kernel on E j ∈ B j . Assume that for all x ∈ E, A ∈ B , K j(x , A∩ E j) ↑ K(x , A). Then
R(K j) ↓ R(K).

We also require the following general result.

Lemma 3.4. Let µ be a σ-finite measure on (E,B) and Λ : bΦB → (−∞,+∞] be a convex function
such that

(i) If V1 = V2, µ− a.e., then Λ(V1) = Λ(V2);

(ii) If V1 ≤ V2, then Λ(V1)≤ Λ(V2).
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Then Λ is lower semi-continuous (l.s.c. in short) w.r.t. the weak topology σ(bΦB ,Mb,Φ(E)) iff for
every non-decreasing sequence (Vn) in bΦB such that V (x) = supn Vn(x) ∈ bΦB ,

Λ(Vn)→ Λ(V ).

Proof. The necessity is obvious because if Vn ↑ V in bΦB , then Vn → V in σ(bΦB ,Mb,Φ(E)) by
dominated convergence. Let us prove the sufficiency.
Consider the isomorphism V → V/Φ from bΦB to bB and define

Λ̃(U) := Λ(UΦ), ∀U ∈ bB .

Then Λ̃ satisfies again (i) and (ii) on bB . By the isomorphism above, the l.s.c. of Λ on bΦB w.r.t.
σ(bΦB ,Mb,Φ(E)) is equivalent to the l.s.c. of Λ̃ on bB w.r.t. σ(bB ,Mb(E)). In other words we
may assume without loss of generality that Φ = 1.
Because of condition (i), Λ is well defined on L∞(µ) (which is the dual of L1(µ)), and the l.s.c. of
Λ on bB w.r.t. σ(bB ,Mb(E)) is equivalent to that of Λ on L∞ w.r.t. σ(L∞, L1).
Below we prove the l.s.c. of Λ on L∞(µ) w.r.t. σ(L∞, L1). By taking an equivalent measure if
necessary we may assume that µ is a probability measure. For any L ∈ R, since [Λ≤ L] is convex,
by the Krein-Smulyan theorem(see [4], page 163), it is closed in L∞ w.r.t. σ(L∞, L1) iff

[Λ≤ L]
⋂

B(R)

is closed for every R > 0, where B(R) := {V ∈ L∞(µ); ‖V‖∞ ≤ R}. Since B(R) equipped with the
weak∗-topology σ(L∞, L1) is metrizable (see [2, Chap.IV, p.111]), for the desired l.s.c., it remains
to prove that if Vn→ V in σ(L∞, L1) and supn ‖Vn‖∞ ≤ R<+∞, then

lim inf
n→∞

Λ(Vn)≥ Λ(V ).

Taking a subsequence if necessary, we may assume that l := limn→∞Λ(Vn) exists in [−∞,+∞].
As µ is a probability measure, Vn→ V in the weak topology of L2(µ). By the Mazur theorem ([22,
Chap. V, §1, Theorem 2]), there exists a sequence (Un), each Un is a convex combination Un of
{Vk, k ≥ n} such that Un→ V in L2(µ). By the convexity of Λ,

lim sup
n→∞

Λ(Un)≤ lim
n→∞
Λ(Vn) = l.

Now taking a subsequence Unk
which converges to V , µ − a.e. and set Wk = inf j≥k Un j

. Then
Wk ↑ W and W = V, µ − a.e.. By condition (ii), Λ(Wk) ≤ Λ(Unk

). By the assumed increasing
continuity of Λ we get finally

l ≥ lim sup
k→∞

Λ(Unk
)≥ lim

k→∞
Λ(Wk) = Λ(W ) = Λ(V ).

Proof of Proposition 3.2. By Theorem 2.3, the right hand side (r.h.s.) of (16) is exactly Λ∗∗, the
double Legendre transform of Λ basing on the duality between bΦB and Mb,Φ(E). By Fenchel’s
theorem, (16) is equivalent to the l.s.c. of Λ w.r.t. σ(bΦB ,Mb,Φ(E)), which holds true by Lemma
3.4 and de Acosta’s Lemma 3.3.

We end this section by two corollaries. We begin with the rate function governing the lower bound
of large deviation of the occupation measure Ln := 1

n

∑n−1
k=0 δXk

.
LetA be the σ-algebra onM1(E) generated by ν → ν(V ), V ∈ bB .
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Corollary 3.5. For every initial measure ν and any τ-open subset G ∈A ,

lim inf
n→∞

1

n
logPν(Ln ∈ G)≥− inf

β∈G
Jµ(β). (17)

This corollary was proved in de Acosta [5, Theorem 6.3] under an extra assumption guaranteing
Jµ = J . This last assumption is also crucial in Jain’s work [10], but difficult to verify out of the
classical absolutely continuous framework of Donsker-Varadhan [8].
If one uses the Donsker-Varadhan’s entropy J instead of Jµ in (17), the lower bound (17) would
be wrong. A simple counter-example is: E = {0, 1}, P(0, 1) = 1/2, P(1,1) = 1. Let ν = δ1 and
G = {δ0}. The l.h.s. of (17) is −∞, but J(δ0) = log 2.
Notice that the above lower bound was proved by the second named author for much more gen-
eral essentially irreducible Markov processes but also with a mild technical condition (see [17,
Theorem B.1]).

Proof. Let β0 be an arbitrary element of G but fixed. By the definition of the τ-topology, there is a
bounded and measurable function f : E→ Rd (for some d ≥ 1) and δ > 0 such that

N := {β ∈M1(E); |β( f )− β0( f )|< δ} ⊂ G.

Here | · | is the Euclidian norm on Rd . Hence by Theorem 2.2,

lim inf
n→∞

1

n
logPν(Ln ∈ N )≥− inf

|z−z0|<δ
Λ∗f (z)

where z0 = β0( f ). By Theorem 3.1,

inf
|z−z0|<δ

Λ∗f (z) = inf
|z−z0|<δ

J f
µ (z)≤ Jµ(β0).

Therefore we get
the l.h.s. of (17)≥−Jµ(β0)

where (17) follows for β0 ∈ G is arbitrary.

Corollary 3.6. The following equality holds true:

R(P) = exp
�

inf
ν∈M1(E)

Jµ(ν)
�

. (18)

Proof. It follows from Proposition 3.2.(16) with V = 0.

A pathological phenomenon may happen : R(P)> 1.

Example 3.7. Let (Bt)t≥0 be a Brownian Motion on a connected complete and stochastic complete
Riemannian manifold M with sectional curvature less than−K (K > 0) and let P(x , d y) = Px(B1 ∈
d y). P is irreducible with a maximal irreducible measure given by the Riemann volume measure
µ = d x . It is well known that ‖P‖L2(M , d x) < 1 ([16]). It is obvious (from (3)) that 1

R(P)
≤

‖P‖L2(M , d x), and the converse inequality holds by [20, Lemma 5.3] and the symmetry of P on

L2(M , d x). Thus R(P) =
1

‖P‖L2(M , d x)
> 1.
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4 Some remarks on the upper bound of large deviations

Theorem 4.1. (Ney and Nummelin [14]) Let f : E→ Rd be measuable. The following upper bound
of large deviation holds

limsup
n→∞

1

n
logPx

 

1

n

n−1
∑

k=0

f (Xk) ∈ F, Xn ∈ C

!

≤− inf
z∈F
Λ∗f (z), µ− a.e. x ∈ E (19)

for all compact subsets F of Rd , where

(a) either C is P-small set if f is bounded;

(b) or for all λ > 0, there are some constant c(λ)> 0 and ν ∈M1(E) such that

e−λ| f (x)|P(x , d y)> c(λ)ν(d y), ∀x ∈ C (20)

if f is unbounded.

Furthermore if d = 1 or Λ(δ| f |)<+∞, then (19) holds for all closed subsets F of Rd .

Indeed for every V = 〈 f (x), y〉 where y ∈ Rd , if f is bounded then every P-small set C is also
PV -small; if f is unbounded and C satisfies (20), then C is again PV -small. Thus by Lemma 2.1,

Λ f (y) = esssupx∈E limsup
n→∞

1

n
logEx1C(Xn)exp

 

n−1
∑

k=0

〈 f , y〉(Xk)

!

, ∀y ∈ Rd

where the Theorem 4.1 follows by Gärtner-Ellis theorem (see [9]).
Baxter et al. (1991) [1] found for the first time a Doeblin recurrent Markov chain which does not
verify the level-2 LDP (but it satisfies the level-1 LDP for Ln( f ) for bounded f by Theorems 2.2
and 4.1 since the whole space E is P-small in such case). Furthermore Bryc and Smolenski (1993)
[3] constructed an exponentially recurrent Markov chain for which even the level-1 LDP of Lt( f )
for some bounded and measurable f fails.
We now present a counter-example for which (19) does not hold for P-small C but unbounded f .

Example 4.2. (see [19]) Let h(x) be a strictly increasing differentiable function on R+ such that

h(0) = 0, sup
x∈R+
|h
′
(x)|<+∞, a := limsup

x→∞

h(x)
x
> lim inf

x→∞

h(x)
x
=: b > 0

Assume that (ξk)k≥0 is a sequence of independent and identically distributed nonnegative random
variables and P(ξ0 > t) = e−h(t), t ≥ 0. Then {Xk = (ξk,ξk+1)}k≥0 is a Markov chain valued in
E = (R+)2, which is Doeblin recurrent, i.e., E is P-small. Let us show that (19) may be wrong with
C = E for some unbounded f .
Indeed let f (Xk) := ξk+1 − ξk, ∀ k ≥ 1, then 1

n
Sn( f ) := 1

n

∑n
k=1 f (Xk) =

1
n
(ξn − ξ0). We have for

all r > 0,
e−h((n+1)r)(1− e−h(r)) = P(ξn+1 > (n+ 1)r,ξ1 < r)

≤ P(
Sn( f )

n
> r)≤ P(ξn+1 > nr) = e−h(nr)

Consequently for all r > 0,

limsup
n→+∞

1

n
logP(

Sn( f )
n
)> r) =−br, lim inf

n→+∞

1

n
logP(

Sn( f )
n
)> r) =−ar

Then ( 1
n
Sn( f )) does not verify any LDP, which implies that the condition (20) is essential.
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