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Abstract

Suppose that Tn is a Toeplitz matrix whose entries come from a sequence of independent but
not necessarily identically distributed random variables with mean zero. Under some additional
tail conditions, we show that the spectral norm of Tn is of the order

√
n log n. The same result

holds for random Hankel matrices as well as other variants of random Toeplitz matrices which
have been studied in the literature

1 Introduction and results

Let X0,X1,X2, . . . be a family of independent random variables. For n ≥ 2, Tn denotes the
n × n random symmetric Toeplitz matrix Tn =

[

X|j−k|
]

1≤j,k≤n
,

Tn =





















X0 X1 X2 · · · Xn−2 Xn−1

X1 X0 X1 Xn−2

X2 X1 X0

...
...

. . .
...

Xn−2 X0 X1

Xn−1 Xn−2 . . . . . . . . X1 X0





















.

In [1], Bai asked whether the spectral measure of n−1/2Tn approaches a deterministic limit
measure µ as n → ∞. Bryc, Dembo, and Jiang [5] and Hammond and Miller [9] independently
proved that this is so when the Xj are identically distributed with variance 1, and that with
these assumptions µ does not depend on the distribution of the Xj . The measure µ does not
appear to be a previously studied probability measure, and is described via rather complicated
expressions for its moments.
This limiting spectral measure µ has unbounded support, which raises the question of the
asymptotic behavior of the spectral norm ‖Tn‖, i.e., the maximum absolute value of an eigen-
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value of Tn. (This problem is explicitly raised in [5, Remark 1.3].) This paper shows, under
slightly different assumptions from [5, 9], that ‖Tn‖ is of the order

√
n log n. Here the Xj need

not be identically distributed, but satisfy stronger moment or tail conditions than in [5, 9]. The
spectral norm is also of the same order for other related random matrix ensembles, including
random Hankel matrices. In the case of Hankel matrices, Theorems 1 and 3 below generalize
in a different direction a special case of a result of Masri and Tonge [9] on multilinear Hankel
forms with ±1 Bernoulli entries.

A random variable X will be called subgaussian if

P
[

|X| ≥ t
]

≤ 2e−at2 ∀t > 0 (1)

for some constant a > 0. A family of random variables is uniformly subgaussian if each satisfies
(1) for the same constant a.

Theorem 1. Suppose X0,X1,X2, . . . are independent, uniformly subgaussian random vari-
ables with EXj = 0 for all j. Then

E‖Tn‖ ≤ c1

√

n log n,

where c1 > 0 depends only on the constant a in the subgaussian estimate (1) for the Xj.

Simple scaling considerations show that one can take c1 = Ca−1/2 for some absolute constant
C > 0. In principle an explicit value for C can be extracted from the proof of Theorem 1.
No attempt has been made to do so, since the techniques used in this paper are suited for
determining rough orders of growth, and not precise constants. Similar remarks apply to the
constants which appear in the statements of Theorems 2 and 3 below.

After this paper was written, the author learned from W. Bryc that the special case of Theorem
1 in which each Xj is standard normal was previously shown in unpublished work by W.
Bednorz.

By strengthening the subgaussian assumption, the statement of Theorem 1 can be improved
from a bound on expectations to an almost sure asymptotic bound. Recall that a real-valued
random variable X (or more properly, its distribution) is said to satisfy a logarithmic Sobolev
inequality with constant A if

E
[

f2(X) log f2(X)
]

≤ 2A E
[

f ′(X)2
]

for every smooth f : R → R such that Ef2(X) = 1. Standard normal random variables satisfy a
logarithmic Sobolev inequality with constant 1. Furthermore, it is well known that independent
random variables with bounded logarithmic Sobolev constants are uniformly subgaussian and
possess the same concentration properties as independent normal random variables (see [13]
or [14, Chapter 5]).

Theorem 2. Suppose X0,X1,X2, . . . are independent, EXj = 0 for all j, and for some
constant A, either:

1. for all j, |Xj | ≤ A almost surely; or

2. for all j, Xj satisfies a logarithmic Sobolev inequality with constant A.
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Then

lim sup
n→∞

‖Tn‖√
n log n

≤ c2

almost surely, where c2 > 0 depends only on A.

We remark that according to the definition used here, Tn is a submatrix of Tn+1, but this is
only a matter of convenience in notation. Theorem 2 remains true regardless of the dependence
among the random matrices Tn for different values of n.
It seems unlikely that the stronger hypotheses of Theorem 2 are necessary. In fact a weaker
version can be proved under the hypotheses of Theorem 1 alone; see the remarks following the
proof of Theorem 2 in Section 2.

When the Xj have variance 1, the upper bound
√

n log n of Theorems 1 and 2 is of the correct
order. In fact the matching lower bound holds under less restrictive tail assumptions, as the
next result shows.

Theorem 3. Suppose X0,X1,X2, . . . are independent and for some constant B > 0, each Xj

satisfies

EXj = 0, EX2
j = 1, E|Xj | ≥ B.

Then

E‖Tn‖ ≥ c3

√

n log n,

where c3 > 0 depends only on B.

In the case that EX2
j = 1 and E|Xj |3 < ∞, it is a consequence of Hölder’s inequality that

E|Xj | ≥ (E|Xj |3)−1. Thus the lower bound on first absolute moments assumed in Theorem 3
is weaker than an upper bound on absolute third moments, and is in particular satisfied for
uniformly subgaussian random variables.

Section 2 below contains the proofs of Theorems 1–3. As mentioned above, Theorems 1–3 also
hold for other ensembles of random Toeplitz matrices, as well as for random Hankel matrices.
Section 3 discusses these extensions of the theorems and makes some additional remarks.

Acknowledgement. The author thanks A. Dembo for pointing out the problem considered in
this paper.

2 Proofs

The proof of Theorem 1 is based on Dudley’s entropy bound [6] for the supremum of a sub-
gaussian random process. Given a random process {Yx : x ∈ M}, a pseudometric on M may
be defined by

d(x, y) =
√

E|Yx − Yy|2.

The process {Yx : x ∈ M} is called subgaussian if

∀x, y ∈ M, ∀t > 0, P
[

|Yx − Yy| ≥ t
]

≤ 2 exp

[

− b t2

d(x, y)2

]

(2)
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for some constant b > 0. For ε > 0, the ε-covering number of (M,d), N(M,d, ε), is the smallest
cardinality of a subset N ⊂ M such that

∀x ∈ M ∃y ∈ N : d(x, y) ≤ ε.

Dudley’s entropy bound is the following (see [22, Proposition 2.1] for the version given here).

Proposition 4. Let {Yx : x ∈ M} be a subgaussian random process with EYx = 0 for every
x ∈ M . Then

E sup
x∈M

|Yx| ≤ K

∫ ∞

0

√

log N(M,d, ε) dε,

where K > 0 depends only on the constant b in the subgaussian estimate (2) for the process.

We will also need the following version of the classical Azuma-Hoeffding inequality. This can
be proved by a standard Laplace transform argument; see e.g. [16, Fact 2.1].

Proposition 5. Let X1, . . . ,Xn be independent, symmetric, uniformly subgaussian random
variables. Then for any a1, . . . , an ∈ R and t > 0,

P

[

∣

∣

∣

∣

n
∑

j=1

ajXj

∣

∣

∣

∣

≥ t

]

≤ 2 exp

[

− b t2
∑n

j=1 a2
j

]

,

where b > 0 depends only on the constant a in the subgaussian estimate (1) for the Xj.

Proof of Theorem 1. We first reduce to the case in which each Xj is symmetric. Let T ′
n be an

independent copy of Tn. Since ETn = 0, by Jensen’s inequality,

E‖Tn‖ ≤ E
[

E
[

‖Tn − T ′
n‖

∣

∣Tn

]]

= E‖Tn − T ′
n‖.

The random Toeplitz matrix (Tn−T ′
n) has entries (Xj−X ′

j) which are independent, symmetric,
uniformly subgaussian random variables (with a possibly smaller constant a in the subgaussian
estimate). Thus we may assume without loss of generality that the Xj are symmetric random
variables.

We next bound ‖Tn‖ by the supremum of a subgaussian random process. A basic feature of
the theory of Toeplitz matrices is their relationship to multiplication operators (cf. [4, Chapter
1]). Specifically, the finite Toeplitz matrix Tn is an n × n submatrix of the infinite Laurent
matrix

Ln =
[

X|j−k|1|j−k|≤n−1

]

j,k∈Z
.

Consider Ln as an operator on ℓ2(Z) in the canonical way, and let ψ : ℓ2(Z) → L2[0, 1]
denote the usual trigonometric isometry ψ(ej)(x) = e2πijx. Then ψLnψ−1 : L2 → L2 is the
multiplication operator corresponding to the L∞ function

f(x) =

n−1
∑

j=−(n−1)

X|j|e
2πijx = X0 + 2

n−1
∑

j=1

cos(2πjx)Xj .

Therefore
‖Tn‖ ≤ ‖Ln‖ = ‖f‖∞ = sup

0≤x≤1
|Yx|, (3)
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where

Yx = X0 + 2
n−1
∑

j=1

cos(2πjx)Xj .

By Proposition 5, the random process {Yx : x ∈ [0, 1]} becomes subgaussian if M = [0, 1] is
equipped with the pseudometric

d(x, y) =

√

√

√

√

n−1
∑

j=1

[

cos(2πjx) − cos(2πjy)
]2

.

Finally, we bound N([0, 1], d, ε) in order to apply Proposition 4. Since | cos t| ≤ 1 always, it
follows that d(x, y) < 2

√
n and therefore N([0, 1], d, ε) = 1 if ε > 2

√
n. Next, since | cos s −

cos t| ≤ |s − t|,

d(x, y) ≤ 2π|x − y|

√

√

√

√

n−1
∑

j=1

j2 < 4n3/2|x − y|,

which implies that

N
(

[0, 1], d, ε
)

≤ N
(

[0, 1], | · |, ε

4n3/2

)

≤ 4n3/2

ε
.

By (3), Proposition 4, and the substitution ε = 4n3/2e−t2 ,

E‖Tn‖ ≤ K

∫ 2
√

n

0

√

log

(

4n3/2

ε

)

dε = 2
√

2n3/2K

∫ ∞

√
2 log 2n

t2e−t2/2 dt. (4)

Integration by parts and the classical estimate 1√
2π

∫ ∞
s

e−t2/2 dt ≤ e−s2/2 for s > 0 yield

∫ ∞

s

t2e−t2/2 dt ≤
(

s +
√

2π
)

e−s2/2.

Combining the case s =
√

2 log 2n of this estimate with (4) completes the proof.

The proof of Theorem 2 is based on rather classical measure concentration arguments com-
monly applied to probability in Banach spaces.

Proof of Theorem 2. Denote by M0 the n × n identity matrix, and for m = 1, . . . , n − 1 let
Mm =

[

1|j−k|=m

]

1≤j,k≤n
. Then Tn can be written as the sum

Tn =

n−1
∑

j=0

XjMj

of independent random vectors in the finite-dimensional Banach space Mn equipped with the
spectral norm. Observe that ‖Mj‖ ≤ 2 for every j.
Under the assumption (1), up to the precise values of constants the estimate

P
[

‖Tn‖ ≥ E‖Tn‖ + t
]

≤ e−t2/32A2n ∀t > 0
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follows from any of several standard approaches to concentration of measure (cf. Corollary
1.17, Corollary 4.5, or Theorem 7.3 of [14]; the precise statement can be proved from Corollary
1.17). Combining this with Theorem 1 yields

P

[

‖Tn‖ ≥ (c1 + 8A)
√

n log n
]

≤ 1

n2
,

which completes the proof via the Borel-Cantelli lemma.
The proof under the assumption (2) is similar. By the triangle inequality and the Cauchy-
Schwarz inequality,

‖Tn‖ ≤ 2

√

√

√

√n
n−1
∑

j=0

X2
j ,

so that the map (X0, . . . ,Xn−1) 7→ ‖Tn‖ has Lipschitz constant bounded by 2
√

n. By the well-
known tensorization and measure concentration properties of logarithmic Sobolev inequalities
(cf. [13, Sections 2.1–2.3] or [14, Sections 5.1–5.2]),

P
[

‖Tn‖ ≥ E‖Tn‖ + t
]

≤ e−t2/4An ∀t > 0.

The proof is completed in the same way as before (with a different dependence of c2 on A).

As remarked above, a weaker version of Theorem 2 may be proved under the assumptions of
Theorem 1 alone. From the proof of Proposition 4 in [22] one can extract the following tail
inequality under the assumptions of Proposition 4:

P

[

sup
x∈M

|Yx| ≥ t

]

≤ 2e−ct2/α2 ∀t > 0, where α =

∫ ∞

0

√

log N(M,d, ε) dε. (5)

The explicit statement here is adapted from lecture notes of Rudelson [19]. Using the estimates
derived in the proof of Theorem 1 and applying the Borel-Cantelli lemma as above, one directly
obtains

lim sup
n→∞

‖Tn‖√
n log n

≤ c4 almost surely (6)

under the assumptions that the Xj are symmetric and uniformly subgaussian. The general
(nonsymmetric but mean 0) case can be deduced from the argument for the symmetric case.
Let T ′

n be an independent copy of Tn. By independence, the triangle inequality, and the tail
estimate which follows from (5),

P
[

‖T ′
n‖ ≤ s

]

P
[

‖Tn‖ ≥ s + t
]

≤ P
[

‖Tn − T ′
n‖ ≥ t

]

≤ 2e−ct2/n log n

for some constant c which depends on the subgaussian estimate for the Xj . By Theorem 1
and Chebyshev’s inequality,

P
[

‖T ′
n‖ ≤ s

]

≥ 1 − 1

s
c1

√

n log n.

Picking s = 2c1

√
n log n and t =

√

2n
c log n yields

P[
[

‖Tn‖ ≥ c4

√
n log n

]

≤ 4

n2
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for some constant c4, and (6) then follows from the Borel-Cantelli lemma.

The proof of Theorem 3 amounts to an adaptation of the proof of the lower bound in [17], with
much of the proof abstracted into a general lower bound for the suprema of certain random
processes due to Kashin and Tzafriri [10, 11]. The following is a special case of the result of
[11].

Proposition 6. Let ϕj : [0, 1] → R, j = 0, . . . , n − 1 be a family of functions which are
orthonormal in L2[0, 1] and satisfy ‖ϕj‖L3[0,1] ≤ A for every j, and let X0, . . . ,Xn−1 be inde-
pendent random variables such that for every j,

EXj = 0, EX2
j = 1, E|Xj | ≥ B.

Then for any a0, . . . , an−1 ∈ R,

E



 sup
0≤x≤1

∣

∣

∣

∣

∣

n−1
∑

j=0

ajXjϕj(x)

∣

∣

∣

∣

∣



 ≥ K ‖a‖2

√

log
‖a‖2

‖a‖4
,

where ‖a‖p =
(
∑n−1

j=0 |aj |p
)1/p

and K > 0 depends only on A and B.

Proof of Theorem 3. First make the estimate

‖Tn‖ = sup
v∈Cn\{0}

| 〈Tnv, v〉 |
〈v, v〉 ≥ sup

0≤x≤1

1

n

∣

∣ 〈Tnvx, vx〉
∣

∣,

where vx ∈ C
n is defined by (vx)j = e2πijx for j = 1, . . . , n and 〈·, ·〉 is the standard inner

product on C
n. Therefore

‖Tn‖ ≥ 1

n
sup

0≤x≤1

∣

∣

∣

∣

∣

n
∑

j,k=1

X|j−k|e
2πi(j−k)x

∣

∣

∣

∣

∣

=
1

n
sup

0≤x≤1

∣

∣

∣

∣

∣

n−1
∑

j=−(n−1)

(n − |j|)X|j|e
2πijx

∣

∣

∣

∣

∣

= sup
0≤x≤1

∣

∣

∣

∣

∣

X0 + 2

n−1
∑

j=1

(

1 − j

n

)

Xj cos(2πjx)

∣

∣

∣

∣

∣

= sup
0≤x≤1

∣

∣

∣

∣

∣

n−1
∑

j=0

ajXjϕj(x)

∣

∣

∣

∣

∣

,

where we have defined a0 = 1, aj =
√

2(1− j/n) for j ≥ 1, ϕ0 ≡ 1, and ϕj(x) =
√

2 cos(2πjx)
for j ≥ 1. It is easy to verify that ‖a‖2 >

√
n/2 and ‖a‖4 < 2n1/4. The theorem now follows

from Proposition 6.

We remark that by combining Theorem 3 with the proof of Theorem 2, one obtains a non-
trivial bound on the left tail of ‖Tn‖ under the assumptions of Theorem 2 and the additional
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assumption that EX2
j = 1 for every j. Unfortunately, one cannot deduce an almost sure lower

bound of the form

lim inf
n→∞

‖Tn‖√
n log n

≥ c almost surely

without more precise control over the constants in Proposition 6 and the concentration in-
equalities used in the proof of Theorem 2.

3 Extensions and additional remarks

3.1 Other random matrix ensembles

For simplicity Theorems 1–3 were stated and proved only for the case of real symmetric Toeplitz
matrices. However, straightforward adaptations of the proofs show that the theorems hold
for other related ensembles of random matrices. These include nonsymmetric real Toeplitz
matrices

[

Xj−k

]

1≤j,k≤n
for independent random variables Xj , j ∈ Z, as well as complex

Hermitian or general complex Toeplitz variants. In the complex cases one should consider
matrix entries of the form Xj = Yj + iZj , where Yj and Zj are independent and each satisfy
the tail or moment conditions imposed on Xj in the theorems as stated.
Closely related to the case of nonsymmetric random Toeplitz matrices are random Hankel
matrices Hn =

[

Xj+k−1

]

1≤j,k≤n
, which are constant along skew diagonals. This ensemble was

also mentioned by Bai [1], and was shown to have a universal limiting spectral distribution in
[5]. Independently, Masri and Tonge [17] considered a random r-linear Hankel form

(v1, . . . , vr) 7→
n

∑

j1,...,jr=0

Xj1+···+jr
(v1)j1 · · · (vr)jr

in the case P[Xj = 1] = P[Xj = −1] = 1/2, and showed that the expected norm of this form

is of the order
√

nr−1 log n. As observed in [5, Remark 1.2], Hn has the same singular values,
and so in particular the same spectral norm, as the (nonsymmetric) Toeplitz matrix obtained
by reversing the order of the rows of Hn. Therefore Theorems 1–3 apply to Hn as well. As
mentioned in the introduction, the versions of Theorems 1 and 3 for Hn generalize the r = 2
case of the result of [17] to subgaussian matrix entries Xj .
The methods of this paper can also be used to treat random Toeplitz matrices with additional
restrictions. For example, the theorems apply to the ensemble of symmetric circulant matrices
considered in [2, Remark 2] which is defined as Tn here except for the restriction that Xn−j =
Xj for j = 1, . . . , n − 1, and the closely related symmetric palindromic Toeplitz matrices
considered in [18], in which Xn−j−1 = Xj for j = 0, . . . , n − 1. We remark that [2, 18] show
that each of these ensembles, properly scaled and with some additional assumptions, have a
limiting spectral distribution which is normal.

3.2 Weaker hypotheses

It is unclear how necessary the tail or moment conditions on the Xj are to the conclusions
of the theorems. It appears likely (cf. [24, 3]) that versions of Theorems 1 and 2 remain true
assuming only the existence of fourth moments, at least when the Xj are identically distributed.
In particular it is very likely that the assumptions of Theorem 2 can be relaxed considerably.
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Even within the present proof, the assumption of a logarithmic Sobolev inequality can be
weakened slightly to that of a quadratic transportation cost inequality; cf. [14, Chapter 6].
If the Xj have nonzero means then the behavior of ‖Tn‖ may change. Suppose first that the
Xj are uniformly subgaussian and EXj = m 6= 0 for every j. If Jn denotes the n × n matrix
whose entries are all 1, then (6) implies that

lim sup
n→∞

‖Tn − mJn‖√
n log n

≤ c almost surely, (7)

where c depends on m and the subgaussian estimate for the Xj . Since ‖Jn‖ = n, (7) and the
triangle inequality imply a strong law of large numbers:

lim
n→∞

‖Tn‖
n

= |m| almost surely. (8)

In [3], (8) was proved using estimates from [5] under the assumption that the Xj are identically
distributed and have finite variance. We emphasize again that while the methods of this paper
require stronger tail conditions, we never assume the Xj to be identically distributed.
More generally, the behavior of ‖Tn‖ depends on the rate of growth of the spectral norms of
the deterministic Toeplitz matrices ETn. The same argument as above shows that

lim
n→∞

‖Tn‖
‖ETn‖

= 1 almost surely

if the random variables (Xj − EXj) are uniformly subgaussian and limn→∞
√

n log n
‖ETn‖ = 0. On

the other hand, if ‖ETn‖ = o(
√

n log n) then the conclusion of Theorem 1 holds.

3.3 Random trigonometric polynomials

The supremum of the random trigonometric polynomial

Zx =
n

∑

j=1

Xj cos(2πjx),

has been well-studied in the special case P[Xj = 1] = P[Xj = −1] = 1/2, in work dating
back to Salem and Zygmund [20]. Observe that Zx is essentially equivalent to the process Yx

defined in the proof of Theorem 1, and is also closely related to the random process considered
in the proof of Theorem 3. Halász [8] proved in particular that

lim
n→∞

sup0≤x≤1 |Zx|√
n log n

= 1 almost surely.

From this it follows that when P[Xj = 1] = P[Xj = −1] = 1/2 for every j, the conclusion of
Theorem 2 holds with c2 = 2. Numerical experiments suggest, however, that the optimal value
of c2 is 1 in this case, and more generally when the Xj are i.i.d. with mean 0 and variance 1.
Conversely, adaptations of the proofs in this paper yield less numerically precise bounds for
the supremum of Zx under the same weaker assumptions on the Xj in the statements of the
theorems. We remark that the techniques used to prove the results of [10, 11, 17] cited above
(and hence indirectly also Theorem 3) were adapted from the work of Salem and Zygmund in
[20].
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