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Abstract
A one dimensional stochastic differential equation of the form

dX = AXdt+ 1
2 (−A)−α∂ξ[((−A)−αX)2]dt+ ∂ξdW (t), X(0) = x

is considered, where A = 1
2∂

2
ξ . The equation is equipped with periodic boundary conditions.

When α = 0 this equation arises in the Kardar–Parisi–Zhang model. For α 6= 0, this equation
conserves two important properties of the Kardar–Parisi–Zhang model: it contains a quadratic
nonlinear term and has an explicit invariant measure which is gaussian. However, it is not as
singular and using renormalization and a fixed point result we prove existence and uniqueness
of a strong solution provided α > 1

8 .

1 Introduction
Let us consider the following Burgers equation on (0, 2π) with periodic boundary conditions
and perturbed by noise

dX = 1
2

[
∂2
ξX + ∂ξ(X2)

]
dt+ ∂ξdW (t)

X(0, ξ) = x(ξ) ∈ L2
0(0, 2π), X(t, 0) = X(t, 2π).

(1.1)
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where W is a cylindrical white noise of the form

W (t, ξ) =
∞∑
k=1

ek(ξ)βk(t),

where
ek(ξ) = 1√

2π
eikξ, k ∈ Z0,

Z0 = Z\{0} and (βk(t))k∈Z0 is a family of standard Brownian motions mutually independent
in a filtered probability space (Ω,F , (Ft)t≥0,P).
Equation (1.1) is known as the Kardar-Parisi-Zhang equation (KPZ equation) and was intro-
duced in [15] as a model of the interface growing in the phase transitions theory. It can also
seen as the limit equation of a suitable particle system, see [4].
As usual, we write equation (1.1) in an abstract form. It is no restriction to assume that the
initial data has a zero average. Since this property is conserved by equation (1.1) we introduce
the space L2

0(0, 2π) of all square integrable functions in [0, 2π] with 0 mean valueÄ. We define

Ax = 1
2 ∂

2
ξx, x ∈ D(A) := {y ∈ H2(0, 2π) : y(0) = y(2π), yξ(0) = yξ(2π)},

Bx = ∂ξx x ∈ {y ∈ H1(0, 2π) : y(0) = y(2π)}

and rewrite (1.1) as  dX = (AX + 1
2∂ξ(X

2))dt+BdW (t),

X(0) = x.
(1.2)

Equation (1.2) can be written in mild form

X(t) = etAx+ 1
2

∫ t

0
e(t−s)A∂ξ(X2(s)) ds+WA(t),

where WA(t) is the stochastic convolution (see [12])

WA(t) =
∫ t

0
e(t−s)ABdW (s) =

∑
k∈Z0

ik ek(ξ)
∫ t

0
e−

1
2 (t−s) k2

dβk(s). (1.3)

Note that (ek)k∈Z0 is a basis of eigenvectors of A.
WA(t) is a Gaussian random variable in L2

0(0, 2π) and covariance operator

C(t) = I − e2tA t ≥ 0.

An important characteristic of this problem is that (as it happens for the 2D periodic Navier-
Stokes equation), though the problem is non linear, its invariant measure coincides with the
Gaussian invariant measure of the corresponding free system, whose covariance operator re-
duces to the identity in our case. Consequently, the invariant measure does not live in L2

0(0, 2π).
It is not difficult to see that this measures lives in functional spaces of negative regularity,
strictly less than 1/2.
A natural way to define the product in this context is to replace the nonlinear term ∂ξ(X2)
by ∂ξ(:X2 :), where :X2 : represents the Wick product. In the case of periodic boundary
conditions, the Wick product is the standard product renormalized by the subtraction of an
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infinite constant. Thus the two products are in fact formally equal since the infinite constant
disappears by differentiation. This method based on renormalization has been successfully
used recently for some reaction-diffusion equations arising in field theory, see [2], [5], [9], [10],
[11], [14], [16] and for 2D-Navier-Stokes equations, see [1], [8], [13]. The case of the Navier-
Stokes is very similar to the case considered here. Indeed, the Wick nonlinearity is formally
equal to the original nonlinearity.
The KPZ equation is more difficult and it is not possible to define the Wick product in the
classical way (see [10] for a discussion). A generalized Wick product has been introduced in
[3], however it is very irregular and up to now it has not been possible to construct solutions
of the KPZ equation with this generalized Wick product.
In this article, we adopt another strategy. As it has been done in the case of the stochastic
quantization equation, we modify the equation in such a way that the nonlinear term has the
same structure and that the equation has the same invariant measure as the KPZ equation.
For this reason we shall introduce the following modified equation

dX = AXdt+ 1
2 (−A)−α∂ξ[((−A)−αX)2]dt+ ∂ξdW (t), (1.4)

trying to choose α > 0 as small as possible. It is not difficult to see that indeed the Gaussian
measure with covariance equal to the identity is formally invariant for (1.4).
It is convenient to introduce a new variable Xα(t) = (−A)−αX(t) and to replace the quadratic
term X2

α with the renormalized power :X2
α: - which just differs from X2

α by an infinite constant.
So, equation (1.4) becomes

dXα = AXαdt+ 1
2 (−A)−2α∂ξ[:X2

α:]dt+ ∂ξ(−A)−αdW (t).

With this transformation, the invariant measure has now the covariance given by (−A)−2α.
For α > 1/4, this measures lives in L2

0(0, 2π), it is not necessary to use the Wick product and
this equation can be solved by standard arguments. We shall show that the Wick power is
well defined provided ∑

k∈Z0

k−8α <∞.

So, we shall choose α ∈ ( 1
8 ,

1
4 ]. Using the strategy introduced in [8, 9], we will construct strong

solutions for this equation by a suitable fixed point. Using the fact that we know explicitly
the invariant measures, we will also prove that the solutions are almost surely global in time.
We think that this work is a step in the understanding of the KPZ model and hope that our
techniques will generalize so that we can treat the original case α = 0.

2 The main result
2.1 Notation
Let us consider the Hilbert space

H =
{
x ∈ L2(0, 2π) :

∫ 2π

0
x(ξ)dξ = 0

}
,

endowed with the scalar product

〈x, y〉 =
∫ 2π

0
x(ξ)y(ξ)dξ, x, y ∈ H,
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and the associated norm denoted by | · |.
A complete orthonormal system in H is given by {ek}k∈Z0 , where

ek(ξ) = 1√
2π

eikξ, k ∈ Z0,

and Z0 = Z\{0}. It is well known that these are the eigenvectors of A:

Aek = −k2ek, k ∈ Z0.

We set xk = 〈x, ek〉, k ∈ Z0. If x is real valued we have

x−k = xk, k ∈ Z\{0}.

In the following we shall identify H with `2(Z0) through the isomorphism:

x ∈ H → {xk}Z0 ∈ `2(Z0).

We set H := R∞ so that H is identified as a subspace of H . We denote by µ the product
measure on H

µ =×
k∈Z0

N (0, 1).

We also use the L2 based Sobolev spaces which in our case are easily characterized thanks to
the eigenbasis of A. For s ∈ R, we set

Hs = {x = {xk}Z0 ∈H ,
∑
k∈Z0

|k|2s|xk|2 <∞}

and

|x|Hs =

(∑
k∈Z0

|k|2s|xk|2
)1/2

.

Note that Hs = D((−A)s/2). Setting (−A)−αX = Xα, equation (1.4) reduces to

dXα = AXαdt+ 1
2 (−A)−2α∂ξ[X2

α]dt+ ∂ξ(−A)−αdW (t). (2.1)

Equations (1.4) and (2.1) are equivalent. We consider only (2.1) without mentioning the
corresponding results for equation (1.4).
In order to lighten the notations, we omit the subscript α and below X denotes the unknown
of equation (2.1). Since we work only with this equation, this should not yield any confusion.
We denote by µα the Gaussian measure (corresponding to the free system)

µα = N(−A)−2α .

It lives in H if and only if Tr [(−A)−2α] < +∞, that is if and only if α > 1
4 . In this case,

a local in time solution of equation (1.4) is easily obtained thanks to a classical fixed point
argument. The same argument as in section 2.3 below can be used to prove global existence.
The case α ≤ 1

4 is more difficult, The measure µα lives in any space H−ε ⊂ H := R∞ with
2ε > 1− 4α.
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Below, we shall use the following well known result in finite dimensions: given the following
system of SDE (free system)

dZt = AZt dt+
√
CdWt

whose invariant measure is N (0, Q) where Q =
∫∞

0 etACetA
∗
dt, the non linear system

dXt =
(
AXt + b(Xt)

)
dt+

√
CdWt

has the same invariant measure N (0, Q) if and only if i) div b = 0 and ii) 〈b(x), Q−1x〉 = 0 for
any x.
Let us introduce Galerkin approximations of equation (2.1). For any N ∈ N we consider dXN =

(
ANX

N + 1
2FN (XN )

)
dt+ ∂ξ(−AN )−αdW (t),

XN (0) = xN ,
(2.2)

where
PN =

∑
|k|≤N,k 6=0

ek ⊗ ek, AN = PNA,

and
FN (x) = (−AN )−2α∂ξ[(PNx)2].

Lemma 2.1. The measure µα,N = N
(
0, (−AN )−2α) is invariant for (2.2).

Proof. It is clear that for any x ∈ PNH

〈FN (x), (−AN )2αx〉 = 0. (2.3)

Moreover, for x ∈ PNH,

FN (x) =
√

2π i
∑

0<|h|,|k|,|h+k|≤N

|h+ k|−4α(h+ k)xh xk eh+k.

It follows
〈FN (x), ej〉 =

√
2π i

∑
0<|h|,|k|≤N,|h+k|=j

|j|2α j xh xk eh+k.

and
Dxj 〈FN (x), ej〉 = 0

which yields
div FN (x) =

∑
|j|≤N

Dxj 〈FN (x), ej〉 = 0.

Then this fact, together with (2.3), implies that µN = N
(
0, (−AN )−2α) is invariant for (2.2).

�
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2.1.1 Definition of :X2:

Let us recall the definition of Wick product :X2: in our specific case following the method of
[10]. We denote by 〈ek, ·〉 the kth coordinate mapping defined on H and we set for X ∈H

XN (ξ) =
∑

1≤|k|≤N

〈ek, X〉ek(ξ)

and
:X2

N: (ξ) = [XN (ξ)]2 − ρ2
N , (2.4)

where
ρ2
N = 1

2π
∑

1≤|k|≤N

1
|k|4α

. (2.5)

Clearly, for any X ∈ H , :X2
N : is an element of H and therefore of Hs for any s ≤ 0. The

following result is proved in [10], section 7.

Theorem 2.2. If 1
8 < α ≤ 1

4 then the sequence of functions (:X2
N:) has a limit in L2(H−ε, µα;H−ε),

for any ε > 1
2 (1− 4α). We denote this limit by :X2:.

Unfortunately, the definition of the Wick product is much more complicated for α < 1
8 . It is

defined only in a space of generalized random variables (see [3]) and we are not able to handle
it. Thus, we shall restrict ourselves from now on to the case α ∈ ( 1

8 ,
1
4 ].

Note that for any N ∈ N

FN (XN ) = (−AN )−2α∂ξ[X2
N ] = (−AN )−2α∂ξ[:X2

N:].

We deduce that the following result.

Corollary 2.3. The sequence FN (XN ) converges in L2(H−ε, µα;H−ε−1), for any ε > 1
2 (1−

4α) to (−A)−2α∂ξ[:X2:] .

It is therefore natural to consider the equation dX = AXdt+ 1
2 (−A)−2α∂ξ[:X2:]dt+ ∂ξ(−A)−αdW (t),

X(0) = x.
(2.6)

We are now able to define the nonlinear term for a random variable whose law is given by µα
and, proceeding as in [16], this is sufficient to construct a weak stationary solution. We wish
to go further and define the nonlinear term for a larger class of random variable. The following
result proved by paraproduct techniques (see [6], [7]) is useful.

Lemma 2.4. Let α, β ∈ R such that α+ β > 0, α, β < 1, then for x ∈ Hα, y ∈ Hβ, we have
xy ∈ Hα+β− 1

2 and
|xy|

Hα+β− 1
2
≤ c(α, β)|x|Hα |y|Hβ .

Consider now a random variable X with values in H which can be written as X = Y + Z
where Z has the law µ and Y ∈ L2(Ω;Hβ). We can write

:X2
N: (ξ) = [XN (ξ)]2 − ρ2

N = [YN (ξ)]2 + 2YN (ξ)ZN (ξ)+ :Z2
N: (ξ).
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Using Theorem 2.2 and Lemma 2.4, the three terms have a limit in L2(Ω;Hδ) provided β >
1
2 −2α and δ < β− 1

2 +2α. We are therefore able to define the nonlinear term for such random
variables and we have the following natural formula :

:X2:= Y 2 + 2Y Z + Ê :Z2: . (2.7)

Finally, if we know only that Y ∈ Hβ almost surely, the above discussion still holds but the
limit has to be understood in probability.
Again, :X2: is defined through the subtraction of an infinite constant and ∂ξ[:X2:] is a natural
definition for the nonlinear term.

2.2 Local existence
We write equation (2.6) in the mild form

X(t) = etAx+ 1
2

∫ t

0
e(t−s)A(−A)−2α∂ξ[:X(s)2:]ds+ Z(t)− eAtZ(0), (2.8)

where
Z(t) =

∫ t

−∞
e(t−s)A∂ξ(−A)−αdW (s). (2.9)

It follows from the factorization method (see [12]) that

Z ∈ C([0, T ];H−ε), for any ε > 1
2
− 2α. (2.10)

The following Lemma is proved as in [8], [9].

Lemma 2.5. We have

:Z2: ∈ Lp(0, T ;H−ε), ∀ p ≥ 1, ε > 1
2
− 2α. (2.11)

Set
Y (t) = X(t)− Z(t), t ≥ 0.

We will see that Y is regular and thanks to (2.7), (2.8) becomes

Y (t) = etA(x− Z(0)) +
∫ t

0
e(t−s)A(−A)−2α∂ξ[Y (s)Z(s)]ds

+ 1
2

∫ t

0
e(t−s)A(−A)−2α∂ξ[Y 2(s)]ds

+ 1
2

∫ t

0
e(t−s)A(−A)−2α∂ξ[:Z2(s):]ds

=: T0(x− Z(0))(t) + 2T1(Y, Z)(t) + T1(Y, Y )(t) + T2(:Z2:)(t), t ≥ 0.

(2.12)

We are going to solve equation (2.12) by a fixed point argument in the space

XT := C([0, T ];H−γ) ∩ Lr(0, T ;Hβ),

where γ > 0, β > 0 and r ≥ 1 will be chosen later and T is sufficiently small. We need the
following lemma.
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Lemma 2.6. (i) For any y ∈ H−γ , T0(y) ∈XT , provided

r
β + γ

2
< 1. (2.13)

Moreover
|T0(y)|XT

≤ c(r, γ, β)|y|H−γ .

(ii) For any Y1 ∈ Lr(0, T ;Hβ), Y2 ∈ C([0, T ];H−γ), T1(Y1, Y2) ∈XT , provided

γ

2
− 2α < 1

4
, β − γ > 0, and − β

2
− 2α+ 1

r
<

1
4
. (2.14)

Moreover
|T1(Y1, Y2)|XT

≤ c T δ|Y1|Lr(0,T ;Hβ)|Y2|C([0,T ];H−γ) (2.15)

with δ = min{ 1
4 −

γ
2 + 2α; 1

4 −
1
r + β

2 + 2α}.

(iii) For any V ∈ Lp(0, T ;H−ε), with p ≥ 1, ε > 0, T2(V ) ∈XT provided

1
2

(−γ + ε+ 1− 4α) + 1
p
< 1 (2.16)

and
1
2

(β + ε+ 1− 4α) + 1
p
< 1 + 1

r
. (2.17)

Proof. (i) We first notice that, since y ∈ H−γ , we have

etAy ∈ C([0, T ];H−γ).

Moreover, since for all β, γ ∈ R

|etAy|Hβ ≤ c t−
β+γ

2 |y|H−γ ,

we see that etAy ∈ Lr(0, T ;Hβ) provided condition (2.13) is fulfilled.
(ii) By Lemma 2.4, if β − γ > 0,

|Y1Y2|
Hβ−γ−

1
2
≤ c |Y1|Hβ |Y2|H−γ .

Therefore
|(−A)−2α∂ξ[Y1Y2]|

Hβ−γ−
3
2 +4α ≤ c |Y1|Hβ |Y2|H−γ

and, by classical properties of the heat semigroup,

|eA(t−s)(−A)−2α∂ξ[Y1(s)Y2(s)]|Hβ ≤ c|t− s|−
1
2 (γ+ 3

2−4α)|Y1(s)|Hβ |Y2(s)|H−γ .

We deduce

|T1(Y1, Y2)(t)|Hβ ≤ c
∫ t

0
|t− s|− 1

2 (γ+ 3
2−4α)|Y1(s)|Hβ |Y2(s)|H−γds,

provided
γ

2
− 2α < 1

4
.
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Then by Hausdorff-Young inequality

|T1(Y1, Y2)|Lr(0,T ;Hβ) ≤ cT 1− 1
2 (γ+ 3

2−4α)|Y1|Lr(0,T ;Hβ)|Y2|C([0,T ];H−γ)

Similarly

|T1(Y1, Y2)(t)|H−γ ≤ c
∫ t

0
|t− s|− 1

2 (−β+ 3
2−4α)|Y1(s)|Hβ |Y2(s)|H−γds,

and
|T1(Y1, Y2)|C([0,T ];H−γ) ≤ cT 1− 1

r+ β
2−

3
4 +2α|Y1|Lr(0,T ;Hβ)|Y2|C([0,T ];H−γ)

provided
−β

2
− 2α+ 1

r
<

1
4
.

The claim follows.
The proof of (iii) is easier and left to the reader. �
The following lemma states that the conditions of Lemma 2.6 are compatible.

Lemma 2.7. There exist β > 0, γ > 1
2 − 2α, ε > 1

2 − 2α, p and r such that all conditions of
Lemma 2.6 are verified.

Proof. Taking ε sufficiently close to 1
2 − 2α and p sufficiently large, (2.16) and (2.17) are

satisfied provided
−γ < 6α+ 1

2
, β < 6α+ 1

2
+ 2
r
.

The first condition is clearly satisfied for γ > 0. Hence, we can summarize (2.14), (2.16) and
(2.17) as

0 < γ <
1
2

+ 4α, −1
2
− 4α+ 2

r
< β <

1
2

+ 6α+ 2
r

which have to supplemented by

β + γ <
2
r
, β > γ >

1
2
− 2α.

We take ε1, ε2, ε3 > 0 and γ = 1
2 −2α+ε1, β = 1

2 −2α+ε2,
2
r = 1−4α+ε3, r exists provided

ε3 < 1 + 4α.

It is easy to check that all conditions are satisfied for

ε1 < ε2, ε1 + ε2 < ε3 < ε2 + 6α.

Using Lemma 2.6, it is now easy to prove the following result. Note that we have chosen
γ > 1

2 − 2α so that we know the Z has paths in C([0, T ];H−γ).

Proposition 2.8. Let β > 0, γ > 1
2 − 2α, ε, p and r be as in Lemma 2.7. For any x ∈ H−γ ,

there exists a unique solution of (2.6) in XT with

T = c (|x|H−γ + | :Z2: |Lp(0,T ;H−ε) + |Z|C([0,T ];H−γ))−1/δ.
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2.3 Global existence
Recall that we have denoted by µα the Gaussian measure N

(
0, (−A)−2α) on H−γ . We have

Theorem 2.9. For µα almost every all initial data x ∈ H−γ , γ > 1
2 − 2α, there exists a

unique global solution of (2.6).

Proof. Using classical arguments (see the proof of Theorem 5.1 in [8] for details), it suffices
to obtain a uniform a priori estimate on the solutions of the Galerkin approximations. We
follow here the method in [9], [13]. In order to lighten the notations, we perform directly the
computations below on the solutions of equation (2.8). A rigorous proof is easily obtained by
translating these computations on the Galerkin solutions.
We have

X(t, x) = etAx+ 1
2

∫ t

0
e(t−s)A(−A)−2α∂ξ[:X(s)2:] ds+ Z(t)− etAZ(0),

and so, for γ as in Lemma 2.7,

|X(t, x)|H−γ ≤ |x|H−γ + 1
2

∫ t

0
|(−A)−2α∂ξ[:X(s)2:]|H−γds+ |Z(t)|H−γ + |Z(0)|H−γ .

Consequently

sup
t∈[0,T ]

|X(t, x)|H−γ ≤ |x|H−γ + 1
2

∫ T

0
|(−A)−2α∂ξ[:X(t)2:]|H−γdt+ 2 sup

t∈[0,T ]
|Z(t)|H−γ .

Now it follows that

E

(
sup
t∈[0,T ]

|X(t, x)|H−γ
)
≤ |x|H−γ

+ 1
2

∫ T

0
E|(−A)−2α∂ξ[:X(t)2:]|H−γdt+ 2E

(
sup
t∈[0,T ]

|Z(t)|H−γ
)
,

and consequently∫
H−ε

E

(
sup
t∈[0,T ]

|X(t, x)|H−γ
)
µα(dx) ≤

∫
H−ε
|x|H−γ µα(dx)

+ 1
2

∫ T

0

∫
H−ε

E|(−A)−2α∂ξ[:X(t)2:]|H−γ µα(dx) dt+ 2E

(
sup
t∈[0,T ]

|Z(t)|H−γ
)
.

From the inequality ∫
H−ε
|x|H−γ µα(dx) < +∞.

and the fact that µα is invariant, we have∫ T

0

∫
H−ε

E|(−A)−2α∂ξ[:X(t)2:]|H−γ µα(dx) dt

= T

∫
H−ε
|(−A)−2α∂ξ[:x2:]|H−γ µα(dx) < +∞.
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Finally, it is not difficult to see, using the factorization method (see [12]), that

E

(
sup
t∈[0,T ]

|Z(t)|H−γ
)
< +∞.

In conclusion

E

(
sup
t∈[0,T ]

|X(t, x)|H−γ
)
< +∞,

for µα–almost all x and then the global existence for µα–almost all x follows. This ends the
proof of Theorem 2.9.
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