RENEWAL SERIES AND SQUARE-ROOT BOUNDARIES FOR BESSEL PROCESSES

NATHANAËL ENRIQUEZ

Laboratoire Modal’X, Université Paris 10, 200 Avenue de la République, 92000 Nanterre, France
email: nenriquez@u-paris10.fr
CHRISTOPHE SABOT
Université de Lyon, Université Lyon 1, CNRS UMR5208, INSA de Lyon F-69621, Ecole Centrale de Lyon, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France email: sabot@math.univ-lyon1.fr

MARC YOR
Laboratoire de Probabilités et Modèles Aléatoires, CNRS UMR 7599, Université Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France,
et Institut Universitaire de France (IUF).
email: deaproba@proba.jussieu.fr
Submitted 17 june 2008, accepted in final form 6 November 2008
AMS 2000 Subject classification: 60G40, 60J57
Keywords: Bessel processes, renewal series, exponential functionals, square-root boundaries

Abstract

We show how a description of Brownian exponential functionals as a renewal series gives access to the law of the hitting time of a square-root boundary by a Bessel process. This extends classical results by Breiman and Shepp, concerning Brownian motion, and recovers by different means, extensions for Bessel processes, obtained independently by Delong and Yor.

Let B_{t} be the standard real valued Brownian motion and for $v>0$, introduce the geometric Brownian motion $\mathscr{E}_{t}^{(-v)}$ and its exponential functional $\mathscr{A}_{t}^{(-v)}$

$$
\begin{aligned}
\mathscr{E}_{t}^{(-v)} & :=\exp \left(B_{t}-v t\right) \\
\mathscr{A}_{t}^{(-v)} & :=\int_{0}^{t}\left(\mathscr{E}_{s}^{(-v)}\right)^{2} d s .
\end{aligned}
$$

Lamperti's representation theorem [5] applied to $\mathscr{E}_{t}^{(-v)}$ states

$$
\begin{equation*}
\mathscr{E}_{t}^{(-v)}=R_{\mathscr{A}_{t}^{(-v)}}^{(-v)} \tag{0.1}
\end{equation*}
$$

where $\left(R_{u}^{(-v)}, u \leq T_{0}\left(R^{(-v)}\right)\right.$) denotes the Bessel process of index $(-v)$ (equivalently of dimension $\delta=2(1-v))$, starting at 1 , which is an \mathbb{R}_{+}-valued diffusion with infinitesimal generator $\mathscr{L}^{(-v)}$
given by

$$
\mathscr{L}^{(-v)} f(x)=\frac{1}{2} f^{\prime \prime}(x)+\frac{1-2 v}{2 x} f^{\prime}(x), \quad f \in C_{b}^{2}\left(\mathbb{R}_{+}^{\star}\right)
$$

Let us remark that, in the special case $v=1 / 2$, equation (0.1) is nothing else but the DubinsSchwarz representation of the exponential martingale $\mathscr{E}_{t}^{(-1 / 2)}$ as Brownian motion time changed with $\mathscr{A}_{t}^{(-1 / 2)}$.
For a short summary of relations between Bessel processes and exponentials of Brownian motion, see e.g. Yor [10].
Let us consider now the following random variable Z, which is often called a perpetuity in the mathematical finance literature:

$$
Z:=\mathscr{A}_{\infty}^{(-v)}=\int_{0}^{\infty}\left(\mathscr{E}_{s}^{(-v)}\right)^{2} d s
$$

We deduce directly from (0.1) that

$$
\mathscr{A}_{\infty}^{(-v)}=T_{0}\left(R^{(-v)}\right)
$$

where $T_{0}:=\inf \left\{u: X_{u}=0\right\}$, and it is well-known (see [4], [11]), that

$$
\begin{equation*}
\mathscr{A}_{\infty}^{(-v)} \stackrel{(\text { law })}{=} \frac{1}{2 \gamma_{v}} \tag{0.2}
\end{equation*}
$$

where γ_{v} is a gamma variable with parameter v (i.e. with density $\frac{1}{\Gamma(v)} x^{v-1} e^{-x} \mathbf{1}_{\mathbb{R}_{+}}$).
Our main result characterizes the law of the hitting time of a parabolic boundary by $R_{u}^{(-v)}$ which corresponds to a Bessel process of dimension $d<2$.
Theorem 1. Let $0<b<c$, and $\sigma:=\inf \left\{u:\left(R_{u}^{(-v)}\right)^{2}=\frac{1}{c}(b+u)\right\}$ with $R_{0}^{(-v)}=1$.

$$
\begin{equation*}
E\left[(b+\sigma)^{-s}\right]=c^{-s} \frac{E\left[\left(1+2 b \gamma_{v+s}\right)^{-s}\right]}{E\left[\left(1+2 c \gamma_{v+s}\right)^{-s}\right]}, \quad \text { for any } s \geq 0 \tag{0.3}
\end{equation*}
$$

Proof: using the strong Markov property and the stationarity of the increments of Brownian motion, we obtain that for any stopping time τ of the Brownian motion

$$
\mathscr{A}_{\infty}^{(-v)}=: Z=\mathscr{A}_{\tau}^{(-v)}+\left(\mathscr{E}_{\tau}^{(-v)}\right)^{2} Z^{\prime}
$$

where Z^{\prime} is independent of $\left(\mathscr{A}_{\tau}^{(-v)}, \mathscr{E}_{\tau}^{(-v)}\right)$ and $Z \stackrel{(\text { law })}{=} Z^{\prime}$.
This implies, by (0.1), that Z satisfies the following affine equation (see [8] for many results about these equations)

$$
\begin{equation*}
\mathscr{A}_{\infty}^{(-v)}=: Z=\mathscr{A}_{\tau}^{(-v)}+\left(R_{\mathscr{A} \tau}^{(-v)}(-v)\right)^{2} Z^{\prime} \tag{0.4}
\end{equation*}
$$

where Z^{\prime} is independent of $\left(\mathscr{A}_{\tau}^{(-v)}, R_{\mathscr{A}_{\tau}^{(-v)}}^{(-v)}\right)$ and $Z \stackrel{(l a w)}{=} Z^{\prime}$.
Obviously, $\sigma<T_{0}\left(R^{(-v)}\right)$. Taking now :

$$
\tau=\inf \left\{t:\left(R_{\mathscr{A}_{t}^{(-v)}}^{(-v)}\right)^{2}=\frac{1}{c}\left(b+\mathscr{A}_{t}^{(-v)}\right)\right\}
$$

we get $\mathscr{A}_{\tau}^{(-v)}=\sigma$, and the identity in law

$$
\begin{equation*}
b+Z \stackrel{(\text { law })}{=}(b+\sigma)\left(1+\frac{Z}{c}\right) \tag{0.5}
\end{equation*}
$$

where the variables σ and Z on the right-hand side are independent.
As a result, we obtain the Mellin transform of $b+\sigma$ which is:

$$
E\left[(b+\sigma)^{-s}\right]=c^{-s} \frac{E\left[(b+Z)^{-s}\right]}{E\left[(c+Z)^{-s}\right]}
$$

But, from (0.2)

$$
E\left[(b+\sigma)^{-s}\right]=c^{-s} \frac{E\left[\left(2 \gamma_{v}\right)^{s} \frac{1}{\left(1+2 b \gamma_{v}\right)^{s}}\right]}{E\left[\left(2 \gamma_{v}\right)^{s} \frac{1}{\left(1+2 c \gamma_{v}\right)^{s}}\right]}
$$

which gives the result.
One can now use the duality between the laws of Bessel processes of dimension d and $4-d$ to get the analogous result of Theorem 1, and recover the result of Delong [2], [3], and Yor [9] which deals with the case $d \geq 2$.

Theorem 2. Let $0<b<c$, and $\sigma:=\inf \left\{u:\left(R_{u}^{(v)}\right)^{2}=\frac{1}{c}(b+u)\right\}$ with $R_{0}^{(v)}=1$.

$$
\begin{equation*}
E\left[(b+\sigma)^{-s}\right]=c^{-s} \frac{E\left[\left(1+2 b \gamma_{s}\right)^{-s+v}\right]}{E\left[\left(1+2 c \gamma_{s}\right)^{-s+v}\right]}, \quad \text { for any } s \geq 0 \tag{0.6}
\end{equation*}
$$

Proof : it is based on the following classical relation between the laws of the Bessel processes with indices v and $-v$:

$$
\begin{equation*}
\mathscr{P}_{x}^{(v)}{ }_{\mid \mathscr{F}_{t}}=\frac{\left(X_{t \wedge T_{0}}\right)^{2 v}}{x^{2 v}} \cdot \mathscr{P}_{x}^{(-v)}{ }_{\mid \mathscr{F}_{t}} \tag{0.7}
\end{equation*}
$$

which implies that

$$
E_{1}^{(v)}\left[(b+\sigma)^{-s}\right]=E_{1}^{(-v)}\left[X_{\sigma}^{2 v}(b+\sigma)^{-s}\right]=\frac{1}{c^{v}} E_{1}^{(-v)}\left[(b+\sigma)^{-s+v}\right]
$$

Theorem 1 gives the result.
Finally, it is easily shown, thanks to the classical representations of the Whittaker functions (see Lebedev [6] page 279), that the right-hand sides of (0.3) and (0.6) are expressed in terms of ratios of Whittaker functions. Let us recall their integral representation:

$$
W_{k, m}(z)=\frac{e^{-z / 2} z^{k}}{\Gamma\left(\frac{1}{2}-k+m\right)} \int_{0}^{\infty} t^{-k-\frac{1}{2}+m}\left(1+\frac{t}{z}\right)^{k-\frac{1}{2}+m} e^{-t} d t
$$

whenever $\Re\left(m-k+\frac{1}{2}\right) \geq 0$ and $\arg (z)<\pi$. Using this identitity, the rhs of (0.3) and (0.6) take respectively the form

$$
c^{-s} \frac{e^{\frac{1}{4 b}} W_{\frac{1-v}{2}-s, \frac{v}{2}}\left(\frac{1}{2 b}\right)}{e^{\frac{1}{4 c}} W_{\frac{1-v}{2}-s, \frac{v}{2}}\left(\frac{1}{2 c}\right)} \quad \text { and } \quad c^{-s} \frac{e^{\frac{1}{4 b}} W_{\frac{1+v}{2}-s, \frac{v}{2}}\left(\frac{1}{2 b}\right)}{e^{\frac{1}{4 c}} W_{\frac{1+v}{2}-s, \frac{v}{2}}\left(\frac{1}{2 c}\right)} .
$$

Acknowledgement: We would like to thank Daniel Dufresne for useful and enjoyable discussions on the subject.

References

[1] Breiman, L. First exit times from a square root boundary. (1967) Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2 pp. 9-16 Univ. California Press, Berkeley, Calif. MR0212865
[2] Delong, D.M. Crossing probabilities for a square-root boundary for a Bessel process. Comm. Stat. A - Theory Methods. 10 (1981), no 21, 2197-2213. MR0629897
[3] Delong, D. M. Erratum: "Crossing probabilities for a square root boundary by a Bessel process" Comm. Statist. A - Theory Methods 12 (1983), no. 14, 1699. MR0711257
[4] Dufresne, D. The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuarial J. (1990) 39-79. MR1129194
[5] Lamperti, J. Semi-stable Markov processes. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 205-225. MR0307358
[6] Lebedev, N. N. Special functions and their applications. Dover (1972). MR0350075
[7] Shepp, L. A. A first passage problem for the Wiener process. Ann. Math. Statist. 38 (1967) 1912-1914. MR0217879
[8] Vervaat, W. On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 (1979), no. 4, 750-783. MR0544194
[9] Yor, M. On square-root boundaries for Bessel processes, and pole-seeking Brownian motion. Stochastic analysis and applications (Swansea, 1983), 100-107, Lecture Notes in Math., 1095, Springer, Berlin, 1984. MR0777516
[10] Yor, M. On some exponential functionals of Brownian motion. Adv. Appl. Prob. 24 (1992), 509-531. MR1174378
[11] Yor, M. Sur certaines fonctionnelles exponentielles du mouvement brownien réel. J. Appl. Prob 29 (1992), 202-208. MR1147781

