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Abstract

We revisit the work of [Bourgain et al., 1992] — referred to as “BKKKL” in the title — about
influences on Boolean functions in order to give a precise statement of threshold phenomenon
on the product space {1,...,7}, generalizing one of the main results of [Talagrand, 1994].

1 Introduction

The theory of threshold phenomena can be traced back to [Russo, 1982], who described it as an
“approximate zero-one law” (see also [Margulis, 1974], [Kahn et al., 1988] and [Talagrand, 1994]).
These phenomena occur on {0,1}" equipped with the probability measure p, which is the
product of n Bernoulli measures with the same parameter p € [0,1]. We say that an event
A C {0,1}" is increasing if the indicator function of A is coordinate-wise nondecreasing. When
the influence of each coordinate on an increasing event A is small (see the definition of - here-
after), and when the parameter p goes from 0 to one, the probability that A occurs, p,(A),
grows from near zero to near one on a short interval of values of p: this is the threshold phe-
nomenon. The smaller the maximal influence of a coordinate on A is, the smaller is the bound
obtained on the length of the interval of values of p. More precisely, for any j in {1,...,n},
define A; to be the set of configurations in {0,1}" which are in A and such that j is pivotal
for A in the following sense:

Aj={z€{0,1}" st. z € A, and Tj(z) ¢ A},

where T} (x) is the configuration in {0, 1}" obtained from z by “flipping” coordinate j to 1 —x;.
It is shown in [Talagrand, 1994], Corollary 1.3, that if you denote by v the maximum over p
and j of the probabilities p1,(A4;), then, for every pi < pa,

i (A) (L = pp, (A)) < A 027P0) (1)
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where K is a universal constant. This result was also derived independently by [Friedgut and Kalai, 1996],

and both results were built upon an earlier paper by [Kahn et al., 1988], where one can
find an important breakthrough with the use of Bonami-Beckner’s hypercontractivity esti-
mates. A much simpler proof, giving the best constants up to now, was obtained later by
[Falik and Samorodnitsky, 2007], and their result will be one of the main tool that we shall
use in this paper. See also [Rossignol, 2006] for a more complete description of threshold
phenomena, and [Friedgut, 2004, Hatami, 2006] for related questions when the event A is not
monotone.

This kind of phenomenon is interesting in itself, but has also been proved useful as a theoretical
tool, notably in percolation (see [Bollobds and Riordan, 2006¢, Bollobds and Riordan, 2006b,
Bollobds and Riordan, 2006a, van den Berg, 2007]). It seems to be partly folklore that this

phenomenon occurs on other product spaces than {0, 1}™. Notably, Theorem 5 in [Bollobds and Riordan, 20064

gives a threshold result for symmetric functions on {1,2,3}" with an extremely short proof,

mainly pointing to [Friedgut and Kalai, 1996]. A strongly related result is [Bourgain et al., 1992],

where it is proved that for any subset A of a product probability space of dimension n, there
is one coordinate that has influence of order at least logn/n on A. Although the result in
[Bourgain et al., 1992] is stated in terms of influences and not in terms of threshold phenom-
ena, the proof can be rephrased and slightly adapted to show that threshold phenomena occur
on various product spaces.

Being asked by Rob van den Berg for a reference on generalizations of (1) to {1,...,7}Y, we
could not find a truly satisfying one. The work of [Paroissin and Ycart, 2003] is close in spirit
to what we were looking for, but is stated only for symmetric sets in finite dimension. Also,
Theorem 3.4 in [Friedgut and Kalai, 1996] is even closer to what we need but is not quite
adapted to {1,...,7}" since the quantity v = max; u,(4;) is replaced by the maximum of all
influences, which is worse than the equivalent of v in {1,...,7}. The purpose of the present
note is to provide an explicit statement of the threshold phenomenon on {1,...,r}" with a
rigorous, detailed proof. We insist strongly on the fact that the spirit of what is written in
this note can be seen as already present in [Bourgain et al., 1992], [Friedgut and Kalai, 1996]
and [Talagrand, 1994].

Our goal will be accomplished in two steps. The first one, presented in section [2, is a general
functional inequality on the countable product [0, 1]N equipped with its Lebesgue measure.
Then, in section (3, we present the translation of this result into a threshold phenomenon on
{1,...,7}. This is the main result of this note, stated in Corollary [3.1.

2 A functional inequality on [0, 1]Y, following [Bourgain et

In [Talagrand, 1994], inequality (1) is derived from a functional inequality on ({0,1}", up)
(Theorem 1.5 in [Talagrand, 1994]). Falik and Samorodnitsky’s main result is also a functional
inequality on ({0,1}", u,), with a slightly different flavour but the same spirit: it improves
upon the classical Poincaré inequality essentially when the discrete partial derivatives of the
function at hand have low L'-norm with respect to their L?-norm. Such inequalities have
been extended to some continuous settings in [Benaim and Rossignol, 2006], where they were
called “modified Poincaré inequalities”. The discrete partial derivative is then replaced by a
semi-group which is required to satisfy a certain hypercontractivity property.

In this section, we take a different road to generalize the modified Poincaré inequality of
Talagrand (Theorem 1.5 in [Talagrand, 1994]). This is done by combining the approach of
[Bourgain et al., 1992] and [Falik and Samorodnitsky, 2007]. This is also very close in spirit

al., 1992]
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to what is done in [Friedgut, 2004]. We will obtain a functional inequality on [0, 1] equipped
with the Lebesgue measure, which can be seen as a modified Poincaré inequality. All measures
considered in this section are Lebesgue measures on Lebesgue measurable sets.

First, we need some notations. Let (z; J)Z>1 be independent symmetric Bernoulli random
7>0
variables For each j, the random variable Y. ; % is uniformly distributed on [0, 1], whereas

>, 5 is uniformly distributed on {2m7 k=0,...,2™ —1}. For positive integers m and n,

define a random variable X" with values in [0, 1] as follows:

Yt 5t ifj<n

(X5 = o
Zizl i ifj>n

For any real function f on [0, 1]N, we define the following random variables:
A = X = B, [F(XT)]

where E,, . denotes the expectation with respect to x;; only. Define A to be the Lebesgue
measure on [0, 1], and if f belongs to L2([0, 1]N, \®N), denote by Vary(f) the variance of f
with respect to A®N.

Finally, define, for any positive integer n and any real numbers y1, ..., yn:

Fuli o) = [ Foe i) @) dN).

We shall use the following hypothesis on f:
For every integer n, f,, is Riemann-integrable. (2)

The following result can be seen as a generalization of Theorem 1.5 in [Talagrand, 1994].

Theorem 2.1. Let f be a real measurable function on [0,1]N. Define, for p > 0:

2

N,(f) —hmsuphmsupZZ]E |AT )P

n—oo  M—00
7=0 =1

Suppose that f belongs to L?([0,1]Y), and satisfies hypothesis (2). Then,

1 Varx(f)
N- > -V lo
2() > 5Vara(f) log )
Proof: Denote by Y™™ the first n coordinates of X™™. Theorem 2.2 in [Falik and Samorodnitsky, 2007]
implies that:

X ) A 1 , Var(fo(Y™"))
E(A;; 2 5V n Yr))1 n m m,n
Z:;g (AL %) 2 FVarta (™ ") log S piam s

Notice that E(f,(Y™™)) is a Riemann-sum of f,, over [0, 1]™. Since f,, is Riemann-integrable,
Var(f,(Y™™)) converges to Var(f,(Uo,...,Uy)) when m goes to infinity, where Uy, ..., U,
are independent random variables with uniform distribution on [0, 1]. Then, this is for instance
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a consequence of Doob’s convergence theorems for martingales bounded in L2, f,,(Uy,...,U,)
converges in L2 to f as n tends to infinity. Thus,

lim lim Var(fo(Y"™")) = Vara(f) .

n—oo Mm—0o0

The theorem follows. O

If a function f is coordinate-wise nondecreasing, we shall say it is increasing. Now, we can
get a simplified version of Theorem [2.1 for increasing functions. To this end, let us define the
random variable X with values in [0, 1]Y as follows:

Vi>0, (X¥);=>" 22] ;

i>1

and let:
AYf = (X)) = Eq, ,[f(X™)] .

Corollary 2.2. Let f be a real measurable function on [0,1]N, increasing for the coordinate-
wise partial order. Define, for p > 0:

Sy Eian s
7=01i=1
Then,
1 Vary(f)
M. > =V 1
2(f) 2 5Vara(f)log — ==+ (/)
Proof : We only need to show that f satisfies the hypotheses of Theorem 2.1} and that N,(f) <
M, (f), at least when p equals 1 and 2. Since f is coordinate-wise increasing, so is f,, for every
n, and thus hypothesis is satisfied. The function f is trivially in L2([0, 1]N, A®N) since it
is a real measurable increasing function on [0, 1], and therefore is bounded. We shall use the
following notation: for ¢ € {0,1}, f(X™"|z; ; = ¢) denotes the value of f at X™" where the
value of z; ; is forced to be ¢, and for ¢t € [0, 1], f(X™"|y; = t) denotes the value of f at X"
where the value of (X™"); is replaced by t. We also use the notation E(,, ,_, (g(X™")) to
denote the expectation with respect to the random variables (2 ;)ir<;. For j <mn, and p > 1,

mn 1
Eau e, (1855 1) = QTE(W,J-)M(If(Xm’"Ixi,j=1)—f(Xm’"|wi,j20)\1”)7 3)
1 1 =t z;
_ m,n B i/,
- Loy zi_lf(x S z)
eef{0,1}i—1 i'=1 i >4
Ut gy T 8
m,n _ l»]
(- e )
/=1 i’ >1
1 21 T
_ m,n L — 17]
S f(X bk iy )
k=0 >

p

j_Qz 1+sz’j>

V>4

_ f <Xm,n
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Let us define ¢, = 2ﬁ + 2 i - Notice that ¢ < #j11. Then,

2i=1_1
mn 1 m.,n m.,n
B, o 180 FIP) = i1 Z |f(X™ "y = togq1) — F(X™"|y; = tor) P
k=0
2t—1_1
(2] flloe)?~ mon mon
< ??,1 Z (X" y; = tagrr) — F(X™"y; = tar)]
k=0
I £118
2i—1 ’

since f is increasing. Thus, when n and j are fixed, (E(|A7S" [P Ti<mm)?)i>1 is dominated
by (2272 f||?P);>1, whose sum converges. On the other hand, since f is coordinate-wise
increasing, the function y; — f((y;)i>1) is Riemann-integrable for any fixed (y;);2; and any
j. Thus,

lim E(JAT"f[7) = B(AZS17) -

Therefore, by Lebesgue’s dominated convergence theorem,

moo

hmZ]E\A f|p%:ZE\A FIP)E
=1

which implies N,(f) = M,(f). The result follows from Theorem|[2.1. O

3 Threshold phenomenon on {1,...,7}"

Let r be a positive integer. Let I =]a, b[ be a connected open subset of R with a < b, and for
every tin I, let y; be a probability measure on {1,...,7}, v, be the product measure ug@” on
H, ={1,...,7}" and v, y be the product measure /L?N on Hy = {1,...,7}. We suppose that
for every k in {1,...,r}, the function ¢ — p;({k}) is differentiable on I, and that for every k
in{2,...,r}, t — w({k,k+1,...,7}) is strictly increasing. Then, we suppose that:

tim (1)) = 1, and Jim e ({r}) = 1.
The following result is a generalization of Corollary 1.3 in [Talagrand, 1994].

Corollary 3.1. Let A be an increasing measurable subset of {1,..., 7}, Let t; <ty be two
real numbers of I. Define:

Tt = sup vin(4;) ,
J

1
Y« = Ssup {max{'th’Ythg,y}}’
t

te[t1,ta]
and J
S* = inf inf — kk+1,... .
oot ant gk k411
Then,

Vi, m(A) (1 = vy () < 4270
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Proof : Let f = T4. Suppose first that A depends only on a finite number of coordinates.

Then,
LA Z/Zut F(ale; = k) dve(a) |

7>0

where (k) = %14 ({k}). Define, for any k € {1,...,r},

Stk—Zut uf{kkﬂ T}

By hypothesis, S , > 0 for any k in {2,...,r}. Notice also that S;1 = 0. Letting S; 41 :=0,
we have:

T

Zﬂt flalz; =k) = Z(St,k = S k1) f(zlzy = k),

k=1

— Zsfk (z|x; = k) — f(z|lz; =k —1)).

Define:
S: = inf S@k >0.
k=2,...,r

Since f is the indicator function of an increasing event A in Hy,
Zut f@lz; = k) = S7(f(zle; =) = flz|z; = 1))

Thus,
d
—VtN ) > S; E /f zlz; =r)— f(z|lz; =1) dryyn(z) . (4)

7>0

Now, we do not suppose anymore that A depends on finitely many coordinates. Define, for
any real function g on [0, 1],

o glt) = gt)
a9 = liminf ===

It is a straightforward generalization of Russo’s formula for general increasing events (see
(2.28) in [Grimmett, 1999], and the proof p. 44) to obtain from inequality (4) that when A is
measurable, and f = T4,

+
diytN > Sy Z/f zlz; =71)— flzlz; =1) dyn(z) . (5)

dt
7>0

Define I(f) the total sum of influences for the event A:

Z/f zlx; =71) — flzlz; =1) dun(z) .

7>0
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Let (u;);>0 be a sequence in [0, 1]N. Define a function F; from [0,1]N to {1, ..., 7} as follows:

VieN, Vie{l,....r}, (Fi(w); =i if p({1,...,i—1}) <uj < w({1,....3}) .

Of course, under AN, Fy(u) has distribution v, . Define g; to be the increasing, measurable
function f o F; on [0, 1]. Using Corollary 2.2,

Vary(gt) . (©)

1
>
M>(g¢) > 2Var,\(gt)log M1 (g0)

First, notice that:
Varx(gi) = Var(f) = ven(A) (1 — ven(A4)) . (7)
Then, according to equation (3), and since g; is increasing and non-negative,
- m,n 2 ]- - 1 m,n m,n
ZE(| ii gel”) < ZZFE(‘%(X y; =1) = ge(X™"y; =0)) ,

i=1 i=1

- / fales = ) — flalz; = 1) dvon(z) -

Thus,

Similarly,
ZZ AZgil) < I(f) - 9)
720 i=1

For any j in N, define A; to be the set of configurations in {1, ... ,7}Y which are in A and such
that j is pivotal for A:

Aj={z: z €A, and f(z|z; =1) =0} .
Since g; is increasing,

E(|AT9l) = ]E(gt(X“)— (X ¥z =0)),
(9+(X™) = 9:(X>y; = 0)) ,

/f 2) — fela; = 1) dvin(z) -

IN

and thus, for any ¢ > 1,
E([AF59t) < ven(4;) - (10)

Define v; := sup, vt n(A;). From (9) and (10), we get:
Mi(gt) < vI(f) -

This inequality together with (6), (7) and (8) leads to:

Var(f)
I (f) .

I(f) = Var(f)log (11)
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Therefore,
o cither I(f) > Var(f)log %,
eor I(f) < Var(f)log %, and in this case, plugging this inequality into the right-hand side
of (11),
1

I(f) = Var(f) log —— .
¢ log =

In any case, defining 7, = sup{~, v; log %}, it follows from (5) that:

dt 1
EVLN(A) > Sivn(A)(1 — v n(A)) log — .
Yt

Now, let 74 = supyepy, 4,17 and S* = infyepy, 4,57 We get:

d+ Vg N(A) 1
— ——  —tS*log—| >0
dt 8 1 -1 n(A) ) vl T

for any ¢ in [t1,t2]. It follows from Proposition 2, p. 19 in [Bourbaki, 1949] (it is important to
notice that the proof of this Proposition works without modification if the function f equals
g+ h where g is increasing and h continuous, and if the right-derivative is replaced by d* /dt)
that:

1
(tg — tl)S* log —

(A1 — v, (A))

8 A —rn(d) ’
Vi, N(A) (1 — v, n(A)) S*(ta—t1)
(A1 —vn(d) = ’

and the result follows. O

Remark: If one wants a cleaner version of the upperbound of Corollary 3.1 in terms of

N := SUPye[y, ¢,] SUP; vy n(A; ), simple calculus shows that v, < ni_l/e < ni/Q, which leads to:

Vi n(A) (L = v w(A)) < g 272
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