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Abstract

The purpose of this note is twofold. Firstly to complete a recent accumulation of results con-
cerning extended version of Itô’s formula for any one dimensional Lévy processes, X. Secondly,
we use the latter to characterise the parabolic generator of X

A :=

{

(f, g) : f(X·, ·) −

∫ ·

0

g(Xs, s)ds is a local martingale

}

.

We also establish a necessary condition for a pair of functions to be in the domain of the
parabolic generator when X has a Gaussian component.

1 Parabolic generator of a Lévy process

Let (Xt, t ≥ 0) be a one-dimensional Lévy process defined on the probability space (Ω,F , IP )
satisfying the usual conditions. It admits the following decomposition, the so called Lévy-Itô
decomposition, (see for example Bertoin [3] p. 14);

Xt = µt + σBt + X
(2)
t + X

(3)
t

where σ and µ are real numbers, B is a linear Brownian motion, X
(2)
t =

∑

0≤s≤t ∆Xs1(|∆Xs|≥1)

and the process X(3) is obtained as the uniform L2(IP )-limit on compact intervals of time of
the sequence (X(ǫ,3), ǫ > 0) as ǫ tends to 0, with

X
(ǫ,3)
t =

∑

0≤s≤t

∆Xs1(ǫ<|∆Xs|≤1) − t

∫

R

x1{ǫ<|x|<1}Π(dx)
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where Π is the Lévy measure.
Let us define the parabolic generator, A, of this process to consist of all pairs (f, g) of functions
for which

f(Xt, t) −

∫ t

0

g(Xs, s)ds

is a local martingale. (Some authors refer to this definition as the extended parabolic gener-
ator). The first of our two main objectives in this paper is Theorem 2 below for which the
following definition is needed.

Definition 1. Let F be the set of functions defined on R × R+. Then

D1,1 consists of functions F ∈ F such that ∂F/∂x and ∂F/∂t exist as Radon-Nikodym deriva-
tives with respect to the Lebesgue measure and are locally bounded,

D2,1 consists of functions F ∈ F such that ∂2F/∂x2 and ∂F/∂t exist as Radon-Nikodym
derivatives with respect to the Lebesgue measure and are locally bounded,

I1 consists of functions F ∈ F such that

∫

R

Π(dy)|F (x + y, t) − F (x, t)|

is well defined and locally bounded in (x, t) and

I2 consists of functions F ∈ F such that ∂F/∂x exists as a Radon-Nikodym derivative with
respect to the Lebesgue measure and

∫

R

Π(dy)|F (x + y, t) − F (x, t) −
∂F

∂x
(x, t)y1(|y|<1)|

is well defined and locally bounded in (x, t).

Let L be the parabolic integro-differential operator associated with the generator of X so that

LF (x, t) =
∂F

∂t
(x, t) + µ

∂F

∂x
(x, t) +

1

2
σ2 ∂2F

∂x2
(x, t)

+

∫

R

{F (x + y, t) − F (x, t) − y
∂F

∂x
(x, t)1(|y|<1)}Π(dy), (1)

whenever ∂F
∂t , ∂F

∂x and ∂2F
∂x2 exist as Radon-Nikodym derivatives and the integral is well defined.

Theorem 2. Set α = 1{σ 6=0} and β = 1{σ=0;
R

(−1,1)
|x|Π(dx)=∞}. We have then:

(i) If F ∈ D1+α,1 ∩ I1+β, then (1) is well defined and (F,LF ) ∈ A

(ii) Assume that σ 6= 0. Let F be an element of D1,1 ∩I2 such that ∂F
∂x is continuous. Assume

that there exists a continuous function G such that (F,G) belongs to A, then F is in D2,1 ∩I2

and G = LF .

To some extent part (i) is predictable from mathematical ’folklore’ for generators but we have
been unable to find a similar concise statement in the literature. A natural way to prove part (i)
would be to use the infinitesimal generator of the two-dimensional Lévy process ((Xt, t) : t ≥ 0)
and show using mollification arguments that its domain contains D1+α,1 ∩ I1+β . Instead, we
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prefer to obtain Theorem 2 (i) as an immediate consequence of an extended version of the
Itô formula (which is introduced in Section 2 and proved in Section 4). Technically, the two
methods are equivalent, but the extended Itô formula provides also Theorem 2 (ii) which is a
necessary condition on elements of A, and as such, usually quite difficult to obtain. To our
knowledge, part (ii) is only known in the literature for the case of Brownian motion; see Wang
[17].

2 Extended Itô formula

The following theorem completes a recent accumulation of results concerning extended version
of Itô’s formula for one dimensional Lévy processes. As it has been done in [6], the Itô formula
below can easily be extended to multidimensional Lévy processes.

Theorem 3. Suppose that F ∈ D1,1 and moreover assume that
∫

|y|<1

Π(dy)|F (x + y, s) − F (x, s) −
∂F

∂x
(x, s)y| (2)

is well defined and locally bounded in (x, s). Then for t ≥ 0 we have IP -almost surely

F (Xt, t) = F (X0, 0) +

∫ t

0

∂F

∂t
(Xs, s)ds +

∫ t

0

∂F

∂x
(Xs−, s)dXs −

1

2

∫ t

0

∫

R

∂F

∂x
(x, s)dLx

s

+
∑

0<s≤t

{F (Xs, s) − F (Xs−, s) −
∂F

∂x
(Xs−, s)∆Xs} (3)

where (Lx
t , x ∈ R, t ≥ 0) is the semi-martingale local time of X.

Note that the third, local time-space integral needs to be understood in an appropriate sense
and this is defined in the next section. It is worth remarking at this point in time however
that the semi-martingale local time of X is non-zero if and only if a Gaussian component is
present (σ 6= 0).
The original interest of extended Itô formulae similar to the one above but for the case of
Brownian motion was to unify various existing formulae such as the Bouleau-Yor formula [4],
the Föllmer-Protter-Shiryaev’s formula [12] and the Azéma-Jeulin-Knight-Yor’s formula [2].
Naturally from these studies grew a desire to see a generic formula covering all cases; see for
example Ghomrasni and Peskir [13], Errami et al. [9]. At the same time, the need for extended
versions of the classical Itô formula appeared in the field of optimal stopping problems driven
by continuous semi-martingales and free boundary problems. In such cases one typically works
with space-time functions which are C2,1(R × R+) except on a set {(x, t) ∈ R × R+ : x =
b(t)} where b : R+ 7→ R is a continuous function. Peskir [15, 16] provides the generic form
of such formulae for general semi-martingales, also in higher dimensional Euclidian space.
Simultaneously developments have appeared in the theory of caustics which have brought
with them similar extended versions of Itô’s formula; see Elworthy et al. [8]. We mention that
Feng and Zhao have constructed integration with respect to local time using Young integrals
[10] and rough path integrals [11].
Theorem 3 is devoted to the case of a general one dimensional Lévy processes and extends
the recent result of Eisenbaum [6] which covered Lévy processes whose jump component is
of bounded variation. In relaxing the assumptions on the jump component, it has become
necessary to introduce the condition (2).
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3 Local time-space calculus

Let us begin with some notational conventions.

Definition 4. The covariation of two stochastic processes Y and Z on the time interval [0, t]
is defined as the following limit, when it exists, in probability

[Y,Z]t = lim
n→∞

n
∑

i=1

(Yti+1
− Yti

)(Zti+1
− Zti

)

where the limit is taken over all the sequences of the subdivisions 0 = t1 < t2 < ... < tn = t
such that sup1≤i≤n |ti+1 − ti| tends to 0 when n tends to ∞.

Now let (Xs, s ≥ 0) be a general one-dimensional Lévy process. Its semi-martingale local
time process (La

t , t ≥ 0, a ∈ R) is given by Tanaka’s formula. Let f∆ be a simple function ie
there exist a finite sequence (xi)1≤i≤n of real numbers, a subdivision of [0, 1] (sj)1≤j≤m and
a family of real numbers {fij , 1 ≤ i ≤ n, 1 ≤ j ≤ m} such that

f∆(x, s) =
∑

(xi,sj)∈∆

fij1(xi,xi+1](x)1(sj ,sj+1](s)

where ∆ = {(xi, sj), 1 ≤ i ≤ n, 1 ≤ j ≤ m}. For such a function integration with respect to L,
the local time process of X, is defined by

∫ 1

0

∫

R

f∆(x, s)dLx
s =

∑

(xi,sj)∈∆

fij(L
xi+1
sj+1

− Lxi+1
sj

− Lxi
sj+1

+ Lxi
sj

) (4)

A natural problem is to find the set of functions to which this integration could be extended.
We do this in the following theorem. To do so we recall a well-known result already used in [6].
The reversed process B̂ = (B̂t := B(1−t) : t ∈ [0, 1]) is a semi-martingale with respect to to the

natural filtration of X̂ = (X̂t := X(1−t)− : t ∈ [0, 1]). (Recall that B is a standard Brownian
motion appearing in the Lévy-Itô decomposition of X). It admits the following decomposition

B̂t = B1 + Wt −

∫ t

0

B̂s

1 − s
ds (5)

where (Ws, 0 ≤ s ≤ 1) is a Brownian motion starting from 0, with respect to the filtration of
B̂.

Theorem 5. Let X be a linear Lévy process with a Gaussian component equal to (σBt : t ≥ 0)
where (Bt : t ≥ 0) is a standard Brownian motion and σ a real number. Let f be a locally

bounded measurable function from R× [0,∞) to R. Then
∫ t

0

∫

R
f(x, s)dLx

s is well-defined and
we have :

∫ t

0

∫

R

f(x, s)dLx
s = σ

∫ t

0

f(Xs−, s)dBs + σ

∫ 1

1−t

f(X̂s−, 1 − s)dB̂s ; 0 ≤ t ≤ 1, (6)

moreover

IE(|

∫ 1

0

∫

R

f(x, s)dLx
s |) ≤ |σ|||f ||

where for any measurable function f : R × [0, 1] 7→ R the norm || · || is defined by

||f || = 2E(

∫ 1

0

f2(Xs, s)ds)1/2 + IE(

∫ 1

0

|f(Xs, s)
Bs

s
|ds).
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Proof: The reversed Lévy process X̂ is a semi-martingale and as such admits a local time
process on the time interval [0, 1] that we denote (L̂x

t , x ∈ R). Thanks to the occupation time
formula one has

Lx
t = L̂x

1 − L̂x
1−t. (7)

Thanks to Tanaka’s formula and (7) we have

− La
t =

∫ t

0

1(Xs−>a)dXs +

∫ 1

1−t

1(X̂s−>a)dX̂s

+
∑

0≤s≤t

{1(Xs>a) − 1(Xs−>a)}∆Xs (8)

for any t in (0, 1]. From the Lévy-Itô decomposition recalled in Section 1, (8) becomes

− La
t = σ

∫ t

0

1(Xs−>a)dBs + σ

∫ 1

1−t

1(X̂s−>a)dB̂s +

∫ t

0

1(Xs−>a)dX(3)
s

+

∫ 1

1−t

1(X̂s−>a)dX̂(3)
s +

∑

0≤s≤t

{1(Xs>a) − 1(Xs−>a)}∆Xs1(|∆Xs|<1). (9)

Next we develop the term
∫ t

0
1(Xs−>a)dX

(3)
s +

∫ 1

1−t
1(X̂s−>a)dX̂

(3)
s . On account of the definition

of X(3), it is equal to the limit in L2(IP ) of

∑

0≤s≤t

1(Xs−>a)∆Xs1(ǫ<|∆Xs|≤1) −

∫

R

x1{ǫ<|x|<1}Π(dx)

∫ t

0

1(Xs−>a)ds

−
∑

0≤s≤t

1(Xs>a)∆Xs1(ǫ<|∆Xs|≤1) +

∫

R

x1{ǫ<|x|<1}Π(dx)

∫ t

0

1(Xs>a)ds.

which is equal to the limit of
∑

0≤s≤t{1(Xs−>a)−1(Xs>a)}∆Xs1(ǫ<|∆Xs|<1). Consequently, we
finally obtain

−La
t = σ

∫ t

0

1(Xs−>a)dBs + σ

∫ 1

1−t

1(X̂s−>a)dB̂s

and similarly

La
t = σ

∫ t

0

1(Xs−≤a)dBs + σ

∫ 1

1−t

1(X̂s−≤a)dB̂s. (10)

Let f∆ be a simple function. Thanks to (10) and (4) we obtain

IE(|

∫ 1

0

∫

R

f∆(x, s)dLx
s |) ≤ |σ|||f∆||

which allows to obtain a consistent definition for
∫ t

0

∫

R
f(x, s)dLx

s , t ≥ 0, for f such that ||f || <
∞, which satisfies (6). One may then enlarge then this stochastic integration to measurable
locally bounded functions as was done in [6].

¤

Definition 6. The local time of X along any Borelian curve (b(t), 0 ≤ t ≤ 1) is defined by

L
b(·)
t =

∫ t

0

∫

R

1(−∞,b(s))(x)dLx
s , t ≥ 0.
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Naturally, unless σ 6= 0 the above integral is identically zero as a process in time.
The next lemma gives some rules for computing integrals with respect to local times. Its proof
is similar to the proofs of Lemma 2.3 and Lemma 4.1 in [7] and hence is omitted.

Lemma 7. Suppose that σ 6= 0.

(i) Let f be a continuous function on R × [0, 1] then for 0 ≤ t ≤ 1

∫ t

0

∫

R

f(x, s)dLx
s = −[f(X., .), B.]t.

(ii) Let f be a function on R × [0, 1] admitting a locally bounded Radon-Nikodym derivative
∂f/∂x then for 0 ≤ t ≤ 1

∫ t

0

∫

R

f(x, s)dLx
s = −

∫ t

0

∂f

∂x
(Xs, s)d[X]cs.

(iii) Let b be a continuous function from R+ to R. Let f be a continuous function on R×[0, 1],
admitting a continuous derivative ∂f/∂x. Then we have for 0 ≤ t ≤ 1,

∫ t

0

∫

R

f(x, s)1(x≤b(s))dLx
s =

∫ t

0

f(b(s), s)dsL
b(.)
s

−

∫ t

0

∂f

∂x
(Xs, s)1(Xs≤b(s))d[X]cs.

The following corollary presents solutions to the problem

∫ t

0

∫

R

f(x, s)dLx
s = 0, 0 ≤ t ≤ 1. (11)

Corollary 8. Suppose that σ 6= 0.

(i) If f is a solution of (11) admitting a continuous derivative with respect to x then the
function ∂f

∂x is identically equal to 0.

(ii) If f(x, s) = F (s), then
∫ t

0

∫

R
f(x, s)dLx

s = 0

(iii) Let f be a continuous solution of (11) then ∂f
∂x exists and is identically equal to 0.

Proof of Corollary 8: (i) We have
∫ t

0
∂f
∂x (Xs, s)ds = 0 for every t in [0, 1]. Hence since X

is right continuous ∂f
∂x (Xs, s) = 0 for every s ∈ [0, 1]. This implies that IE(|∂f

∂x (Xs, s)|) = 0.

Since Xs has a density with respect to the Lebesgue measure, we conclude that ∂f
∂x (x, s) = 0

dx a.e.. But ∂f
∂x is continuous hence ∂f

∂x is identically equal to 0.

(ii) In this case f obviously admits a partial derivative with respect to x which is identically
equal to 0. We obtain the conclusion thanks to Lemma 7 (ii).
(iii) Thanks to Theorem 7, the equality (11) is equivalent to

∫ t

0

f(Xs−, s)dBs +

∫ 1

1−t

f(X̂s−, 1 − s)dB̂s = 0 ; 0 ≤ t ≤ 1. (12)
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We assume first that f , solution of (11) is bounded. Since the process (Mt, 0 ≤ t ≤ 1) =

(
∫ t

0
f(Xs−, s)dBs, 0 ≤ t ≤ 1) is a martingale with respect to Ft = σ(Xu; 0 ≤ u ≤ t), then

this also true for the process (
∫ 1

1−t
f(X̂s−, 1 − s)dB̂s, 0 ≤ t ≤ 1). We set Kt =

∫ t

0
f(X̂s−, 1 −

s)dB̂s, 0 ≤ t ≤ 1. Note that (Kt, 0 ≤ t ≤ 1) is a semi-martingale with respect to F̂t =
σ(X̂u; 0 ≤ u ≤ t). Thanks to (12), we have for every C2- function h with compact support

∫ t

0

h(Xs−)dMs −

∫ t

0

h(Xs−)dK1−s = 0, 0 ≤ t ≤ 1. (13)

By using an almost classical argument by now we have

∫ t

0

h(Xs−)dK1−s = [h(X̂),K]1−t − [h(X̂),K]1 −

∫ 1

1−t

h(X̂s−)dKs.

Expanding h(X̂t) thanks to the classical Itô formula, we can hence rewrite (13) as follows

∫ t

0

h(Xs−)f(Xs−, s)dBs +

∫ 1

1−t

h(X̂s−)f(X̂s−, s)dWs

−

∫ 1

1−t

h(X̂s−)f(X̂s−, s)
B̂s

1 − s
ds +

∫ 1

1−t

h′(X̂s−)f(X̂s−, s)ds = 0

Taking the expectation on both sides of the above equation, we obtain:

∫ t

0

dsIE[f(Xs, s){h
′(Xs) −

Bs

s
h(Xs)}] = 0, 0 ≤ t ≤ 1

Denoting by (ps(x), x ∈ R)) the density of Xs with respect to the Lebesgue measure (which
exists as σ 6= 0) and setting: g(x, s) = IE(Bs|Xs = x), we obtain

∫ t

0

ds

∫

R

dx ps(x)f(x, s){h′(x) −
g(x, s)

s
h(x)} = 0, 0 ≤ t ≤ 1 (14)

By a simple integration by part, we have
∫

R

dxps(x)f(x, s)
g(x, s)

s
h(x) = −

∫

R

dxh′(x)vs(x)

where vs(x) =
∫ x

−∞ ps(y)f(y, s) g(y,s)
s dy (note that vs(x) is a continuous function of (x, s)).

Thanks to (14), this implies that

∫ t

0

ds

∫

R

dxh′(x)(vs(x) + ps(x)f(x, s)) = 0, 0 ≤ t ≤ 1

and since this is true for every continuous function with compact support, we obtain by Fubini

∫ t

0

ds(vs(x) + ps(x)f(x, s)) = 0, dx a.e. (15)

As ǫ tends to 0 one obtains dx a.e.

1

ǫ

∫ t+ǫ

t

ds(vs(x) + ps(x)f(x, s)) → vt(x) + pt(x)f(x, t)
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and consequently pt(x)f(x, t) = −vt(x)dx a.e. dt a.e.. By continuity this last identity is true
for every (x, t) ∈ R × [0, 1]. We remark that the function pt(x) admits a derivative with

respect to x ( actually pt(x) = IE( 1√
2πσ2t

exp{− (x−Yt)
2

2σ2t }) where Yt = Xt − σBt). This implies

that f admits a continuous derivative with respect to x. Thanks to (i) we conclude that this
derivative is equal to 0. ¤

4 Proof of Theorem 3

The statement of Theorem 3 for the case that X is a compound Poisson process with drift is
a trivial consequence of the use of a telescopic sum over jump times (cf. Kyprianou and Surya
[14] ) and hence is excluded from the proof. For the case X has no Brownian component (σ = 0)
and hence its characteristics are (µ, 0,Π(dx)), we call Xǫ the Lévy process with characteristics
(µ, 0, 1{|x|≥ǫ}Π(dx)), One can take advantage of the previous remark and notice that for F
satisfying (2) formula (3) is available for Xǫ for every ǫ > 0. By letting then ǫ tend to 0
one easily obtains (3) for X since the convergence concerns only the domain of integration
{|x| ≥ ǫ}.
From now on, we assume that σ 6= 0. We first assume that the partial derivatives are bounded.
For n ∈ N∗, let Fn be the function defined by

Fn(x, t) =

∫ ∫

R2

F (x − (y/n), t − (s/n))f(y)h(s)dyds

where f and h are two C∞ functions from R to R+ with compact support, such that
∫

R
f(y)dy =

1 =
∫

R
h(y)dy.

The usual Itô formula applies to Fn(Xt, t). Letting n tend to ∞, one obtains using the same
arguments developed in [5] and [6] the convergence of each term of the expansion of Fn(Xt, t)
to the corresponding expression with F instead of Fn, except for two terms that require an
adapted treatment

∫ t

0

∂Fn

∂x
(Xs−, s)dX(3)

s

and

Σ(n) =
∑

0<s≤t

{Fn(Xs, s) − Fn(Xs−, s) −
∂Fn

∂x
(Xs−, s)∆Xs}1(|∆Xs|≤1).

To this end, let N(ds, dy) be the Poisson random measure associated with jumps of X and
define the compensated Poisson measure : Ñ(ds, dy) = N(ds, dy) − dsΠ(dy). Let H2 be the
space of all equivalence classes of mappings G from R × [0, 1] to R which coincide a.e. with
respect to dsΠ(dy) × IP such that G is predictable and

∫ 1

0

∫

R

IE[(G(x, t))2]dtΠ(dy) < ∞.

We define a norm on H2 by setting

||G||H2
= [

∫ 1

0

∫

R

IE[(G(x, t))2]dtΠ(dy)]1/2.

Since

IE[(

∫ 1

0

∫

R

G(x, t)Ñ(ds, dy))2] = ||G||2H2
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the mapping

G 7→

∫ 1

0

∫

R

G(x, t)Ñ(ds, dy),

is an isometry from H2 into L2(IP ) (see for example Applebaum p. 199 [1]).
Note that

∫ t

0

∂Fn

∂t
(Xs−, s)dX(3)

s =

∫ t

0

∫

R

∂Fn

∂t
(Xs−, s)y1(|y|<1)Ñ(ds, dy).

Since the function 1(|y|<1)y
2 is Π(dy)-integrable, we obtain by dominated convergence

∫ t

0

∂Fn

∂t
(Xs−, s)dX(3)

s

L2(IP )
−→

n→∞

∫ t

0

∂F

∂t
(Xs−, s)dX(3)

s (16)

Hence, all the terms in the Itô’s formula for Fn(Xt, t), with the exception of Σ(n), converge
as n tends to ∞. Hence Σ(n) converges too in L1(IP ) to a limit that we denote by Σ.
The problem now is to find an appropriate expression for Σ. We set

H(y, s) = {F (Xs− + y, s) − F (Xs−, s) −
∂F

∂x
(Xs−, s)y}1(|y|<1)

and

Hn(y, s) = {Fn(Xs− + y, s) − Fn(Xs−, s) −
∂Fn

∂x
(Xs−, s)y}1(|y|<1).

Note that

|H(y, s)| ≤ 2 sup
x∈R

|
∂F

∂x
(x, s)|1(|y|<1)|y|

Since the function 1(|y|<1)y
2 is Π(dy)-integrable, the function H is thus an element of H2. The

same remark is available for the function Hn. Moreover by dominated convergence, we have
Hn → H in the || · ||H2

norm as n → ∞ and consequently

∫ 1

0

∫

R

Hn(x, t)Ñ(ds, dy)
L2(IP )
−→

n→∞

∫ 1

0

∫

R

H(x, t)Ñ(ds, dy). (17)

Note also that that Σ(n) =
∫ t

0

∫

R
Hn(y, s)N(ds, dy), hence

Σ(n) =

∫ t

0

∫

R

Hn(y, s)Ñ(ds, dy) +

∫ t

0

∫

R

Hn(y, s)dsΠ(dy). (18)

The convergence of Σ(n) thus boils down to the convergence of
∫ t

0

∫

R
Hn(y, s)dsΠ(dy) as n

tends to ∞. We have
∫ t

0

∫

R

Hn(y, s)dsΠ(dy) =

∫ t

0

∫

{|y|<1}

∫

R

∫

R

f(z)h(u){F (Xs− + y −
z

n
, s −

u

n
)

−F (Xs− −
z

n
, s −

u

n
) −

∂F

∂x
(Xs− −

z

n
, s −

u

n
)y}dzdudsΠ(dy)

=

∫

R

∫

R

f(z)h(u)dzdu[

∫ t

0

∫

{|y|<1}
{F (Xs− + y −

z

n
, s −

u

n
)

−F (Xs− −
z

n
, s −

u

n
) −

∂F

∂x
(Xs− −

z

n
, s −

u

n
)y}dsΠ(dy)]
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where the second equality follows by a simple application of Fubini’s Theorem, allowed by the
fact that

∫

|y|<1

Π(dy)|F (Xs− + y −
z

n
, s −

u

n
) − F (Xs− −

z

n
, s −

u

n
) −

∂F

∂x
(Xs− −

z

n
, s −

u

n
)y|

is uniformly bounded in (z, u, s) inside supp(f)× supp(h)× [0, 1]. Hence

∫ t

0

∫

R

Hn(y, s)dsΠ(dy)
L1(IP )
−→

n→∞

∫ t

0

∫

{|y|<1}
{F (Xs− + y, s)−F (Xs−, s)−

∂F

∂x
(Xs−, s)y}dsΠ(dy).

We obtain from (17) and (18)

Σ =

∫ t

0

∫

R

H(y, s)Ñ(ds, dy)+

∫ t

0

∫

{|y|<1}
{F (Xs− +y, s)−F (Xs−, s)−

∂F

∂x
(Xs−, s)y}dsΠ(dy)

and hence Σ =
∫ t

0

∫

R
H(y, s)N(ds, dy), or equivalently

Σ =
∑

0<s≤t

{F (Xs, s) − F (Xs−, s) −
∂F

∂x
(Xs−, s)}∆Xs1(|∆Xs|<1)

which ends the proof of Theorem 3 in the case of bounded derivatives.
The extension to the case when ∂F/∂x and ∂F/∂t are only locally bounded functions, easily
follows as in [6]. ¤

5 Remarks on the extended Itô formula

One may remove the integral test (2) in Theorem 3 with a stronger assumption of Lipschitz
continuity as follows.

Corollary 9. Let F be a function defined on R × R+ such that ∂F/∂x and ∂F/∂t exist
as Radon-Nikodym derivatives with respect to the Lebesgue measure and are locally bounded.
Moreover we assume that ∂F/∂x(., s) is Lipschitz uniformly in s ∈ (0, 1]. Then the conclusion
of Theorem 3 follows.

The assumptions in the corollary above may be considered as, in principle, quite strong. They
suffice however to address the Errami-Russo-Vallois formula discussed below. An example of
a function which does not satisfy the Lipschitz condition above but for which (2) is satisfied
is also discussed below.
The Errami-Russo-Vallois formula: Theorem 3 extends the Itô formula of Errami et al.
(Theorem 3.8 in [9]) to Lipschitz functions. Indeed in [9], it is assumed that there exists
λ ∈ [0, 1) such that

∫

R

|x|1+λΠ(dx) < ∞

and the function ∂F/∂x is Hölder continuous with exponent λ. Assume instead that ∂F/∂x
is Lipschitz, then Theorem 3 and Lemma 2 (i) give the exact formulation of the Itô formula
of Errami et al. [9] but for the case λ = 1.
Peskir’s formula: Peskir’s formula concerns continuous semi-martingales. It has been ex-
tended to Lévy processes X such that

∑

0≤s≤1 |∆Xs| < ∞ in [6]. The same arguments and the
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proof of Theorem 3 allow to write this formula for any Lévy process for which Xt that has a
density with respect to Lebesgue measure for all t > 0 (for example when σ 6= 0). Specifically
let F be a continuous function defined as follows. Let b be a continuous function from R+ to
R. Set :

C = {(x, s) ∈ R × R+ : x < b(s)}

D = {(x, s) ∈ R × R+ : x > b(s)}

We assume that F is C2,1 on C and on D. We set F1 = F|C and F2 = F|D .

F (Xt, t) = F (X0, 0) +

∫ t

0

∂F

∂x
(Xs−, s)dXs

+

∫ t

0

∂F1

∂t
(Xs, s)1(Xs<b(s))ds +

∫ t

0

∂F2

∂t
(Xs, s)1(Xs≥b(s))ds

+
1

2

∫ t

0

(
∂2F1

∂x2
(Xs, s)1(x<b(s)) +

∂2F2

∂x2
(Xs, s)1(x≥b(s)))d[X]cs

+
1

2

∫ t

0

(
∂F2

∂x
−

∂F1

∂x
)(b(s), s)dsL

b(.)
s

+
∑

0<s≤t

{F (Xs, s) − F (Xs−, s) −
∂F

∂x
(Xs−, s)∆Xs}

which is precisely Peskir’s formula but for the non-continuous semi-martingale X. Our proof
also relaxes the assumption on b. Indeed, while Peskir’s formula requires that b is continuous
with bounded variations, the proof given above requires only that b is continuous.

6 Proof of Theorem 2

(i) is an immediate consequence of Theorem 3 and Lemma 7 (ii).

(ii) We use Theorem 3 and the assumptions on F to claim that there exists a continuous
function h on R × [0, 1] such that:

∫ t

0

∫

R

∂F

∂x
(x, s)dLx

s = −

∫ t

0

h(Xs, s)ds, 0 ≤ t ≤ 1.

We set H(x, s) =
∫ x

0
h(y, s)dy. Thanks to Lemma 9 (ii), we have:

−

∫ t

0

h(Xs, s)ds =

∫ t

0

∫

R

H(x, s)dLx
s .

Hence we obtain
∫ t

0

∫

R

∂F

∂x
(x, s)dLx

s =

∫ t

0

∫

R

H(x, s)dLx
s .

Setting f = ∂F
∂x − H, we have now to solve the problem:

∫ t

0

∫

R

f(x, s)dLx
s = 0, 0 ≤ t ≤ 1.

Corollary 8 (iii) implies that the function ∂F
∂x − H admits a partial derivative with respect to

x which is identically equal to 0 and hence ∂2F
∂x2 exists and is equal to h. ¤
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in Maths 1899, 97-104.

[15] Peskir G. (2005) : A change-of-variable formula with local time on curves. J. Theoret.
Probab. 18 (499-535) MR2167640

[16] Peskir, G. (2006) : A change-of-variable formula with local time on surfaces. Séminaire
de Probab. XL, Lecture Notes in Maths 1899, 69-96.

[17] Wang A. T. (1977) : Quadratic variation of functionals of Brownian motion. Ann. of
Probab. 5 (756 - 769). MR0445622

http://www.ams.org/mathscinet-getitem?mr=2072890
http://www.ams.org/mathscinet-getitem?mr=1651223
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=0612544
http://www.ams.org/mathscinet-getitem?mr=1804175
http://www.ams.org/mathscinet-getitem?mr=2218334
http://www.ams.org/mathscinet-getitem?mr=1894067
http://www.ams.org/mathscinet-getitem?mr=2238942
http://www.ams.org/mathscinet-getitem?mr=1354459
http://www.ams.org/mathscinet-getitem?mr=2033888
http://www.ams.org/mathscinet-getitem?mr=2167640
http://www.ams.org/mathscinet-getitem?mr=0445622

