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Abstract

The edges of the complete graph on n vertices are assigned independent exponentially dis-
tributed costs. A k-matching is a set of k edges of which no two have a vertex in common. We
obtain explicit bounds on the expected value of the minimum total cost Ck,n of a k-matching.
In particular we prove that if n = 2k then π2/12 < ECk,n < π2/12 + log n/n.

1 The random matching problem

The edges of the complete graph on n vertices v1, . . . , vn are assigned independent costs from
exponential distribution with rate 1. A k-matching is a set of k edges of which no two have a
vertex in common. We let Ck,n denote the minimum total cost of the edges of a k-matching.
In 1985 Marc Mézard and Giorgio Parisi [5, 6] gave convincing evidence that as n → ∞,

E
(

C⌊n/2⌋,n

)

→
π2

12
. (1)

This was proved in 2001 by David Aldous [1, 2]. He considered the related assignment problem

on the complete bipartite graph, which is technically simpler. It is known that (1) follows from
the results of [2] by a slight modification of Proposition 2 of [1].
We give a simple proof of (1) by establishing explicit upper and lower bounds on E (Ck,n)
valid for arbitrary k and n. For perfect matchings, that is, when n is even and k = n/2, we
prove that

π2

12
< E

(

Cn/2,n

)

<
π2

12
+

log n

n
. (2)

Notice that the difference between the upper and lower bounds in (2) is much smaller than the
random fluctuations of Cn/2,n. It is not hard to show that the standard deviation of Cn/2,n is

at least of order n−1/2.
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2 The extended graph

In the extended graph there is an extra vertex vn+1, and the costs of the edges from this vertex
are exponentially distributed with rate λ > 0. In the end, λ will tend to zero. We say that a
vertex v participates in a matching if the matching contains an edge incident to v.
In the following, we shall assume that the edge costs are such that no two distinct matchings
have the same cost (this holds with probability 1), and we let σk be the minimum cost k-
matching in the extended graph. We let Pk(n) denote the normalized probability that vn+1

participates in σk. More precisely,

Pk(n) = lim
λ→0

1

λ
P (vn+1 participates in σk).

Lemma 2.1.

E (Ck,n) − E (Ck−1,n−1) =
1

n
Pk(n), (3)

and consequently

E (Ck,n) =
1

n
Pk(n) +

1

n − 1
Pk−1(n − 1) + · · · +

1

n − k + 1
P1(n − k + 1). (4)

Proof. The right hand side of (3) is the normalized probability that a particular edge from
vn+1, say the edge e = (vn, vn+1), belongs to σk. Naturally, Ck,n denotes the cost of the
minimum k-matching on the vertices v1, . . . , vn. We couple Ck,n and Ck−1,n−1 by letting
Ck−1,n−1 be the cost of the minimum (k − 1)-matching on the vertices v1, . . . , vn−1.
Let w be the cost of the edge e. If e participates in σk, then we must have w ≤ Ck,n−Ck−1,n−1.
Conversely, if w ≤ Ck,n − Ck−1,n−1 then e will participate in σk unless there is some other
edge from vn+1 that does. This can happen only if both e and some other edge from vn+1

have costs smaller than Ck,n. As λ → 0, the probability for this is O(λ2). Hence

1

n
Pk(n) = lim

λ→0

1

λ
P (w ≤ Ck,n − Ck−1,n−1)

= lim
λ→0

1

λ
E

(

1 − e−λ(Ck,n−Ck−1,n−1)
)

= E (Ck,n) − E (Ck−1,n−1) . (5)

We therefore wish to estimate Pk(n) for general k and n. For this purpose we design a random
process driven by the edge costs. A convenient way to think about this process is to imagine
that there is an oracle who knows all the edge costs. We ask questions to the oracle in such
a way that we can control the conditional distribution of the edge costs while at the same
time being able to determine whether vn+1 participates in σk or not. The following lemma is
well-known in matching theory, but for completeness we include a proof.

Lemma 2.2. Every vertex that participates in σr also participates in σr+1.

Proof. Let H be the symmetric difference σr△σr+1 of σr and σr+1, in other words the set
of edges that belong to one of them but not to the other. Since no vertex has degree more
than 2, H consists of paths and cycles. We claim that H consists of a single path. If this
would not be the case, then it would be possible to find a subset H1 ⊆ H consisting of one
or two components of H, such that H1 contains equally many edges from σr and σr+1. By
assumption, the edge sets H1∩σr and H1∩σr+1 do not have equal total cost. Therefore either
H1△σr has smaller cost than σr, or H1△σr+1 has smaller cost than σr+1, a contradiction.
The fact that H is a path clearly implies the statement of the lemma.
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3 The lower bound

The lower bound on E (Ck,n) is the simpler one and we establish it first. In Section 4, a
modification of the method will yield a fairly good upper bound as well.

3.1 The process

The following protocol for asking questions to the oracle looks like an algorithm for finding the
minimum k-matching, but what we are interested in is the probability that vn+1 participates
in the minimum matching.
At each stage of the process, we say that a certain set of vertices are exposed, and the remaining
vertices are unexposed. We have the following information:

1. We know the costs of all edges between exposed vertices.

2. For each exposed vertex v, we also know the minimum cost of the edges connecting v to
the unexposed vertices.

3. Finally, we know the minimum cost of all edges connecting two unexposed vertices.

Another way to put this is to say that for every set A of at most two exposed vertices, we know
the minimum cost of the edges whose set of exposed endpoints is precisely A. By well-known
properties of independent exponential variables, the minimum is located with probabilities
proportional to the rates of the corresponding exponential variables, and conditioning on a
certain edge not being the one of minimum cost, its cost is distributed like the minimum plus
another exponential variable of the same rate.
We also keep track of a nonnegative integer r which is such that σr contains only edges between
exposed vertices. Moreover, we shall require that it can be verified from the information at
hand that this matching is indeed the minimum r-matching. This is the reason why possibly
some more vertices have to be exposed.
Initially, r = 0 and no vertex is exposed. At each stage of the process, the following happens:

• We compute a proposed minimum (r + 1)-matching under the assumption that for all
exposed vertices, their minimum cost edges to an unexposed vertex go to different unex-
posed vertices.

By Lemma 2.2, σr+1 will use at most two unexposed vertices. Hence either it contains the
minimum cost edge connecting two unexposed vertices, or at most two of the minimum
cost edges connecting an exposed vertex to an unexposed one.

• If the proposed minimum (r + 1)-matching contains the minimum edge connecting two
unexposed vertices, then it must indeed be the minimum (r + 1)-matching. The two
endpoints of the new edge are exposed (that is, we ask for the information required for
them to be exposed). Finally, the value of r increased by 1.

• Otherwise the proposed matching includes up to two edges from exposed vertices to
unexposed ones. Then the unexposed endpoints of these edges are revealed and exposed.
Unless there are two such edges and they happen to have the same endpoint, the proposed
matching is indeed the minimum (r + 1)-matching, and the value of r is increased. If
there are two edges to unexposed vertices and it turns out that they “collide”, that is,
they have the same unexposed endpoint, then the proposed matching is not valid. We
have then exposed only one more vertex, and we complete the round of the process
without updating the value of r.
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3.2 A lower bound on Pk(n)

We wish to estimate the probability that vn+1 participates in σk. Suppose that at a given
stage of the process there are m ordinary unexposed vertices (that is, not counting vn+1).
There are two cases to consider.
Suppose first that an edge between two unexposed vertices is going to be revealed. The total
rate of the edges between unexposed vertices is

(

m

2

)

+ O(λ)

and the total rate of the edges from vn+1 to the other unexposed vertices is λm. Hence the
probability that vn+1 is among the two new vertices to be exposed is

λm
(

m
2

)

+ O(λ)
=

2λ

m − 1
+ O(λ2).

For convenience we suppose that the vertices are revealed one at a time, with a coin toss to
decide which vertex to be revealed first. Then the probability that vn+1 is exposed is

λ

m − 1
+ O(λ2)

for both the first and the second vertex.
Secondly, suppose that the unexposed endpoint of an edge from an exposed vertex is going
to be revealed. If at one stage of the process there are two such edges, then again we reveal
the endpoints one at a time, flipping a coin to decide the order. In case there is a collision,
this will be apparent when the first new vertex is exposed. If there are m ordinary remaining
unexposed vertices, then the total rate of the edges from a particular exposed vertex v to them
is m + λ, and consequently the probability that vn+1 is exposed is

λ

m
+ O(λ2).

This will hold also for the second edge of two to be exposed at one stage of the process,
provided m denotes the number of remaining unexposed vertices at that point.
If vn+1 is among the first 2k vertices to be exposed, then it will participate in σk. We have
neglected the possibility that there is a collision at vn+1, since this is an event of probability
O(λ2). When m ordinary unexposed vertices remain, the probability that vn+1 is the next
vertex to be exposed is at least λ/m. Hence

Pk(n) ≥
1

n

(

1

n
+

1

n − 1
+ · · · +

1

n − 2k + 1

)

.

We can improve slightly on this inequality by noting that the normalized probability that vn+1

is one of the two first vertices to be exposed is exactly

n
(

n
2

) =
2

n − 1
.

Taking this into account, we get

Pk(n) ≥
1

n

(

2

n − 1
+

1

n − 2
+ · · · +

1

n − 2k + 1

)

. (6)
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3.3 A lower bound on E (Ck,n)

From (4) and (6) it follows that

E (Ck,n) ≥
1

n

(

2

n − 1
+

1

n − 2
+ · · · +

1

n − 2k + 1

)

+
1

n − 1

(

2

n − 2
+

1

n − 3
+ · · · +

1

n − 2k + 2

)

...

+
1

n − k + 1

(

2

n − k

)

. (7)

It is straightforward to prove by induction on n that when n is even and k = n/2, (7) becomes

E
(

Cn/2,n

)

≥
1

2

(

1 +
1

4
+

1

9
+ · · · +

1

(n/2)2

)

+
1

n
.

By a simple integral estimate,

E
(

Cn/2,n

)

≥
1

2

(

π2

6
−

∫ ∞

n/2

dx

x2

)

+
1

n
=

π2

12
. (8)

4 The upper bound

By modifying the argument given in the previous section, we can also establish an upper bound
on E (Ck,n). For this purpose, we are going to design the process differently.

4.1 The process

We modify the process described in Section 3. This time, only the vertices that participate in
σr will be exposed. At each stage, we have the following information:

1. The costs of all edges between exposed vertices. In particular, σr is known.

2. For each exposed vertex v, we know the minimum cost of the edges from v to unexposed
vertices.

3. For some exposed vertices, we may also know to which vertex this minimum cost edge
goes, and the cost of the second cheapest edge to an unexposed vertex.

4. We also know the minimum cost of the edges connecting two unexposed vertices.

As in the previous section, we assume that the information we have is sufficient to verify that
the given r-matching is indeed of minimum cost. We also assume that for the exposed vertices
for which the minimum cost edge to an unexposed vertex is known, this edge never goes to
vn+1. As will become clear below, this assumption is justified by the fact that such an edge
is revealed only in case of a collision. The event of a collision at vn+1 has probability O(λ2),
which is negligible since we are estimating a probability of order λ.
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We of course assume that 2r + 2 ≤ n, so that there are at least two ordinary unexposed
vertices. Given the information we have, we compute a proposed minimum cost (r + 1)-
matching under the assumption that no collision takes place. Then we ask whether or not
the proposed matching is valid. If it is invalid, that is, if there is a collision, then this must
be between the minimum cost edges to unexposed vertices from two of the exposed vertices.
This endpoint is revealed, and we can assume that it is not vn+1, since the probability for this
is negligible. We repeat this until we find that there is no collision, and that therefore the
proposed matching is valid. It must then be the minimum (r + 1)-matching.

4.2 An upper bound on Pk(n)

We analyze a particular stage of the process and we wish to obtain an upper bound on the
probability that vn+1 is one of the two new vertices that are used in σr+1. We let m = n− 2r
be the number of ordinary unexposed vertices.
If σr+1 has an edge between two unexposed vertices, then by the analysis of Section 3, the
probability that it uses the vertex vn+1 is

λm
(

m
2

) =
2λ

m − 1
,

neglecting a term of order λ2.
Suppose instead that σr+1 contains two edges from exposed vertices vi and vj to unexposed
vertices. First assume that we do not know the minimum cost edge to an unexposed vertex
for any of them (that is, none of them falls under (3) above). Then the probability that vn+1

participates in σr+1 is
λm + λm

m(m − 1)
=

2λ

m − 1
,

since we are conditioning on no collision occurring.
If on the other hand for at least one of vi and vj the minimum cost edge to an unexposed
vertex is known according to (3), then the probability that vn+1 participates in σr+1 is even
smaller, at most λ/(m − 1).
This gives the following upper bound on the probability that vn+1 participates in σk:

Pk(n) ≤
2

n − 1
+

2

n − 3
+ · · · +

2

n − 2k + 1
.

4.3 An upper bound on E (Ck,n)

Inductively we obtain the following upper bound on the expected cost of σk:

E (Ck,n) ≤
1

n

(

2

n − 1
+

2

n − 3
+ · · · +

2

n − 2k + 1

)

+
1

n − 1

(

2

n − 2
+ · · · +

2

n − 2k + 2

)

...

+
1

n − k + 1

(

2

n − k

)

.
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We give a slightly weaker but simpler upper bound, valid for even n and k = n/2, in order to
establish (2). If we replace all the terms of the form 2/(n− i) except the first one in each pair
of parentheses by 1/(n − i) + 1/(n − i − 1), we obtain

E
(

Cn/2,n

)

≤
1

n
+

1

2(n − 1)
+ · · · +

1

(n/2)(n/2 + 1)

+
1

n

(

1 +
1

2
+ · · · +

1

n − 1

)

+
1

n − 1

(

1

2
+ · · · +

1

n − 2

)

+

...

+
1

(n/2)((n/2) + 1)

=
1

2

(

1 +
1

4
+ · · · +

1

(n/2)2

)

+
1

n + 1

(

1 +
1

2
+ · · · +

1

n

)

≤
1

2

(

π2

6
−

∫ ∞

n/2+1

dx

x2

)

+
1 + log n

n + 1
=

π2

12
−

1

n + 2
+

1

n + 1
+

log n

n + 1

=
π2

12
+

log n

n
−

log n − n
n+2

n(n + 1)
≤

π2

12
+

log n

n
, (9)

since log n ≥ n/(n + 2) for n ≥ 2. Together with (8), this establishes (2).

5 Concluding remarks

We have inductively established lower and upper bounds on Ck,n from lower and upper bounds
on the normalized probability Pk,n that an extra vertex participates in the minimum match-
ing. For the corresponding problem on the complete m by n bipartite graph (the so called
assignment problem), the expected cost of the minimum k-matching is known [4, 7], and is
given by the simple formula

∑

i,j≥0
i+j<k

1

(m − i)(n − j)
, (10)

conjectured in [3] as a generalization of the formula

n
∑

i=1

1

i2

suggested in [8] for the special case k = m = n. For the complete graph, no such formula has
even been conjectured.

We can now see why finding the exact value is harder for the complete graph. The probability
that the extra vertex is included when we pass from σr to σr+1 depends on whether σr+1

is obtained by adding an edge between two vertices that do not participate in σr, or by
an alternating path that replaces edges in σr by other edges. For the bipartite graph, the
probability that an extra vertex is included is the same in the two cases, and thereby known.
A proof of (10) based on this method is given in [9].
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