ELECTRONIC
 COMMUNICATIONS
 in PROBABILITY

CHARACTERIZATION OF DISTRIBUTIONS WITH THE LENGTH-BIAS SCALING PROPERTY

MARCOS LÓPEZ-GARCÍA
Instituto de Matemáticas
Universidad Nacional Autónoma de México
México, D.F. C.P. 04510.
email: flopez@matem.unam.mx

Submitted November 26, 2008, accepted in final form April 15, 2009
AMS 2000 Subject classification: Primary: 60E05, Secondary: 44A60.
Keywords: Length-bias scaling property, Indeterminate moment problem, theta function.

Abstract

For $q \in(0,1)$ fixed, we characterize the density functions f of absolutely continuous random variables $X>0$ with finite expectation whose respective distribution functions satisfy the so-called (LBS) length-bias scaling property $X \stackrel{\mathscr{Q}}{=} q \widehat{X}$, where \widehat{X} is a random variable having the distribution function $\widehat{F}(x)=(\mathbf{E} X)^{-1} \int_{0}^{x} y f(y) d y$.

For an absolutely continuous random variable $X>0$ with probability density function (pdf) f and finite expectation $\mathbf{E} X$, we denote by \widehat{X} an absolutely continuous random variable having the probability density function $(\mathbf{E} X)^{-1} x f(x)$. In this case, \widehat{X} is called the size- or length-biased version of X and $\mathscr{L}(\widehat{X})$ is the corresponding length-biased distribution. It is well known that \widehat{X} is the stationary total lifetime in a renewal process with generic lifetime X (see [2, Chapter 5]).

The length-biased distributions have been applied in various fields, such as biometry, ecology, environmental sciences, reliability and survival analysis. A review of these distributions and their applications are included in [5, Section 3], $[6,8,12,13]$.

In [9], Pakes and Khattree ask whether it is possible to randomly rescale the total lifetime to recover the lifetime law. More specifically, let $V \geq 0$ be a random variable independent of X with a fixed law satisfying $P(V>0)>0$. For which laws $\mathscr{L}(X)$ does the following "equality in law"

$$
X \stackrel{\mathscr{L}}{=} V \widehat{X},
$$

hold? For instance, when V has the uniform law on [0,1] the last equality holds if and only if $\mathscr{L}(X)$ is an exponential law (see [9]).

In this note we consider the case where V is a constant function: The law of X has the so-called length-bias scaling property (abbreviated to LBS-property) if

$$
\begin{equation*}
X \stackrel{\mathscr{L}}{=} q \widehat{X}, \tag{1}
\end{equation*}
$$

with $q \in(0,1)$. Several authors, including Chihara [3], Pakes and Khattree [9], Pakes [10, 11], Vardi et al. [14], have studied the LBS-property. In [1], Bertoin et al. analyze a random variable X that arises in the study of exponential functionals of Poisson processes; they show that $q \widehat{X} \stackrel{\mathscr{L}}{=} X \stackrel{\mathscr{L}}{=}$ $q^{-1} X^{-1}$, with $\mathbf{E} X=q^{-1}$.

An easy computation shows that (1) can be written as

$$
\int_{0}^{x} f(y) d y=\frac{1}{\mathbf{E} X} \int_{0}^{x} \frac{y}{q} f\left(\frac{y}{q}\right) \frac{d y}{q}, x>0
$$

which is equivalent to

$$
\begin{equation*}
(\mathrm{E} X) q f(q x)=x f(x), \text { a.e. } x>0 \tag{2}
\end{equation*}
$$

By induction we have that

$$
(\mathbf{E} X)^{n} q^{n} f\left(q^{n} x\right)=q^{n^{2} / 2-n / 2} x^{n} f(x), x>0, n \in \mathbb{Z}
$$

and therefore

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} f(x) d x=(\mathbf{E} X)^{n} q^{n / 2-n^{2} / 2}, \forall n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

When X is an absolutely continuous random variable with probability density function f, we sometimes write $X \sim f$.
Proposition 1. If $X \sim f$ and f satisfies (2), then the pdf $g(x)=e^{x} f\left(e^{x}\right)$ of the random variable $Y=\log X$ satisfies the functional equation

$$
\begin{equation*}
g(x-b)=C e^{a x} g(x), \quad x \in \mathbb{R} \tag{4}
\end{equation*}
$$

with $a=1, b=-\ln q, C=(\mathbf{E} X)^{-1}$.
So, the main result of this note characterizes the probability density functions fulfilling the last functional equation. First, we recall that the theta function given by

$$
\begin{equation*}
\theta(x, t)=(4 \pi t)^{-1 / 2} \sum_{n \in \mathbb{Z}} e^{-(x+n)^{2} /(4 t)}=\sum_{n \in \mathbb{Z}} e^{-4 \pi^{2} n^{2} t+2 \pi n i x}>0 \tag{5}
\end{equation*}
$$

for all $(x, t) \in \mathbb{R}_{+}^{2}$, satisfies the heat equation on \mathbb{R}_{+}^{2} and

$$
\begin{equation*}
\int_{0}^{1} \theta(x, t) d x=1, \text { for all } t>0 \text {. (see [15, Chapter V]) } \tag{6}
\end{equation*}
$$

Theorem 1. Let a, b, C be real numbers with $a b>0, C>0$. Then the $p d f g$ satisfies the functional equation (4) if and only if there exists a 1-periodic function $\varphi, \varphi \geq-1$, such that the restriction of φ to $(0,1)$ belongs to $L^{1}(0,1)$,

$$
\begin{equation*}
g(x)=\frac{1}{\sqrt{2 \pi a^{-1} b}} \exp \left(-\frac{(a x-\mu)^{2}}{2 a b}\right)\left\{1+\varphi\left(\frac{a x-\mu}{a b}\right)\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{1} \theta\left(x, \frac{1}{2 a b}\right) \varphi(x) d x=0 \tag{8}
\end{equation*}
$$

where $-\mu=\ln C+a b / 2$.

Proof. For $b>0$ the probability density function

$$
h(x)=\frac{1}{\sqrt{2 \pi b}} e^{-(x-\mu)^{2} /(2 b)}
$$

where $-\mu=\ln C+b / 2$, satisfies the functional equation (4) with $a=1$. If the density function g so does, then $g(x-b) / h(x-b)=g(x) / h(x), x \in \mathbb{R}$; therefore there exists a 1-periodic function ψ such that $g(x)=h(x) \psi\left(b^{-1} x\right)$. By making the change of variable $y=(x-\mu) / b$, we obtain

$$
\begin{aligned}
1=\int_{\mathbb{R}} g(x) d x & =\int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi b^{-1}}} e^{-b y^{2} / 2} \psi\left(y+b^{-1} \mu\right) d y \\
& =\sum_{n \in \mathbb{Z}} \int_{n}^{n+1} \frac{1}{\sqrt{2 \pi b^{-1}}} e^{-b y^{2} / 2} \psi\left(y+b^{-1} \mu\right) d y \\
& =\int_{0}^{1} \theta\left(y, 2^{-1} b^{-1}\right) \psi\left(y+b^{-1} \mu\right) d y
\end{aligned}
$$

By using (6), the result follows with $\varphi(x)=-1+\psi\left(x+b_{\sim}^{-1} \mu\right)$.
The general case follows by setting $\tilde{g}(x)=a^{-1} g\left(a^{-1} x\right), \widetilde{b}=a b,-\widetilde{\mu}=\ln C+\widetilde{b} / 2$.
From Proposition 1 we obtain the characterization of the probability density functions with the LBS-property.

Corollary 1. Let $q \in(0,1)$ be fixed, and let $X>0$ be a random variable with pdf f and $\mathbf{E} X<\infty$. The law of X has the LBS property if and only if there exists a 1-periodic function $\varphi, \varphi \geq-1$, with the restriction of φ to $(0,1)$ in $L^{1}(0,1)$, such that φ satisfies (8) with $a=1, b=-\ln q$, and

$$
\begin{equation*}
f(x)=\frac{1}{x \sqrt{-2 \pi \ln q}} \exp \left(\frac{(\ln x-\mu)^{2}}{2 \ln q}\right)\left\{1+\varphi\left(\frac{\ln x-\mu}{-\ln q}\right)\right\} \tag{9}
\end{equation*}
$$

where $\mu=\ln \left(q^{1 / 2} \mathbf{E} X\right)$.
In [10, Theorem 3.1], Pakes uses a different approach to characterize the probability distribution functions $F=\mathscr{L}(X)$ satisfying (1) with $\mathbf{E} X=1$.

By (3), it follows that the probability density functions having the LBS-property are solutions of an indeterminate moment problem.

Let $N(\mu,-\ln q)$ be the normal density with mean μ and variance $-\ln q$. If $Y \sim N(\mu,-\ln q)$, we note that $\exp (Y)$ has the log-normal density, i.e.

$$
\exp (Y) \sim \frac{1}{x \sqrt{-2 \pi \ln q}} \exp \left(\frac{(\ln x-\mu)^{2}}{2 \ln q}\right)
$$

Remark 1. If X is a positive absolutely continuous random variable with $p d f f$, then

$$
c X^{-1} \sim c x^{-2} f\left(c x^{-1}\right), \text { for all } c>0
$$

So, for $v \in \mathbb{R}$ the distributional identity $X \stackrel{\mathscr{L}}{=} e^{2 v} X^{-1}$ is equivalent to the functional equation

$$
\begin{equation*}
f\left(x^{-1}\right)=e^{2 v} x^{2} f\left(e^{2 v} x\right), x>0 \tag{10}
\end{equation*}
$$

If φ is a measurable function on \mathbb{R} and f is a pdf function given as follows

$$
f(x)=\frac{1}{x \sqrt{-2 \pi \ln q}} \exp \left(\frac{(\ln x-v)^{2}}{2 \ln q}\right)\left\{1+\varphi\left(\frac{\ln x-v}{-\ln q}\right)\right\}
$$

$x>0$, then f satisfies the latter functional equation if and only if φ is an even function.
As a consequence of Corollary 1 and the last remark with $v=\ln \left(q^{1 / 2} \mathbf{E} X\right)$, we have that a positive random variable X with probability density function f satisfies

$$
q \widehat{X} \stackrel{\mathscr{L}}{=} X \stackrel{\mathscr{L}}{=} q(\mathbf{E} X)^{2} X^{-1}
$$

if and only if f can be written as in Corollary 1 with φ being an even function.
Finally, we provide some families of functions satisfying (8).

Examples

From bounded functions, the following observation allows to construct functions with values in the non-negative axis.

Remark 2. For $\alpha, \beta \in \mathbb{R}$ with $\alpha<\beta$, it is easy to see that there exists an interval $I \subset \mathbb{R}$ such that $\varepsilon[\alpha, \beta]+1 \subset \overline{\mathbb{R}^{+}}$for all $\varepsilon \in I$. In fact, when $\alpha<0<\beta$ we have that $I=\left[-\beta^{-1},-\alpha^{-1}\right]$. For $\alpha \geq 0, I=\left[-\beta^{-1}, \infty\right)$, and for $\beta \leq 0, I=\left(-\infty,-\alpha^{-1}\right]$.

Example 1. Let $t>0$ be fixed and let $\left(c_{n}\right)_{n \in \mathbb{Z}}$ be a sequence of complex numbers such that $\varphi(x)=$ $\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi n i x} \in L^{2}(0,1)$. Then φ satisfies

$$
\begin{equation*}
\int_{0}^{1} \theta(x, t) \varphi(x) d x=0 \tag{11}
\end{equation*}
$$

if and only if $\varphi(x)$ is orthogonal to $\theta(x, t)$ in $L^{2}(0,1)$. By (5) this is equivalent to the orthogonality between $\left(c_{n}\right)_{n \in \mathbb{Z}}$ and $\left(e^{-4 \pi^{2} n^{2} t}\right)_{n \in \mathbb{Z}}$, i.e.

$$
\sum_{n \in \mathbb{Z}} c_{n} e^{-4 \pi^{2} n^{2} t}=0
$$

In [11, page 1278] Pakes says that the continuous solutions of (2) probably are exceptions. But for any trigonometric polynomial $p(x)=\sum_{|n| \leq N} c_{n} e^{2 \pi n i x}$ whose coefficients $c_{n} \in \mathbb{C}$ satisfy the last equality with $t=b^{-1} / 2$, there is an interval I such that

$$
\varepsilon x \geq-1, \text { for all } x \in[\min \operatorname{Re} p, \max \operatorname{Re} p], \varepsilon \in I
$$

therefore $\varphi=\varepsilon \operatorname{Re} p \geq-1$ on \mathbb{R} and the corresponding density function given by Corollary 1 is an infinitely differentiable function on \mathbb{R}^{+}.

Example 2. Let $c_{m}=-c_{-m}=i / 2$, and $c_{n}=0$ for all $n \in \mathbb{Z} \backslash\{-m, m\}, m \neq 0$. So, the corresponding trigonometric polynomial $\varphi(x)=-\sin (2 \pi m x)$ is a function satisfying (11) for all $t>0$.

Example 3. Let $c_{-1}=c_{1}=-1 / 2, c_{0}=e^{-4 \pi^{2} t}$, and $c_{n}=0$ for all $|n| \geq 2$. Thus, the corresponding trigonometric polynomial $\varphi(x)=e^{-4 \pi^{2} t}-\cos (2 \pi x) \geq-1$ is an even function satisfying (11).

Example 4. By (6) we have that

$$
\varphi_{c}(x)=-1+\left(\int_{0}^{1} \frac{\theta(x, t)}{\theta(x+c, t)} d x\right)^{-1} \frac{1}{\theta(x+c, t)}
$$

is a 1-periodic, continuous function satisfying (11) for all $c \in[0,1)$. Since $\theta(x, t)$ is an even function for all $t>0$, the function φ_{c} is even if and only if $c=0,1 / 2$. In [4, equality (2.15)] it is shown that

$$
\theta(x, t)=\frac{1}{\sqrt{4 \pi t}} e^{-x^{2} /(4 t)}\left(q_{t} ; q_{t}\right)_{\infty}\left(-q_{t}^{1 / 2-x} ; q\right)_{\infty}\left(-q_{t}^{1 / 2+x} ; q_{t}\right)_{\infty}
$$

where $q_{t}=e^{-t^{-1} / 2},(p ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-p q^{k}\right)$. For $c \in(0,1)$ we have that (see [4, equality (2.17)])

$$
\int_{0}^{1} \frac{\theta(x, t)}{\theta(x+c, t)} d x=2 t \frac{\pi q_{t}^{c(c-1) / 2}}{\sin (\pi c)} \frac{\left(q_{t}^{c} ; q_{t}\right)_{\infty}\left(q_{t}^{1-c} ; q_{t}\right)_{\infty}}{\left(q_{t} ; q_{t}\right)_{\infty}^{2}}
$$

To get more examples of functions fulfilling (8) see [4]. The results in [7] can be used to construct positive random variables having not the LBS-property but with moment sequence (3).

Acknowledgement I thank the anonymous referees for useful suggestions to the original manuscript.

References

[1] Bertoin J., Biane P., Yor M., Poissonian exponential functionals, q-series, q-integrals, and the moment problem for log-normal distributions, Seminar on Stochastic Analysis, Random Fields and Applications IV, 45-56, Progr. Probab., 58, Birkhauser, Basel, 2004. MR2096279
[2] Cox D. R., Renewal theory, Methuen \& Co. Ltd., London; John Wiley \& Sons, Inc., New York $1962 \mathrm{ix}+142 \mathrm{pp}$. MR0153061
[3] Chihara T. S., A characterization and a class of distributions functions for the Stieltjes-Wigert polynomials, Canadian Math. Bull. 13 (1970), 529-532. MR0280761
[4] Gómez R., López-García M., A family of heat functions as solutions of indeterminate moment problems, Int. J. Math. Math. Sci., vol. 2007, Article ID 41526, 11 pages, doi:10.1155/2007/41526.
[5] Gupta R. C., Kirmani S. N. U. A., The role of weighted distributions in stochastic modeling, Comm. Statist. Theory Methods 19 (1990), no. 9, 3147-3162. MR1089242
[6] Leyva V., Sanhueza A., Angulo J. M., A length-biased version of the Birnbaum-Saunders distribution with application in water quality, Stoch. Environ Res Risk Asses (2009) 23:299307, doi:10.1007/s00477-008-0215-9.
[7] López-García M., Characterization of solutions to the log-normal moment problem, to appear in Theory of Probability and its Applications.
[8] Oncel S. Y., Ahsanullah M., Aliev F. A., Aygun F., Switching record and order statistics via random contractions, Statist. Probab. Lett. 73 (2005), no. 3, 207-217. MR2179280
[9] Pakes A. G., Khattree, R., Length-biasing, characterization of laws, and the moment problem, Austral. J. Statist. 34 (1992), 307-322. MR1193781
[10] Pakes A. G., Length biasing and laws equivalent to the log-normal, J. Math. Anal. Appl. 197 (1996), 825-854. MR1373083
[11] Pakes A. G., Structure of Stieltjes classes of moment-equivalent probability laws, J. Math. Anal. Appl. 326 (2007), 1268-1290. MR2280980
[12] Pakes A. G., Navarro J., Distributional characterizations through scaling relations, Aust. N. Z. J. Stat. 49 (2007), no. 2, 115-135. MR2392366
[13] Rao C. R., Shanbhag D. N., Choquet-Deny type functional equations with applications to stochastic models. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley \& Sons, Ltd., Chichester (1994). xii+290 pp. MR1329995
[14] Vardi Y., Shepp L. A., Logan B. F., Distribution functions invariant under residual-lifetime and length-biased sampling, Wahrscheinlichkeitstheorie verw. Gebiete 56 (1981), 415-426. MR0621657
[15] Widder D. V., The Heat Equation, Pure and Applied Mathematics, Vol. 67. Academic Press, New York-London (1975). xiv+267 pp. MR0466967

