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Abstract

We show how a description of Brownian exponential functionals as a renewal series gives access
to the law of the hitting time of a square-root boundary by a Bessel process. This extends classical
results by Breiman and Shepp, concerning Brownian motion, and recovers by different means,
extensions for Bessel processes, obtained independently by Delong and Yor.

Let Bt be the standard real valued Brownian motion and for ν > 0, introduce the geometric

Brownian motion E (−ν)t and its exponential functionalA (−ν)t

E
(−ν)
t := ex p(Bt − ν t)

A
(−ν)
t :=

∫ t

0

(E (−ν)
s
)2ds.

Lamperti’s representation theorem [5] applied to E (−ν)t states

E
(−ν)
t = R

(−ν)

A
(−ν)
t

(0.1)

where (R(−ν)
u

, u ≤ T0(R
(−ν))) denotes the Bessel process of index (−ν) (equivalently of dimension

δ = 2(1− ν)), starting at 1, which is an R+-valued diffusion with infinitesimal generator L (−ν)
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given by

L (−ν) f (x) =
1

2
f ′′(x) +

1− 2ν

2x
f ′(x), f ∈ C2

b
(R⋆
+
).

Let us remark that, in the special case ν = 1/2, equation (0.1) is nothing else but the Dubins-

Schwarz representation of the exponential martingale E (−1/2)
t as Brownian motion time changed

withA (−1/2)
t .

For a short summary of relations between Bessel processes and exponentials of Brownian motion,
see e.g. Yor [10].
Let us consider now the following random variable Z , which is often called a perpetuity in the
mathematical finance literature:

Z :=A (−ν)
∞

=

∫ ∞

0

(E (−ν)
s
)2ds

We deduce directly from (0.1) that
A (−ν)
∞

= T0(R
(−ν))

where T0 := inf{u : Xu = 0}, and it is well-known (see [4], [11]), that

A (−ν)
∞

(law)
=

1

2γν
(0.2)

where γν is a gamma variable with parameter ν (i.e. with density 1
Γ(ν)

xν−1e−x1R+).

Our main result characterizes the law of the hitting time of a parabolic boundary by R(−ν)
u

which
corresponds to a Bessel process of dimension d < 2.

Theorem 1. Let 0< b < c, and σ := inf{u : (R(−ν)
u
)2 = 1

c
(b+ u)} with R

(−ν)
0 = 1.

E[(b+σ)−s] = c−s
E[(1+ 2bγν+s)

−s]

E[(1+ 2cγν+s)
−s]

, for any s ≥ 0 (0.3)

Proof: using the strong Markov property and the stationarity of the increments of Brownian mo-
tion, we obtain that for any stopping time τ of the Brownian motion

A (−ν)
∞

=: Z =A (−ν)τ + (E (−ν)τ )2Z ′

where Z ′ is independent of (A (−ν)τ ,E (−ν)τ ) and Z
(law)
= Z ′.

This implies, by (0.1), that Z satisfies the following affine equation (see [8] for many results about
these equations)

A (−ν)
∞

=: Z =A (−ν)τ + (R
(−ν)

A
(−ν)
τ

)2Z ′ (0.4)

where Z ′ is independent of (A (−ν)τ ,R(−ν)
A
(−ν)
τ

) and Z
(law)
= Z ′.

Obviously, σ < T0(R
(−ν)). Taking now :

τ= inf{t : (R(−ν)
A
(−ν)
t

)2 =
1

c
(b+A

(−ν)
t )}

we getA (−ν)τ = σ, and the identity in law

b+ Z
(law)
= (b+σ)(1+

Z

c
) (0.5)
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where the variables σ and Z on the right-hand side are independent.
As a result, we obtain the Mellin transform of b+σ which is:

E[(b+σ)−s] = c−s
E[(b+ Z)−s]

E[(c + Z)−s]

But, from (0.2)

E[(b+σ)−s] = c−s
E[(2γν)

s 1
(1+2bγν )

s ]

E[(2γν)
s 1
(1+2cγν )

s ]

which gives the result.
One can now use the duality between the laws of Bessel processes of dimension d and 4−d to get
the analogous result of Theorem 1, and recover the result of Delong [2], [3], and Yor [9] which
deals with the case d ≥ 2.

Theorem 2. Let 0< b < c, and σ := inf{u : (R(ν)
u
)2 = 1

c
(b+ u)} with R

(ν)
0 = 1.

E[(b+σ)−s] = c−s
E[(1+ 2bγs)

−s+ν]

E[(1+ 2cγs)
−s+ν]

, for any s ≥ 0. (0.6)

Proof : it is based on the following classical relation between the laws of the Bessel processes with
indices ν and −ν:

P (ν)
x |Ft

=
(X t∧T0

)2ν

x2ν
.P (−ν)

x |Ft
(0.7)

which implies that

E
(ν)
1 [(b+σ)

−s] = E
(−ν)
1 [X 2ν

σ (b+σ)
−s] =

1

cν
E
(−ν)
1 [(b+σ)−s+ν]

Theorem 1 gives the result.
Finally, it is easily shown, thanks to the classical representations of the Whittaker functions (see
Lebedev [6] page 279), that the right-hand sides of (0.3) and (0.6) are expressed in terms of ratios
of Whittaker functions. Let us recall their integral representation:

Wk,m(z) =
e−z/2zk

Γ( 1
2
− k+m)

∫ ∞

0

t−k− 1
2
+m(1+

t

z
)k−

1
2
+me−t d t

whenever ℜ(m− k+ 1
2
)≥ 0 and arg(z)< π.

Using this identitity, the rhs of (0.3) and (0.6) take respectively the form

c−s
e

1
4b W1−ν

2
−s, ν

2
( 1

2b
)

e
1
4c W1−ν

2
−s, ν

2
( 1

2c
)

and c−s
e

1
4b W1+ν

2
−s, ν

2
( 1

2b
)

e
1
4c W1+ν

2
−s, ν

2
( 1

2c
)

.
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