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Abstract

This paper considers the eigenvalues of symmetric Toeplitz matrices with independent random

entries and band structure. We assume that the entries of the matrices have zero mean and a

uniformly bounded 4th moment, and we study the limit of the eigenvalue distribution when both

the size of the matrix and the width of the band with non-zero entries grow to infinity. It is shown

that if the bandwidth/size ratio converges to zero, then the limit of the eigenvalue distributions

is Gaussian. If the ratio converges to a positive limit, then the distributions converge to a non-

Gaussian distribution, which depends only on the limit ratio. A formula for the fourth moment of

this distribution is derived.

1 Introduction

In recent interesting papers, (Bryc et al., 2006) and (Hammond and Miller, 2005), it was shown

that the distribution of Toeplitz matrices with i.i.d. entries converges to a universal law as the size

of the matrix grows. The limit law is not Gaussian, which is all the more surprising if we compare

this result with the result of (Bose and Mitra, 2002) which says that the limit law is Gaussian for

circulants, a closely related ensemble of matrices.

This comparison suggests that the difference in the behavior of the limit law is due to entries in

the upper-right and lower-left corners of the matrices. For this reason, it is interesting to study

what happens if the entries in these corners are set equal to zero, that is, if the matrices have a

band structure.

It turns out that if the ratio of the band width to the matrix size decreases to zero as the matrices

grow, then it is possible to adjust the matrices in such a way that the resulting matrix is a circulant,

and the effect of the modification on the eigenvalue distribution is negligible. This allows us to

show that in this case the limit eigenvalue distribution is Gaussian.

In contrast, if the ratio of the band width to the matrix size approaches a positive limit as the size

of the matrix grows, then the limit eigenvalue law is not Gaussian. The proof of this result is by the

method of moments and by an explicit calculation of the kurtosis of the limit law. It turns out that

it is different from the Gaussian value of 3 for all width/size ratios except one. This exceptional
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ratio needs a calculation of higher moments. Numerical estimation suggests that even in this case

the limit distribution is not Gaussian.

Besides papers mentioned above, the spectrum of random Toeplitz matrices is investigated in

(Bose and Sen, 2007), which studies the case when the entries of Toeplitz matrices are non-

centered, in (Massey et al., 2007), where the main interest is in random Toeplitz matrices with

palyndromic structure, and in (Meckes, 2007), which studies the norm of random Toeplitz ma-

trices. In addition, (Chatterjee, 2009) shows that the fluctuations of the eigenvalue distribution

around the limit are Gaussian.

The rest of the paper is organized as follows. Section 2 is about the case when the ratio of the

band width to the matrix size decreases as the size of the matrix grows, and Section 3 is about the

case when this ratio tends to a non-zero limit.

2 Vanishing band to size ratio

We consider finite symmetric Toeplitz matrices that have the band structure. In other words, we

assume that entries of an N -by-N symmetric matrix XN , which we denote X i j , depend only on the

difference i − j and that they are zero if the difference is large, i.e. X i j = a|i− j| and ak = 0 if

k > M . It is understood that ak depends on N . We will suppress the dependence in order to make

the notation less cumbersome.

If λ1, . . . ,λN are eigenvalues of the matrix XN , counted with multiplicities, then we define the

empirical probability measure of eigenvalues as

µN =
1

N

N∑

i=1

δλi
.

We are interested in the behavior of measures µN as both N and M grow to infinity. Let the

cumulative distribution function of µN be denoted as FN (x).

Our first result is that if the size of the matrix grows faster than the width of the band, then the

spectral distributions FN (x) converge to the Gaussian distribution.

Theorem 2.1. Let XN be a sequence of the random symmetric Toeplitz matrices with the band of width

M(N). Assume that the non-zero entries are independent real random variables such that Eak = 0,

Ea2
k
= 1/M and supk,N E

��pMak

��4 < C <∞. If both M (N)→∞ and M/N → 0 as N →∞, then

for every x ,

E
�

FN (
p

2x)
�
→ (2π)−1/2

∫ x

−∞
e−t2/2d t,

and Var
�

FN (x)
�
→ 0.

Our strategy of proof is by relating eigenvalue distributions of Toeplitz matrices and circulants.

Namely, we will modify the upper-right and lower-left corners of the matrix XN so that the resulting

matrix YN is a circulant and the eigenvalue distribution of YN is close to the eigenvalue distribution

of XN . See (Gray, 1972) for an explanation of this method in the deterministic setting. We will

adapt this method to the case of random Toeplitz matrices.

Proof: Set all entries of YN on the N -th and (−N)-th diagonal to aN := a1, all entries on the

(N − 1)-st and − (N − 1)-st diagonals to aN−1 := a2, and so on. Finally set all entries on the
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(N −M + 1)-st and − (N −M + 1)-st diagonals equal to aN−M+1 := aM . All other entries of YN are

the same as those of XN .

By choosing N sufficiently large, we can ensure that N > 2M . Then, the change affects only zero

entries of the matrix XN . The total number of entries changed is equal to M (M + 1) .

Let us introduce a measure of distance between probability distributions (cf. (Trotter, 1984)). If

F (x) and G (x) are two distributions, then the distance in distribution is defined by

d (F, G)2 = inf E (X − Y )2 ,

where the infimum is over all random variables X and Y, which are defined over the same proba-

bility space and which have the distributions F and G. The usefulness of this distance stems from

the fact that if two d
�

FN , GN

�
→ 0, then

∫
f (x) dFN (x)−

∫
f (x) dGN (x)→ 0

for every continuous function f (x) . For the proof, see (Trotter, 1984).

We are going to use this result in the following way. We will take the spectral distribution of YN as

GN , and we will show that d
�

FN , GN

�
→ 0 in probability. This implies that for each t,

FN (t)→ GN (t) (1)

in probability. Note that FN (t) and GN (t) are positive random variables bounded by 1. For each

N , these two random variables are defined on the same probability space. This fact, and the

convergence in probability in (1) imply that

EFN (t)→ EGN (t) ,

and

E
�

FN (t)− GN (t)
�2→ 0.

Hence, in order to prove the theorem it will remain to show that

E
�

GN (
p

2x)
�
→ (2π)−1/2

∫ x

−∞
e−t2/2d t,

and that Var
�

GN (x)
�
→ 0.

In order to prove that d
�

FN , GN

�
→ 0 in probability, we use a result from (Hoffman and Wielandt,

1953). Let the Frobenius norm of a matrix A be defined by

‖A‖22 =
1

N
Tr
�
A∗A
�

,

where N is the size of the matrix A.

Lemma 2.2. Let Λ(X ) and Λ(Y ) be empirical distributions of eigenvalues of matrices X and Y. Then

d (Λ (X ) ,Λ(Y ))≤ ‖X − Y ‖2 .

For proof see (Hoffman and Wielandt, 1953) or (Trotter, 1984).
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For random matrices XN and YN , we compute:

E


XN − YN



2
2
=
(M + 1)

N
.

This expression converges to zero as N →∞.

By using the independence of random variables ai , we can also compute

E


XN − YN



4
2
=
h

E


XN − YN



2
2

i2
+

4

N2

�
E
��a1

��4 + 4E
��a2

��4 + . . .+M2E
��aM

��4
�

−
4

N2

��
E
��a1

��2
�2
+ 4
�

E
��a2

��2
�2
+ . . .+M2
�

E
��aM

���2
�

Hence, if we use the uniform boundedness of E
�p

Mai

�4
and the equality E

��ai

��2 = M−1, we find

that

Var
�

XN − YN



4
2

�
≤ C

M2

N2
→ 0 as N →∞.

It follows that


XN − YN



2
2

and, therefore, d
�

FN , GN

�
converges to zero in probability.

It remains to investigate GN (t) , the empirical distribution function of eigenvalues of YN . These

matrices are circulants and we can use the results and methods of (Bose and Mitra, 2002) in order

to show that E
�

GN

�p
2x
��

converges pointwise to the standard Gaussian law and Var
�

GN (x)
	
→

0. For completeness, we give a detailed argument.

The eigenvalues of YN can be computed explicitly as

λk,N = a0 + 2

M∑

l=1

al cos

�
2πkl

N

�
. (2)

Let us write the random function GN (x) as follows:

GN (x) =
1

N

N∑

k=1

1(−∞,x]

�
λk,N

�
.

Let {x}= x− [x] , where [x] denotes the integer which is closest to x with ties broken in favor of

smaller integers.

Lemma 2.3. Assume {2k/N}> ǫ > 0. Then

�����Pr
¦
λk,N ≤

p
2x
©
−

1
p

2π

∫ x

−∞
e−t2/2d t

�����≤
c (ǫ)
p

M
, (3)

where c (ǫ) does not depend on k, M , or N .

Proof: Let θk denotes 2πk/N . Formula (2) implies that each λk,N is the sum of M+1 independent

random variables with zero mean and variance equal to

4

M
cos2
�
lθk

�
=

2

M

�
1+ cos
�
2lθk

��
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for l = 1, ..., M , and equal to 1/M for l = 0. The variance of this sum is

Var
�
λk,N

�
= 2+

(
−

1

M
+

2

M

M∑

l=1

cos
�
2lθk

�
)

.

If {2k/N}> ǫ > 0, then

2

M

M∑

l=1

cos
�
2lθk

�
=

1

M

−1+ cosθ + cos Mθ − cos (M + 1)θ

1− cosθ
≤

C

Mǫ

which implies that Var
�
λk,N

�
→ 2 as N and M grow to infinity. By the Central Limit Theorem,

λk,N converges to the Gaussian distribution with zero mean and variance 2. Since by asssumption

the 4th moment of
p

Mak is uniformly bounded, therefore the Berry-Esseen bound is applicable

and we can conclude that for those k, which satisfy the condition {2k/N} > ǫ > 0, inequality (3)

is true. QED.

Using the lemma, we can write

�����
1

N

N∑

k=1

�
Pr
¦
λk,N ≤

p
2x
©
−

1
p

2π

∫ x

−∞
e−t2/2d t

������≤ 2ǫ+
c (ǫ)
p

M
.

Hence, for every δ > 0 we can choose ǫ sufficiently small and then M sufficiently large and ensure

that �����
1

N

N∑

k=1

Pr
¦
λk,N ≤

p
2x
©
−

1
p

2π

∫ x

−∞
e−t2/2d t

�����≤ δ.

This shows that as M and N grow, E
�

GN

�p
2x
��

converges pointwise to the standard Gaussian

law.

The next step is to investigate the variance/covariance structure of bk,N = 1(−∞,x]

�
λk,N

�
. Hence,

we need to estimate the expressions:

E
�

bk,N bl,N

�
− E
�

bk,N

�
E
�

bl,N

�
(4)

= Pr
¦
λk,N ≤ x;λl,N ≤ x

©
− Pr
¦
λk,N ≤ x
©

Pr
¦
λl,N ≤ x
©

.

Again we can take an arbitrarily small ǫ > 0 and require that {(k− l)/N} > ǫ. An argument as in

the proof of Proposition 10.3.2 on p. 344 in (Brockwell and Davis, 1991) shows that the distribu-

tion of
¦
λk,N ,λl,N

©
is asymptotically Gaussian with the limit covariance matrix proportional to the

identity matrix. Moreover, by assumption the 4th moment of
p

Mak is uniformly bounded, and

therefore by the multivariate Berry-Esseen theorem, the speed of the convergence to the Gaus-

sian law is bounded by c (ǫ)/
p

M . Hence, the difference in (4) can be bounded from above by

c (ǫ)/
p

M . This implies that for sufficiently large M the covariance of bk,N and bl,N can be made

arbitrarily small (≤ δ) for all pairs k and l, such that {(k− l)/N}> ǫ. Therefore,

Var

�
1

N

∑
bk,N

�
≤

1

N2

�
2Nǫ+δN2
�
≤ 2δ

for all sufficiently large N . Since δ is an arbitrary, we can conclude that Var
�

GN (x)
	
→ 0 as N

and M grow to infinity. This completes proof of Theorem 2.1.
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3 Positive band to size ratio

Now let us ask what happens if the ratio of the band width to the matrix size remains constant as

the size of the matrix grows.

Theorem 3.1. Let XN be a sequence of random symmetric N-by-N Toeplitz matrices with the band of

width M(N). Assume that the non-zero entries are independent real random variables with symmetric

distributions such that Ea2
k
= 1/M and that for every n, supk,N E

��pMak

��n < c(n) < ∞. If both

M (N) → ∞ and N/M → c < ∞ as N → ∞, then there exists a distribution function Ψc (x) such

that

E

∫
xndFN (x)→
∫

xndΨc (x)

for every positive integer n. The distribution Ψc (x) is non-Gaussian for all c 6= 2 1

4
.

As we will see in the process of proof, the variance of the limit distribution is 2−1/c, and its fourth

moment is 12− 32

3

1

c
if c > 2, and − 4

3
c2 + 8c − 4, if c ≤ 2.

It is very likely that the distribution is non-Gaussian for all c. In particular, numerical evaluations

suggest that if c = 2 1

4
, then the 6th moment of the limit distribution is very close to 400/27 =

15 − 5/27, and therefore, the limit distribution is not Gaussian. (This result is obtained by a

Monte-Carlo evaluation of the volumes of polytopes P (π) defined below. The standard error of

the Monte-Carlo estimate of the 6th moment is 0.003.)

Before we start the proof, let us develop some machinery of the method of moments. Clearly,

E

∫
x kdFN (x) =

1

N
ETr
�

X k
�

We can write N−1Tr
�

X k
�

as follows:

N−1Tr
�

X k
�
= N−1
∑

a,b,...,y,z

XabX bc . . . X yzXza (5)

= N−1
∑

a,b,...,y,z

ab−aac−b . . . az−y aa−z

= N−1
∑

ax1
ax2

. . . axk−1
axk

,

where a, b, . . . , y, z are k numbers that take values between 1 and N . They show the row position

of a particular entry Xab. We will call these numbers “positions”, so, for example, a is the starting

position. The indices x i are differences of positions. We will call them “step sizes” since they show

how the “positions” of elements X i j change. They also have an additional meaning since they show

the diagonal in which the entry X i j is located. In particular, the random variable ax i
is non-zero

only if the step size x i is between −M and M .

Write:

N−1Tr
�

X k
�
= N−1
∑

a

∑

x1,...,xk

θ
�
a, x1, . . . , xk

�
ax1

ax2
. . . axk−1

axk
, (6)

where the summation is over all a between 1 and N , and all x1, . . . , xk such that every x i is

between −M and M . Here θ
�
a, x1, . . . , xk

�
= 1 if a and x1, . . . , xk determine a valid sequence of

a, b, . . . , y, z, and θ
�
a, x1, . . . , xk

�
= 0 otherwise.
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In the following we write −→x for the sequence x1, . . . , xk. Let Ek denote the value of the limit

limN→∞ E
�

N−1Tr
�

X k
��

. Since the distributions of ai are symmetric by assumption, therefore

Ek = 0 if k is odd.

Consider E2k. Let π denote a partition of the 2k indices of the elements x i , such that indices

i and j belong to the same block if and only if x i = x j or x i = −x j . By an argument as in

(Bryc et al., 2006) and (Hammond and Miller, 2005), it is easy to see that only partitions with

two-element blocks give a non-negligible contribution to E2k as M and N approach infinity and

M/N approaches a constant. These partitions are pairings of 2k indices x i . Moreover, (Bryc et al.,

2006) and (Hammond and Miller, 2005) showed that another simplification is possible. It is as

follows.

If x i is in the same pair as x j , then it must be that x i = x j or x i = −x j . In the first case, we

will write ǫτ
�

x i

�
= ǫτ
�

x j

�
= 1, where τ denote the pairing. In the second case, we will write

ǫτ
�

x i

�
= ǫτ
�

x j

�
= −1.

It turns out that we can restrict attention to the case in which ǫτ
�

x i

�
= −1 for all i. The contribu-

tion of other sequences is negligible.

Let −→x =
�

x1, . . . , x2k

�
∈ τ mean that the sequence x1, . . . , x2k agrees with the pairing τ and that

the choice of ǫτ is ǫτ
�

x i

�
=−1 for all x i .

We can think about the position a and the sequence x1, . . . , x2k as a random walk on the integer

lattice Z2. The horizontal axis denotes time and the vertical axis denotes the position of a particle.

The random walk starts at the point (0, a) and at each step makes a jump of size x i . Note that pair�
a,−→x
�

is valid (i.e., θ
�

a,−→x
�
= 1) if and only if the random walk stays between the bounds of 1

and N .

In order to show non-Gaussianity of the limit distribution, it is sufficient to compute the limits of

the second and the fourth moments. It turns out that for c > c0 the limit kurtosis is greater than

3, and for c < c0 the kurtosis is smaller than 3.

Lemma 3.2. If lim (N/M) = c as both M and N approach∞, then the variance of µN converges to

2− 1/c as N →∞ .

Proof: We consider two cases. In the first case, c ≥ 2. In this case, we need to consider three

possible regions for the initial position a. The first one is 1 ≤ a ≤ M . The second region is M <

a < N −M , and the third one is N −M ≤ a ≤ N . If the initial position is in the first region, then x1

can take values from −a+ 1 to M , and x2 = −x1. Hence the total number of valid combinations�
a,−→x
�

is asymptotically equivalent to

∫ M

0

(M + a) da =
3M2

2
.

By symmetry, this is also true for the third region.

For the second region, x1 can take values from −M to M , and the total number of combinations�
a,−→x
�

is asymptotically equivalent to

∫ N−M

M

2Mda ∼ 2 (c − 2)M2.

Hence the total number of all possible
�

a,−→x
�

for all regions is asymptotically equivalent to

(2c − 1)M2.
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We should divide this by N M ∼ cM2. Hence, we obtain that the variance of µN converges to

2− 1/c.

In the second case, c < 2. Then again we have three possible regions for the initial position. The

first one is 1≤ a ≤ N −M , the second one is N −M < a < M , and the third one is M ≤ a < N . For

the first region, x1 can be between −a + 1 and M . Hence, the number of possible combinations�
a,−→x
�

is

∼
∫ N−M

0

(M + a) da = (c − 1)M2 +
(c − 1)2

2
M2

=

�
c2 − 1

2

�
M2.

The same estimate holds for the third region by symmetry.

For the second region, x1 can be between −a+ 1 and N − a. Hence, we estimate the number of

possible combinations
�

a,−→x
�

as

∫ M

N−M

Nda = c (2− c)M2.

Hence, the total number of all possible
�

a,−→x
�

is

∼ (2c − 1)M2.

After dividing by MN , we find that the variance of µN converges to 2− 1/c. QED.

Lemma 3.3. If c ≥ 2, then the fourth moment of the measure µN converges to

12−
32

3

1

c
.

If c ∈ [1,2] , then it converges to

−
4

3
c2 + 8c − 4.

Proof: Let c ≥ 4. We have five essentially different regions for the initial position a: 1) 1≤ a ≤ M ;

2) M < a ≤ 2M ; 3) 2M < a < N − 2M ; 4) N − 2M ≤ a < N − M , and 5) N − M ≤ a < N . In

addition, we have 3 different pairings:

x1 x2
|__|

x3 x4
|__|

,

x1 x2 x3
|__|__|

x4
|

|_____|

,

and

x1
|

x2 x3
|__|

x4
|

|__________|

.

The proof proceeds by straightforward computations in each of the possible cases. We start with

the first pairing. In region 1, the variables x1 and x3 can take values from −a+ 1 to M , and the

variables x2 and x4 are determined by x1 and x3. In regions 2, 3, and 4, the variables x1 and x3
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can take values from −M to M . And region 5 is symmetric to region 1. Hence, the total number of�
a,−→x
�

combinations is asymptotically equivalent to

2

∫ M

0

(M + a)2 da+

∫ N−M

M

(2M)2 da =

�
4c −

10

3

�
M3.

Next, we consider the second pairing. In region 1, the variable x1 can take values from −a+ 1 to

M . If x1 ≤ 0, then x2 have to be between −x1 − a+ 1 and M ; and if x1 > 0, then x2 have to be

between −a+ 1 and M . Hence the number of
�

a,−→x
�

combinations is asymptotically equivalent

to ∫ M

0

∫ 0

−a

�
M + x1 + a
�

d x1da+

∫ M

0

∫ M

0

(M + a) d x1da =
13

6
M3.

In region 2, the variable x1 can take values from −M to M . If x1 > −a+M , then the variable x2

can take values between −M and M , and if x1 is between −M and −a+M , then the variable x2

can take values between −a− x1+ 1 and M . Hence the number of possible
�

a,−→x
�

combinations

is asymptotic to

∫ 2M

M

∫ M−a

−M

�
M + x1 + a
�

d x1da+

∫ 2M

M

∫ M

M−a

(2M) d x1da =
23

6
M3.

In region 3, the variables x1 and x2 can take values from −M to M . Hence, the number of possible�
a,−→x
�

combinations is asymptotic to

∫ N−2M

2M

(2M)2 da ∼ 4 (c − 4)M3.

Regions 4 and 5 are symmetric to regions 2 and 1, respectively. Hence the total number of possible�
a,−→x
�

combinations for the second pairing is

�
13

3
+

23

3
+ 4c− 16

�
M3 = (4c − 4)M3.

Finally, we consider the third pairing. In region 1, the variable x1 can take values from −a+ 1 to

M . If x1 ≤ M − a, then x2 can take values between −a− x1 + 1 and M , and if x1 > M − a, then

x2 is between −M and M . Hence the number of (a, x) combinations is

∫ M

0

∫ M−a

−a

�
M + a+ x1

�
d x1da+

∫ M

0

∫ M

M−a

(2M) d x1da =
5

2
M3.

In region 2, the variable x1 can take values from −M to M . If x1 ≤ M − a, then x2 is between

−a− x1+1 and M . If x1 > M − a, then x2 is between −M and M . Hence, the number of possible

(a, x) combinations is

∫ 2M

M

∫ M−a

−M

�
M + a+ x1

�
d x1da+

∫ 2M

M

∫ M

M−a

(2M) d x1da =
23

6
M3.

In region 3, the variables x1 and x2 can take values from −M to M , hence the number of possible

(a, x) combinations is ∫ N−2M

2M

(2M)2 da ∼ 4 (c − 4)M3.
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(Note that the calculations for regions 2 and 3 are the same as for the second pairing, while the

calculation for region 1 is different.) Regions 4 and 5 are symmetric to regions 2 and 1, respec-

tively. Hence, the total number of possible (a, x) combinations for the third pairing is asymptotic

to �
5+

23

3
+ 4c − 16

�
M3 =

�
4c −

10

3

�
M3.

The total number of all possible (a, x) combinations for all pairings is

�
4c −

10

3
+ 4c −

12

3
+ 4c −

10

3

�
M3 =

�
12c−

32

3

�
M3.

Dividing this by N M2, we obtain the limit of the fourth moment of the distribution µN is

12−
32

3

1

c
.

Similar calculations can be done for the cases when c ∈ [3,4] , c ∈ [2,3] , and c ∈ [1,2] . The

limits of the fourth moment in these cases are 12− 32

3c
in the first two cases, and − 4

3
c2+ 8c− 4 in

the third one. QED.

Lemma 3.4. Let assumptions of Theorem 3.1 hold. Then for all integer k ≥ 0, the expression

E
�

N−1Tr
�

X k
��

has a limit as N →∞, M →∞, and M/N → c > 0.

Proof: We know that for odd k, E
�

N−1Tr
�

X k
��
= 0. We have also computed the limit for k = 2

and 4 in the lemmas above. For arbitrary even k, we have the following argument. Let k = 2l.

We have shown above that to compute E
�

N−1Tr
�

X k
��
= 0, we can restrict attention to those

terms in the expansion of the trace that correspond to pairings of 2l indices. All other terms give

asymptotically negligible contribution.

Consider a pairing π of 2l indices. We will think about it as a product of l disjoint transpositions in

the symmetric group S2l operating on numbers {1,2, . . . , 2l} . For this pairing we define a 2l-by-l

matrix Mπ in the following way: Let us order the transpositions in π according to the smallest

elements in these transpositions. For example, for π = (16)(23)(45), the first transposition is

τ1 = (16), the second one is τ2 = (23), and the third one is τ3 = (45). Let the k-th transposition

be τk = (ik, jk) where ik < jk. Then define matrix elements Mikk = 1 and M jkk = −1. Set all other

entries in the k-th column of matrix Mπ equal to zero. This defines the matrix Mπ.

Next define another matix eMπ as follows. Let T is a 2l-by-2l lower-triangular matrix such that

Ti j = 1 if i ≥ j. Define eMπ := T Mπ. Intuitively, the first row of eMπ is the same as the first row of

Mπ. The second row of eMπ is the sum of the first and the second row of Mπ, the third row of eMπ
is the sum of the first, second, and the third rows of Mπ, and so on.

Consider the space Rl+1, where each point has coordinates
�
a, x1, ..., x l

�
. Let PN (π) be the convex

polytope in Rl+1 defined by the following set of 3l inequalities (not all of which are independent

from others):

12l ≤ a12l + eMπ−→x ≤ N12l ,

−M1l ≤ −→x ≤ M1l ,

where 1k denotes vector with k components all equal to 1.

It is easy to see that the meaning of these inequalities is that the positions of a random walk with

the starting position a and steps x1, ..., x l are all between 1 and N and that the steps are restricted
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to be between −M and M . Note that these are the same requirements that we need to impose to

make sure that θ
�

a,−→x
�
= 1 in (6). This implies that the contribution of terms corresponding

to the pairing π towards E
�

N−1Tr
�

X k
��

equals the number of integer points that belong to the

polytope PN (π) multiplied by N−1M−l .

Let ePN (π) be the polytope PN (π) rescaled by 1/M . Then, as N → ∞ the polytopes ePN (π) con-

verge to a convex polytope P (π) , which is defined by inequalities:

02l ≤ a12l + eMπ−→x ≤ c12l ,

−1l ≤ −→x ≤ 1l .

Hence the number of terms inside the polytope PN (π) can be estimated as M l+1 multiplied by the

volume of P (π) and the error of this estimate is O
�

M l
�

. Therefore,

E
�

N−1Tr
�

X k
��
→

1

c

∑

π∈P2(2l)

Vol (P (π)) .

QED.

Proof of Theorem 3.1: Lemma 3.4 shows the convergence of the expectations of the moments

of the eigenvalue distributions FN (x) . The limits are smaller or equal than the moments of a

Gaussian distribution which we would obtained if we set all θ
�

a,−→x
�

equal to 1 in formula (6).

This implies the first claim of the theorem. Lemmas 3.2 and 3.3 imply that the kurtosis of the limit

distribution is different from 3 for c 6= 2 1

4
. Hence, if c 6= 2 1

4
, then the limiting distribution is not

Gaussian. QED.
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