Elect. Comm. in Probab. 14 (2009), 186-191

ELECTRONIC COMMUNICATIONS in PROBABILITY

CHARACTERIZATION OF DISTRIBUTIONS WITH THE LENGTH-BIAS SCALING PROPERTY

MARCOS LÓPEZ-GARCÍA Instituto de Matemáticas Universidad Nacional Autónoma de México México, D.F. C.P. 04510. email: flopez@matem.unam.mx

Submitted November 26, 2008, accepted in final form April 15, 2009

AMS 2000 Subject classification: Primary: 60E05, Secondary: 44A60. Keywords: Length-bias scaling property, Indeterminate moment problem, theta function.

Abstract

For $q \in (0,1)$ fixed, we characterize the density functions f of absolutely continuous random variables X > 0 with finite expectation whose respective distribution functions satisfy the so-called (LBS) length-bias scaling property $X \stackrel{\mathscr{L}}{=} q\hat{X}$, where \hat{X} is a random variable having the distribution function $\hat{F}(x) = (\mathbf{E}X)^{-1} \int_{0}^{x} yf(y) dy$.

For an absolutely continuous random variable X > 0 with probability density function (pdf) f and finite expectation **E**X, we denote by \hat{X} an absolutely continuous random variable having the probability density function $(\mathbf{E}X)^{-1} x f(x)$. In this case, \hat{X} is called the size- or length-biased version of X and $\mathcal{L}(\hat{X})$ is the corresponding length-biased distribution. It is well known that \hat{X} is the stationary total lifetime in a renewal process with generic lifetime X (see [2, Chapter 5]).

The length-biased distributions have been applied in various fields, such as biometry, ecology, environmental sciences, reliability and survival analysis. A review of these distributions and their applications are included in [5, Section 3], [6, 8, 12, 13].

In [9], Pakes and Khattree ask whether it is possible to randomly rescale the total lifetime to recover the lifetime law. More specifically, let $V \ge 0$ be a random variable independent of X with a fixed law satisfying P(V > 0) > 0. For which laws $\mathcal{L}(X)$ does the following "equality in law"

 $X \stackrel{\mathscr{L}}{=} V \widehat{X},$

hold? For instance, when *V* has the uniform law on [0,1] the last equality holds if and only if $\mathcal{L}(X)$ is an exponential law (see [9]).

In this note we consider the case where V is a constant function: The law of X has the so-called length-bias scaling property (abbreviated to LBS-property) if

$$X \stackrel{\mathcal{D}}{=} q\widehat{X},\tag{1}$$

1

with $q \in (0, 1)$. Several authors, including Chihara [3], Pakes and Khattree [9], Pakes [10, 11], Vardi *et al.* [14], have studied the LBS-property. In [1], Bertoin *et al.* analyze a random variable X that arises in the study of exponential functionals of Poisson processes; they show that $q\hat{X} \stackrel{\mathscr{L}}{=} X \stackrel{\mathscr{L}}{=} q^{-1}X^{-1}$, with $\mathbf{E}X = q^{-1}$.

An easy computation shows that (1) can be written as

$$\int_0^x f(y) \, dy = \frac{1}{\mathbf{E}X} \int_0^x \frac{y}{q} f\left(\frac{y}{q}\right) \frac{dy}{q}, \ x > 0,$$

which is equivalent to

$$(\mathbf{E}X)qf(qx) = xf(x), \ a.e. \ x > 0.$$
(2)

By induction we have that

 $(\mathbf{E}X)^n q^n f(q^n x) = q^{n^2/2 - n/2} x^n f(x), \ x > 0, \ n \in \mathbb{Z},$

and therefore

$$\int_{0}^{\infty} x^{n} f(x) dx = (\mathbf{E}X)^{n} q^{n/2 - n^{2}/2}, \ \forall \ n \in \mathbb{Z}.$$
(3)

When *X* is an absolutely continuous random variable with probability density function *f*, we sometimes write $X \sim f$.

Proposition 1. If $X \sim f$ and f satisfies (2), then the pdf $g(x) = e^x f(e^x)$ of the random variable $Y = \log X$ satisfies the functional equation

$$g(x-b) = Ce^{ax}g(x), \quad x \in \mathbb{R},$$
(4)

with a = 1, $b = -\ln q$, $C = (\mathbf{E}X)^{-1}$.

So, the main result of this note characterizes the probability density functions fulfilling the last functional equation. First, we recall that the theta function given by

$$\theta(x,t) = (4\pi t)^{-1/2} \sum_{n \in \mathbb{Z}} e^{-(x+n)^2/(4t)} = \sum_{n \in \mathbb{Z}} e^{-4\pi^2 n^2 t + 2\pi n i x} > 0,$$
(5)

for all $(x, t) \in \mathbb{R}^2_+$, satisfies the heat equation on \mathbb{R}^2_+ and

$$\int_{0}^{1} \theta(x,t)dx = 1, \text{ for all } t > 0. \text{ (see [15, Chapter V])}$$
(6)

Theorem 1. Let a, b, C be real numbers with ab > 0, C > 0. Then the pdf g satisfies the functional equation (4) if and only if there exists a 1-periodic function $\varphi, \varphi \ge -1$, such that the restriction of φ to (0, 1) belongs to $L^1(0, 1)$,

$$g(x) = \frac{1}{\sqrt{2\pi a^{-1}b}} \exp\left(-\frac{\left(ax-\mu\right)^2}{2ab}\right) \left\{1+\varphi\left(\frac{ax-\mu}{ab}\right)\right\},\tag{7}$$

and

$$\int_{0}^{1} \theta\left(x, \frac{1}{2ab}\right) \varphi(x) dx = 0,$$
(8)

where $-\mu = \ln C + ab/2$.

Proof. For b > 0 the probability density function

$$h(x) = \frac{1}{\sqrt{2\pi b}} e^{-(x-\mu)^2/(2b)},$$

where $-\mu = \ln C + b/2$, satisfies the functional equation (4) with a = 1. If the density function g so does, then g(x-b)/h(x-b) = g(x)/h(x), $x \in \mathbb{R}$; therefore there exists a 1-periodic function ψ such that $g(x) = h(x)\psi(b^{-1}x)$. By making the change of variable $y = (x - \mu)/b$, we obtain

$$\begin{split} 1 &= \int_{\mathbb{R}} g(x) dx &= \int_{\mathbb{R}} \frac{1}{\sqrt{2\pi b^{-1}}} e^{-by^2/2} \psi \left(y + b^{-1} \mu \right) dy \\ &= \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} \frac{1}{\sqrt{2\pi b^{-1}}} e^{-by^2/2} \psi \left(y + b^{-1} \mu \right) dy \\ &= \int_{0}^{1} \theta(y, 2^{-1} b^{-1}) \psi(y + b^{-1} \mu) dy. \end{split}$$

By using (6), the result follows with $\varphi(x) = -1 + \psi(x + b^{-1}\mu)$. The general case follows by setting $\tilde{g}(x) = a^{-1}g(a^{-1}x)$, $\tilde{b} = ab$, $-\tilde{\mu} = \ln C + \tilde{b}/2$.

From Proposition 1 we obtain the characterization of the probability density functions with the LBS-property.

Corollary 1. Let $q \in (0,1)$ be fixed, and let X > 0 be a random variable with pdf f and $\mathbf{E}X < \infty$. The law of X has the LBS property if and only if there exists a 1-periodic function φ , $\varphi \ge -1$, with the restriction of φ to (0,1) in $L^1(0,1)$, such that φ satisfies (8) with $a = 1, b = -\ln q$, and

$$f(x) = \frac{1}{x\sqrt{-2\pi\ln q}} \exp\left(\frac{\left(\ln x - \mu\right)^2}{2\ln q}\right) \left\{1 + \varphi\left(\frac{\ln x - \mu}{-\ln q}\right)\right\},\tag{9}$$

where $\mu = \ln \left(q^{1/2} \mathbf{E} X \right)$.

In [10, Theorem 3.1], Pakes uses a different approach to characterize the probability distribution functions $F = \mathcal{L}(X)$ satisfying (1) with $\mathbf{E}X = 1$.

By (3), it follows that the probability density functions having the LBS-property are solutions of an indeterminate moment problem.

Let $N(\mu, -\ln q)$ be the normal density with mean μ and variance $-\ln q$. If $Y \sim N(\mu, -\ln q)$, we note that $\exp(Y)$ has the log-normal density, i.e.

$$\exp(Y) \sim \frac{1}{x\sqrt{-2\pi\ln q}} \exp\left(\frac{\left(\ln x - \mu\right)^2}{2\ln q}\right)$$

Remark 1. If X is a positive absolutely continuous random variable with pdf f, then

$$cX^{-1} \sim cx^{-2}f(cx^{-1})$$
, for all $c > 0$.

So, for $v \in \mathbb{R}$ the distributional identity $X \stackrel{\mathscr{L}}{=} e^{2v} X^{-1}$ is equivalent to the functional equation

$$f(x^{-1}) = e^{2\nu} x^2 f(e^{2\nu} x), \ x > 0.$$
(10)

If φ is a measurable function on \mathbb{R} and f is a pdf function given as follows

$$f(x) = \frac{1}{x\sqrt{-2\pi\ln q}} \exp\left(\frac{\left(\ln x - v\right)^2}{2\ln q}\right) \left\{1 + \varphi\left(\frac{\ln x - v}{-\ln q}\right)\right\},\,$$

x > 0, then f satisfies the latter functional equation if and only if φ is an even function.

As a consequence of Corollary 1 and the last remark with $v = \ln(q^{1/2}EX)$, we have that a positive random variable *X* with probability density function *f* satisfies

$$q\widehat{X} \stackrel{\mathscr{L}}{=} X \stackrel{\mathscr{L}}{=} q (\mathbf{E}X)^2 X^{-1}$$

if and only if *f* can be written as in Corollary 1 with φ being an even function.

Finally, we provide some families of functions satisfying (8).

Examples

From bounded functions, the following observation allows to construct functions with values in the non-negative axis.

Remark 2. For $\alpha, \beta \in \mathbb{R}$ with $\alpha < \beta$, it is easy to see that there exists an interval $I \subset \mathbb{R}$ such that $\varepsilon [\alpha, \beta] + 1 \subset \mathbb{R}^+$ for all $\varepsilon \in I$. In fact, when $\alpha < 0 < \beta$ we have that $I = [-\beta^{-1}, -\alpha^{-1}]$. For $\alpha \ge 0$, $I = [-\beta^{-1}, \infty)$, and for $\beta \le 0$, $I = (-\infty, -\alpha^{-1}]$.

Example 1. Let t > 0 be fixed and let $(c_n)_{n \in \mathbb{Z}}$ be a sequence of complex numbers such that $\varphi(x) = \sum_{n \in \mathbb{Z}} c_n e^{2\pi n i x} \in L^2(0, 1)$. Then φ satisfies

$$\int_0^1 \theta(x,t)\varphi(x)dx = 0,$$
(11)

if and only if $\varphi(x)$ is orthogonal to $\theta(x, t)$ in $L^2(0, 1)$. By (5) this is equivalent to the orthogonality between $(c_n)_{n\in\mathbb{Z}}$ and $(e^{-4\pi^2n^2t})_{n\in\mathbb{Z}}$, i.e.

$$\sum_{n\in\mathbb{Z}}c_ne^{-4\pi^2n^2t}=0.$$

In [11, page 1278] Pakes says that the continuous solutions of (2) probably are exceptions. But for any trigonometric polynomial $p(x) = \sum_{|n| \le N} c_n e^{2\pi n i x}$ whose coefficients $c_n \in \mathbb{C}$ satisfy the last equality with $t = b^{-1}/2$, there is an interval I such that

$$\varepsilon x \ge -1$$
, for all $x \in \lfloor \min \operatorname{Re} p, \max \operatorname{Re} p \rfloor$, $\varepsilon \in I$,

therefore $\varphi = \varepsilon \operatorname{Re} p \ge -1$ on \mathbb{R} and the corresponding density function given by Corollary 1 is an infinitely differentiable function on \mathbb{R}^+ .

Example 2. Let $c_m = -c_{-m} = i/2$, and $c_n = 0$ for all $n \in \mathbb{Z} \setminus \{-m, m\}$, $m \neq 0$. So, the corresponding trigonometric polynomial $\varphi(x) = -\sin(2\pi mx)$ is a function satisfying (11) for all t > 0.

Example 3. Let $c_{-1} = c_1 = -1/2$, $c_0 = e^{-4\pi^2 t}$, and $c_n = 0$ for all $|n| \ge 2$. Thus, the corresponding trigonometric polynomial $\varphi(x) = e^{-4\pi^2 t} - \cos(2\pi x) \ge -1$ is an even function satisfying (11).

Example 4. By (6) we have that

$$\varphi_{c}(x) = -1 + \left(\int_{0}^{1} \frac{\theta(x,t)}{\theta(x+c,t)} dx\right)^{-1} \frac{1}{\theta(x+c,t)}$$

is a 1-periodic, continuous function satisfying (11) for all $c \in [0, 1)$. Since $\theta(x, t)$ is an even function for all t > 0, the function φ_c is even if and only if c = 0, 1/2. In [4, equality (2.15)] it is shown that

$$\theta(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/(4t)} (q_t; q_t)_{\infty} (-q_t^{1/2-x}; q)_{\infty} (-q_t^{1/2+x}; q_t)_{\infty}$$

where $q_t = e^{-t^{-1}/2}$, $(p;q)_{\infty} = \prod_{k=0}^{\infty} (1 - pq^k)$. For $c \in (0,1)$ we have that (see [4, equality (2.17)])

$$\int_{0}^{1} \frac{\theta(x,t)}{\theta(x+c,t)} dx = 2t \frac{\pi q_{t}^{c(c-1)/2}}{\sin(\pi c)} \frac{\left(q_{t}^{c};q_{t}\right)_{\infty} \left(q_{t}^{1-c};q_{t}\right)_{\infty}}{\left(q_{t};q_{t}\right)_{\infty}^{2}}.$$

To get more examples of functions fulfilling (8) see [4]. The results in [7] can be used to construct positive random variables having not the LBS-property but with moment sequence (3).

Acknowledgement I thank the anonymous referees for useful suggestions to the original manuscript.

References

- [1] Bertoin J., Biane P., Yor M., Poissonian exponential functionals, *q*-series, *q*-integrals, and the moment problem for log-normal distributions, Seminar on Stochastic Analysis, Random Fields and Applications IV, 45–56, Progr. Probab., 58, Birkhauser, Basel, 2004. MR2096279
- [2] Cox D. R., Renewal theory, Methuen & Co. Ltd., London; John Wiley & Sons, Inc., New York 1962 ix+142 pp. MR0153061
- [3] Chihara T. S., A characterization and a class of distributions functions for the Stieltjes-Wigert polynomials, Canadian Math. Bull. 13 (1970), 529–532. MR0280761
- [4] Gómez R., López-García M., A family of heat functions as solutions of indeterminate moment problems, Int. J. Math. Math. Sci., vol. 2007, Article ID 41526, 11 pages, doi:10.1155/2007/41526.
- [5] Gupta R. C., Kirmani S. N. U. A., The role of weighted distributions in stochastic modeling, Comm. Statist. Theory Methods 19 (1990), no. 9, 3147–3162. MR1089242
- [6] Leyva V, Sanhueza A., Angulo J. M., A length-biased version of the Birnbaum-Saunders distribution with application in water quality, Stoch. Environ Res Risk Asses (2009) 23:299– 307, doi:10.1007/s00477-008-0215-9.

- [7] López-García M., Characterization of solutions to the log-normal moment problem, to appear in Theory of Probability and its Applications.
- [8] Oncel S. Y., Ahsanullah M., Aliev F. A., Aygun F., Switching record and order statistics via random contractions, Statist. Probab. Lett. 73 (2005), no. 3, 207–217. MR2179280
- [9] Pakes A. G., Khattree, R., Length-biasing, characterization of laws, and the moment problem, Austral. J. Statist. 34 (1992), 307–322. MR1193781
- [10] Pakes A. G., Length biasing and laws equivalent to the log-normal, J. Math. Anal. Appl. 197 (1996), 825–854. MR1373083
- [11] Pakes A. G., Structure of Stieltjes classes of moment-equivalent probability laws, J. Math. Anal. Appl. 326 (2007), 1268–1290. MR2280980
- Pakes A. G., Navarro J., Distributional characterizations through scaling relations, Aust. N. Z. J. Stat. 49 (2007), no. 2, 115–135. MR2392366
- [13] Rao C. R., Shanbhag D. N., Choquet-Deny type functional equations with applications to stochastic models. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Ltd., Chichester (1994). xii+290 pp. MR1329995
- [14] Vardi Y., Shepp L. A., Logan B. F., Distribution functions invariant under residual-lifetime and length-biased sampling, Wahrscheinlichkeitstheorie verw. Gebiete 56 (1981), 415–426. MR0621657
- [15] Widder D. V., The Heat Equation, Pure and Applied Mathematics, Vol. 67. Academic Press, New York-London (1975). xiv+267 pp. MR0466967