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Abstract

A recent theorem in [3] provided a link between a certain function of transition probabilities
of a strong Markov process and the boundedness of the p-variation of its trajectories. Here
one assumption of that theorem is relaxed and an example is constructed to show that the
Markov property cannot be easily dispensed with.

Introduction

Let ξt, t ∈ [0, T ], be a strong Markov process defined on some complete probability space
(Ω,F , P ) and with values in a complete separable metric space (X, ρ). Denote the transition
probability function of ξt by Ps,t(x, dy), 0 ≤ s ≤ t ≤ T , x ∈ X. For any h ∈ [0, T ] and a > 0
consider the function

α(h, a) = sup{Ps,t(x, {y : ρ(x, y) ≥ a}) : x ∈ X, 0 ≤ s ≤ t ≤ (s+ h) ∧ T}. (1)

The behavior of α(h, a) as a function of h gives sufficient conditions for regularity properties
of the trajectories of the process ξt. As Kinney showed in [1], ξt has an almost surely càdlàg
version if α(h, a) → 0 as h → 0 for any fixed a > 0, and an almost surely continuous version
if α(h, a) = o(h) as h → 0 for any fixed a > 0. (See also an earlier paper by Dynkin [2]).
Recently we have established an interesting connection between the function α(h, a) and the
p-variation of the trajectories of the process ξt (see Theorem 2 below). The objective of this
paper is twofold: first to relax an assumption on the parameter β in Theorem 2 and then to
show that if ξt is no longer Markov, the claim of Theorem 2 is false. To be more precise, we will
construct an example of a càdlàg non-Markov process ηt on [0, 1] with unbounded p-variation
for any p > 0 and such that the inequality (2) below holds up to a logarithmic factor and
hence satisfies the relaxed condition on β stated in Theorem 3. Some of the properties of this
ηt are given in Theorem 4.

Recall that for a p ∈ (0,∞) and a function f defined on the interval [0, T ] and taking values
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in (X, ρ) its p-variation is

vp(f) := sup{
m−1
∑

k=0

ρ(f(tk+1), f(tk))
p : 0 = t0 < t1 < · · · < tm = T,m = 1, 2, . . . }.

The range of the parameter β in the following definition is extended from “β ≥ 1” used in [3]
to “β > 0” needed here.

Definition 1 Let β > 0 and γ > 0. We say that a Markov process ξt, t ∈ [0, T ], belongs to
the class M(β, γ) (M for Markov) if there exist constants a0 > 0 and K > 0 such that for all
h ∈ [0, T ] and a ∈ (0, a0]

α(h, a) ≤ K
hβ

aγ
. (2)

Theorem 2 [3, Theorem 1.3] Let ξt, t ∈ [0, T ], be a strong Markov process with values in
a complete separable metric space (X, ρ). Suppose ξt belongs to the class M(β, γ), for some
β ≥ 1. Then for any p > γ/β the p-variation vp(ξ) of ξt is finite almost surely.

Preliminaries and Results

As mentioned above, we first relax condition “β ≥ 1” in Theorem 2 as follows:

Theorem 3 Theorem 2 holds if the condition “β ≥ 1” is replaced by “β > (3− e)/(e− 1)”.

Remark 1 Most of the interesting processes (e.g. Brownian motion, Levy processes on Rn)
satisfy (2) with β ≥ 1 and the condition “p > γ/β” in Theorem 2 is sharp. Yet this need
not be true in general. To see this consider a symmetric real-valued α-stable Lévy motion Xt,
t ∈ [0, 1], with α ∈ (0, 2). Furthermore, let f(x) = xδ for some δ ∈ (0, 1) and define Yt = Xf(t),
t ∈ [0, 1]. Since the function f is a strictly increasing continuous bijection of [0, 1] onto itself,
both the strong Markov and the p-variation properties are preserved (for the latter see e.g.
Lemma 4.4 of [4]). This implies that Yt, like Xt, is also a strong Markov process with bounded
p-variation for any p > α (see e.g. [3]). On the other hand, Xt has independent increments,
so we also get for h ∈ (0, 1], a > 0 and some constant K > 0

α(h, a) = sup{P (|Yt − Ys| ≥ a|Ys = x) : x ∈ R, 0 ≤ s ≤ t ≤ (s+ h) ∧ 1}

= sup
{

P
( ∣

∣Xf(t) −Xf(s)

∣

∣ ≥ a
)

: 0 ≤ s ≤ t ≤ (s+ h) ∧ 1
}

≤ sup
{K(f(t)− f(s))

aα
: 0 ≤ s ≤ t ≤ (s+ h) ∧ 1

}

= K
hδ

aα
.

(3)

So Theorem 3 (but not Theorem 2) applies if δ ∈ ((3−e)/(e−1), 1) and yields the boundedness
of p-variation of paths of Yt only for any p > α/δ > α.

The following is needed for the construction of the example described previously. Let {δm}
∞
m=1

be a monotone decreasing sequence of positive numbers such that
∑∞

m=1 δm = 1. Set δ0 := 0.
In the future we will conveniently choose δm := 2 · 3−m, for m ≥ 1, but most of the arguments
can be adapted for any sequence {δm} which sums to one. Denote the partial sums by ∆m,
i.e. for any m = 1, 2, . . . let ∆m :=

∑m
k=0 δk, and set Jm = [∆m−1,∆m). This way we get
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a partition of [0, 1) into a union of disjoint subintervals Jm of length δm. Next consider an
increasing sequence of integers {nm}

∞
m=1 such that

log3(nm) = 3m −m− 1 + log3 2, (4)

for any m ≥ 1, and let

am =
δm

3(nm + 3)
, dm = ∆m−1 +

δm
3
. (5)

Furthermore, let {cm}
∞
m=0 be an increasing sequence of real numbers, converging to 1/2 as

m→∞, but rather slowly. To be more specific we take

cm =
1

2

(

1−
1

1 + 2 ln(m+ 1)

)

. (6)

This choice is influenced by the desire to have a process with unbounded p-variation for any
p > 0 and is, of course, not unique. Any sequence which converges to 1/2 even slower than
{cm} will suit as well. Let X0, X1, . . . be a sequence of independent (but not identically
distributed) Bernoulli random variables such that

P (Xi = 0) =

{

1− δi, if i ≥ 1;
1/2, if i = 0,

P (Xi = 1) = 1− P (Xi = 0).

Consider a sequence {Zm}
∞
m=1 of independent random variables, independent from {Xk}

∞
k=0.

Assume that for each m = 1, 2, . . . , a random variable Zm is distributed uniformly on the
interval [am, (1+nm)am]. Without loss of generality we will assume that all random variables
Xi, i ≥ 0, and Zm,m ≥ 1, are defined on the same probability space (Ω,F , P ).

Furthermore, for m = 1, 2 . . . , set Vm := dm + Zm and V ′m := Vm + am. Now on the interval
[0, 1] define a random process ηt ≡ η(t) as follows: set η0 = X0, η1 = 1/2 and on a subinterval
Jm for any m = 1, 2, . . . let

ηt =















η(∆m−1−), if ∆m−1 ≤ t < Vm or
if V ′m ≤ t < ∆m and Xm = 0;

1− η(∆m−1−), if Vm ≤ t < V ′m;
cm(1−X0) + (1− cm)X0, if V ′m ≤ t < ∆m and Xm = 1;

(7)

where we set η(0−) ≡ η0 and η(s−)(ω) = limu↑s ηu(ω), i.e. we use the left hand side limit
ω-pointwise, for s ∈ (0, 1). The idea behind this definition is simple: we consider a process
which with probability 1/2 starts either at 0 or at 1 and shortly before the end of the first
subinterval J1 returns back to η(0), if X1 = 0, or, depending on X0, jumps to c1 or 1 − c1,
in case X1 = 1. Inside J2, ηt starts where it left J1, and at time t = ∆2 remains at η(∆1), if
X2 = 0, or, depending on X0, jumps to c2 or 1 − c2, in case X2 = 1, i.e. closer to 1/2. The
same happens in any other interval Jm.

Another way to look at what is happening to ηt at t = ∆m,m = 1, 2, . . . is via Markov chains.
Indeed, set W0 := X0, Wm := η(∆m), for m = 1, 2, . . . , and notice that {Wk}

∞
k=0 defines a

Markov chain on a state space

A∞ = {ck, 1− ck : k = 0, 1, . . . }. (8)
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For each m = 1, 2, . . . , Wm is either equal to Wm−1, cm or 1− cm. Furthermore,

P (Wm =Wm−1) = P (Xm = 0) = 1− δm,

P (Wm = cm) = P (X0 = 0, Xm = 1) =
δm
2
,

P (Wm = 1− cm) = P (X0 = 1, Xm = 1) =
δm
2
,

P (Wm = cm|Wm−1) = δm1{Wm−1<1/2} = δm1{X0=0},

P (Wm = 1− cm|Wm−1) = δm1{Wm−1>1/2} = δm1{X0=1},

P (Wm =Wm−1|Wm−1) = 1− δm.

Later we will also use the sets

Am = {ck, 1− ck| k = 0, 1, . . . ,m}, m ≥ 0. (9)

The following theorem lists some of the interesting properties of the process ηt.

Theorem 4 Let ηt be defined by (7). Then

(i) ηt is almost surely left-continuous at t = 1, and hence the paths of ηt are almost surely
càdlàg;

(ii) the p-variation vp(η) of ηt is unbounded for any p > 0;

(iii) there exists a constant K > 0 such that for any h ∈ (0, 1) and a > 0

α(h, a) ≤ Kh

(

1 ∨ ln
1

h

)

. (10)

Remark 2 Slightly abusing notation we define α(h, a) in (10) as

α(h, a) = sup{P (ρ(ηt, ηs) ≥ a|ηs = x) : x ∈ X, 0 ≤ s ≤ t ≤ (s+ h) ∧ T}.

For Markov processes this definition agrees with (1).

As an easy corollary we have

Corollary 5 The conclusion of Theorem 3 no longer holds if ξt, t ∈ [0, T ] is not necessarily
Markov.

Proofs

The proof of Theorem 3 requires only minor adjustments to the proof of Theorem 2. To be
specific, we first slightly improve Lemma 2.5(iii) of [3] as follows:

Lemma 6 Let γ(a, x) =
∫ x

0
ua−1e−udu be the incomplete gamma function defined for a > 0

and x ≥ 0. Then for any q ∈ (0, 1− 1/e) and a ≥ 2/q − 3

0 < aγ(a, 1)−
1

e
=

∞
∑

k=0

(−1)k

k!(k + a+ 1)
≤ q.
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Proof. The proof is identical to that of Lemma 2.5(iii) except for the right-hand inequality.
Since the series alternates plus, minus, etc., and the terms decrease in absolute value, three
terms provide an upper bound:

aγ(a, 1)−
1

e
<

1

(a+ 1)(a+ 2)
+

1

2(a+ 3)
≤

1

a+ 2
+

1

2(a+ 3)
≤

2

a+ 3
≤ q,

if a ≥ 2/q − 3 > (3− e)/(e− 1). ¤

Before modifying Corollary 2.6 of [3], recall a few definitions. Let F ξ be the natural filtration

generated by the process ξ, i.e. F ξ = {Fξ
t , t ∈ [0, T ]}, where Fξ

t = σ(ξu, 0 ≤ u ≤ t) ⊂ F .
Recall that a random variable τ : Ω → [0,∞] is an F ξ-Markov time iff for all u ∈ [0, T ],
{τ < u} ∈ Fξ

u. If τ is an Fξ-Markov time, define Fτ := {A : A ∩ {τ < u} ∈ Fξ
u, u ∈ [0, T ]}.

Also set F0 := {∅,Ω}. Furthermore, for any 0 ≤ a < b ≤ T let

R(a, b) := sup
a≤s≤t≤b

ρ(ξs, ξt) = sup
s,t∈(Q∩[a,b])∪{b}

ρ(ξs, ξt),

since ξt has càdlàg paths. Hence R(a, b) is F ξ
b -measurable. Moreover, for any sequence 0 <

an ↓ a ≤ b ≤ T we have R(an, b) ↑ R(a, b) as n → ∞ since the intervals [an, b] are expanding
and ξt is right continuous.
For any r = 0,±1,±2, . . . , define Mr := 2−r−1 and let {τl,r}, l = 0, 1, 2, . . . be the sequence
of random times defined as follows:

τ0,r := 0, τl,r :=

{

inf{t ∈ [τl−1,r, T ] : R(τl−1,r, t) > Mr},

T + 1, if the set above is empty.

It is shown in [3] that each {τl,r} is an Fξ-Markov time. For all i = 1, 2, . . . also define
ζi,r := τi,r − τi−1,r. Here is the modified corollary:

Corollary 7 Assume that a strong Markov process ξt, t ∈ [0, T ], belongs to M(β, γ) for some
β > (3 − e)/(e − 1). Let r be any integer. Then for any i = 1, 2, . . . and for any number
q ∈

(

2/(β + 3), 1− 1/e
)

almost surely on {τi−1,r < T} we have

E
(

e−ζi,r
∣

∣Fτi−1,r

)

≤

{

βγ(β, Tr)T
−β
r if Tr < 1,

e−1 + q if Tr = 1,

where Tr = min
{

(

(Mr+2 ∧ a0)
γ/(2K)

)1/β
, T, 1

}

.

Proof. One only needs to replace “e−1 + 7/24 < 0.660” in the display of Case 1 by
“e−1 + q < 1” in view of Lemma 6 and the fact that for q ∈ (2/(β + 3), 1 − 1/e) we have
β > 2/q − 3. ¤

Next change the statement of Lemma 2.7 of [3] as follows:

Lemma 8 Let r be any integer, β > (3 − e)/(e − 1) and q ∈ (2/(β + 3), 1 − 1/e). For any
j = 1, 2, . . .

P
(

τj,r ≤ T
)

≤ eT

{

(

βγ(β, Tr)T
−β
r

)j
if Tr < 1,

(

e−1 + q
)j

if Tr = 1.
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Proof. The proof of this lemma is identical to that of Lemma 2.7 of [3]. Just use Corollary
7 instead of Corollary 2.6 of [3]. ¤

To present the necessary changes to Lemma 3.1 of [3] we once again need a few definitions
from [3]. Let PP := {κ : κ =

{

ti : 0 = t0 < t1 < · · · < tmκ
= T}

}

be the set of all point
partitions of [0, T ]. For any integer r, recall Mr = 2−r−1 and let κ ∈ PP, κ = {ti}

mκ

i=0 be an
arbitrary point partition. Define the random sets

Kr(ω) := Kr(ω, κ) :=
{

k : 1 ≤ k ≤ mκ, Mr ≤ ρ(ξtk , ξtk−1) < Mr−1

}

.

Let r1 be the largest integer less or equal to −(log2 a0 + 3), so that Mr+2 ≥ a0 for all r ≤ r1.

Lemma 9 Let ξt, r, β and Tr be as in Corollary 7 . Suppose that q ∈ (2/(β + 3), 1 − 1/e)
and r > r1. Then

E sup
κ∈PP

∑

k∈Kr(ω)

1 ≤

{

4T−1r eT if Tr < 1,

eT q+1/e
1−q−1/e if Tr = 1.

Proof. The only difference between the proof of this lemma and Lemma 3.1 of [3] is in
the case Tr = 1 where the geometric series with general term (e−1 + 7/24)j is replaced by
(e−1 + q)j leading to the sum (q + 1/e)/(1− q − 1/e) in place of 0.66/0.34 < 1.95. ¤

And finally replace 1.95 in the bound of P1 on page 2063 of [3] by q+1/e
1−q−1/e to complete the

proof of Theorem 3.

Now switch attention to the proof of Theorem 4. The first two properties of ηt are easy to
establish while the third is somewhat more involved.

Proof of property (i): by definition of ηt (see (7)) it is clear that ηt is right continuous for any
t ∈ [0, 1) and has left-limits for any t ∈ (0, 1). The only uncertainty is the left-limit at t = 1.
We claim that ηt is left continuous at t = 1 almost surely. To get this we first show that ηt
converges in probability to 1/2 as t ↑ 1. Let ε ∈

(

0, 1/(2(1+2 ln 2))
)

be arbitrary and consider

mε = max
{

m ≥ 1 : m < exp{((2ε)−1 − 1)/2} − 1
}

,

so that cm < 1/2− ε, for all m > mε. Now set δ = 3−mε−1 and for all t ∈ (1− δ, 1) get

P (|ηt − 1/2| > ε) ≤ P (Xm = 0,∀m > mε) =
∞
∏

m=mε+1

(1− δm) = 0 < ε.

Furthermore, by definition of ηt, for each ω, |ηt(ω)− 1/2| is nonincreasing as t ↑ 1. So, in fact,
we have a stronger statement:

P

(

sup
t≤s<1

|ηs − 1/2| > ε

)

= 0 < ε, if t ∈ (1− δ, 1).

Therefore, for almost all ω, supt≤s<1 |ηs(ω)− 1/2| ≤ ε provided t ∈ (1 − δ, 1). Hence, almost
surely

lim sup
t↑1

|ηt − 1/2| = 0,

and we obtain the almost sure convergence of ηt to 1/2.
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Proof of property (ii): it is easy to see that for any fixed ω ∈ Ω

vp(η·(ω)) = vp(η·(ω), [0, 1]) ≥
∞
∑

m=1

vp(η·(ω), Jm), (11)

where for m = 1

vp(η·(ω), J1) ≥ |1− 2η0(ω)|
p
+ |1− η0(ω)− η(∆1)(ω)|

p ≥ 1

and for m ≥ 2 we have

vp(η·(ω), Jm) ≥ |η(∆m−1)(ω)− η(Vm)(ω)|p + |η(Vm)(ω)− η(∆m)(ω)|p

= |1− 2η(∆m−1)(ω)|
p
+ |1− η(∆m−1)(ω)− η(∆m)(ω)|p

≥ |1− 2cm−1|
p
+ |1− cm−1 − cm|

p ≥ 2 |1− 2cm|
p
.

Plugging in these bounds into (11) we obtain

vp(η·(ω)) ≥ 1 + 2

∞
∑

m=2

|1− 2cm|
p
= 1 + 2

∞
∑

m=2

(1 + 2 ln(m+ 1))−p = +∞,

for every p > 0 and ω ∈ Ω. Hence vp(η·) = +∞ almost surely for every p > 0.

Proof of property (iii): inequality (10) will follow once we obtain a bound on transition proba-
bilities P (|ηt − ηs| > a|ηs = y) for 0 ≤ s < t ≤ (s+h)∧1 and y ∈ A∞. This will be done using
two lemmas: the first will handle the case when both s and t belong to the same subinterval
Jm for some m ≥ 1, and the second will tackle the case s ∈ Jm and t ∈ Jk for k > m.

Lemma 10 Suppose ηt is defined by (7). Let s, t ∈ Jm for some m ≥ 1. Then for any y ∈ A∞
(see (8)) almost surely

P (|ηt − ηs| > a|ηs = y) ≤
1

1− δ1

(

ψm(s ∨ (t− am))− ψm(t)

+ 2δm
{

ψm(s− am)− ψm(t− am)
}

)

,

where ψm(x) = P (x < Vm) is given by

ψm(x) =















1, if 0 ≤ x < am + dm,
nm + 1− (x− dm)a−1m

nm
, if am + dm ≤ x < am(nm + 1) + dm,

0, if am(nm + 1) + dm ≤ x ≤ 1.

(12)

Proof. For given s and t from Jm, we have ηt ∈ {y, 1 − y, cm, 1 − cm} whenever ηs = y.
Moreover,

P (|ηt − ηs| > a|ηs = y) = P (ηt = 1− y|ηs = y)1{|1−2y|>a}

+ P (ηt = cm|ηs = y)1{|cm−y|>a}

+ P (ηt = 1− cm|ηs = y)1{|1−cm−y|>a}

= q11{|1−2y|>a} + q21{|cm−y|>a} + q31{|1−cm−y|>a}.

(13)
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For s, t ∈ Jm we have q1 = 0 if y 6∈ Am−1 (see (9)), and if y ∈ Am−1

q1 =
P (ηt = 1− y, ηs = y)

P (ηs = y)

=

∑

x∈Am−1
P (ηt = 1− y, ηs = y|η(∆m−1) = x)P (η(∆m−1) = x)

∑

z∈Am−1
P (ηs = y|η(∆m−1) = z)P (η(∆m−1) = z)

=
P (ηt = 1− y, ηs = y|η(∆m−1) = y)

P (ηs = y|η(∆m−1) = y) + P (ηs = y|η(∆m−1) = 1− y)
,

where we used the definition of ηt to get P (ηt = 1 − y, ηs = y|η(∆m−1) = x) = 0, P (ηs =
y|η(∆m−1) = z) = 0, and, due to symmetry of ηt, P (η(∆m−1) = x) = P (η(∆m−1) = 1 − x),
for x ∈ Am−1 \ {y}, z ∈ Am−1 \ {y, 1− y} and y ∈ Am−1. Furthermore,

P (ηt = 1− y, ηs = y|η(∆m−1) = y) = P (s < Vm ≤ t < V ′m),

P (ηs = y|η(∆m−1) = y) = P (s < Vm) + P (V ′m ≤ s,Xm = 0),

P (ηs = y|η(∆m−1) = 1− y) = P (Vm ≤ s < V ′m).

Using the function ψm we can rewrite a bound for q1 with y ∈ Am−1 as follows

q1 =
P (s < Vm ≤ t < V ′m)

P (s < Vm) + P (V ′m ≤ s,Xm = 0) + P (Vm ≤ s < V ′m)

=
ψm

(

s ∨ (t− am)
)

− ψm(t)

1− δm
{

1− ψm(s− am)
} ≤

ψm

(

s ∨ (t− am)
)

− ψm(t)

1− δ1
.

(14)

Let us now evaluate q2. For m = 1, 2, . . . , set A0
m = {ck | k = 0, 1, . . . ,m} and A1

m = {1 −
ck | k = 0, 1, . . . ,m}. If |cm − y| > a, then by definition of ηt we get q2 = 0 if y 6∈ A0

m−1, and
if y ∈ A0

m−1 then

q2 = P (ηt = cm|ηs = y)

=

∑

x∈Am−1
P (ηt = cm, ηs = y|η(∆m−1) = x)P (η(∆m−1) = x)

∑

z∈Am−1
P (ηs = y|η(∆m−1) = z)P (η(∆m−1) = z)

=

∑

x∈{y,1−y} P (ηt = cm, ηs = y|η(∆m−1) = x)

1− δm
{

1− ψm(s− am)
}

≤ (1− δ1)
−1
{

P (s < Vm, t ≥ V ′m, Xm = 1) + P (Vm ≤ s < V ′m ≤ t,Xm = 1)
}

=
δm

1− δ1

{

ψm(s)− ψm(s ∨ (t− am)) + ψm(s− am)− ψm((t− am) ∧ s)
}

=
δm

1− δ1

{

ψm(s− am)− ψm(t− am)
}

.

(15)

The argument for q3 is essentially the same: if |1− cm − y| > a, then by definition of ηt we
get q3 = 0 if y 6∈ A1

m−1, and if y ∈ A1
m−1 then

q3 = P (ηt = 1− cm|ηs = y) ≤
δm

1− δ1

{

ψm(s− am)− ψm(t− am)
}

. (16)

Using the fact that the sets A0
m−1 and A1

m−1 are disjoint and combining the bounds (14),(15),
(16) together with (13) we obtain the claim of this lemma. ¤
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Lemma 11 Suppose ηt is defined by (7). Let s ∈ Jm and t ∈ Jk for some 1 ≤ m < k. Then
for any y ∈ A∞ almost surely

P (|ηt − ηs| > a|ηs = y) ≤ 2
k−1
∑

j=m

δj + δk +
4

nm
.

In particular, if δm = 2 · 3−m and nm is given by (4), then

P (|ηt − ηs| > a|ηs = y) ≤ 12 · 3−m.

Proof. First notice that if ηs = y, then we always have ηt ∈ (Ak \ Am−1) ∪ {y, 1− y}, and
so

P (|ηt − ηs| > a | ηs = y) =

k
∑

j=my

(v0,j + v1,j) + P (ηt = 1− y|ηs = y)1{|1−2y|>a},

where

v0,j = P (ηt = cj |ηs = y)1{|cj−y|>a},

v1,j = P (ηt = 1− cj |ηs = y)1{|1−cj−y|>a},

my =

{

m, if y ∈ Am−1,
m+ 1, if y ∈ Am \Am−1 = {cm, 1− cm}.

For j < k we simply use the definition of ηt and properties of Xj to get

v0,j ≤ P (Xj = 1|ηs = y)1{|cj−y|>a} ≤ δj ,

v1,j ≤ P (Xj = 1|ηs = y)1{|1−cj−y|>a} ≤ δj ,

and for j = k (7) yields

v0,k ≤ P (Xk = 1, η(∆k−1) < 1/2 |ηs = y)1{|ck−y|>a} ≤ δk1{|ck−y|>a,y<1/2},

v1,k ≤ P (Xk = 1, η(∆k−1) > 1/2 |ηs = y)1{|1−ck−y|>a} ≤ δk1{|1−ck−y|>a,y>1/2},

since

P (η(∆k−1) < 1/2 |ηs = y) = P (X0 = 0 |ηs = y) = 1{y<1/2},

P (η(∆k−1) > 1/2 |ηs = y) = P (X0 = 1 |ηs = y) = 1{y>1/2}.

Also

P (ηt = 1− y|ηs = y) = P (ηt = 1− y, s ∈ [Vm, V
′
m) |ηs = y)

+ P (ηt = 1− y, s 6∈ [Vm, V
′
m) |ηs = y)

≤ P (t 6∈ [Vk, V
′
k), s ∈ [Vm, V

′
m) |ηs = y)

+ P (t ∈ [Vk, V
′
k), s 6∈ [Vm, V

′
m) |ηs = y)

= P (t 6∈ [Vk, V
′
k))P (s ∈ [Vm, V

′
m) |ηs = y)

+ P (t ∈ [Vk, V
′
k))P (s 6∈ [Vm, V

′
m) |ηs = y)

≤ P (s ∈ [Vm, V
′
m) |ηs = y) + P (t ∈ [Vk, V

′
k)),
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where, using similar argument as for q1 in the proof of Lemma 10,

P (s ∈ [Vm, V
′
m) |ηs = y) =

P (s ∈ [Vm, V
′
m), ηs = y)

P (ηs = y)
1{y∈Am−1}

=

∑

x∈Am−1
P (s ∈ [Vm, V

′
m), ηs = y|η(∆m−1) = x)P (η(∆m−1) = x)

∑

z∈Am−1
P (ηs = y|η(∆m−1) = z)P (η(∆m−1) = z)

1{y∈Am−1}

=
P (s ∈ [Vm, V

′
m)|η(∆m−1) = 1− y)

1− δm
{

1− ψm(s− am)
}

≤
P (s ∈ [Vm, V

′
m))

1− δm
=
ψm(s− am)− ψm(s)

1− δm
.

Hence, for any y ∈ Am, by the definitions of δm and ψj , for j = m, k, we get

P (ηt = 1− y|ηs = y) ≤
ψm(s− am)− ψm(s)

1− δm
+ ψk(t− ak)− ψk(t) ≤

3

nm
+

1

nk
≤

4

nm
.

Combining the above bounds we get the first inequality of this lemma. To get the second
simply sum the tail of the geometric series with δm+1/δm = 3−1, m ≥ 1. Furthermore, since
3m > 2m for any m ≥ 0, the definitions of δm and nm imply δm−1 ≥ 4/nm, and the second
inequality of this lemma follows. ¤

Back to the proof of (iii) Lemmas 10 and 11 show that we need only bounds on various
differences of the function ψj for j = m, k to get a bound on transition probabilities. And the
bound (10) will follow from the careful treatment of the supremum with respect to the index
m. Therefore, we first provide the following inequalities which follow easily from the definition
of ψm(x):

|ψm(s ∨ (t− am))− ψm(t)| ≤
1

nm
1{t−s≥am} +

t− s

amnm
1{t−s<am} =

am ∧ |t− s|

amnm
,

|ψm(s− am))− ψm(t− am)| ≤ 1 ∧
|t− s|

amnm
, for any 0 ≤ s < t ≤ 1.

Thus for any 0 ≤ s < t ≤ 1 almost surely

sup
m: s,t∈Jm

sup
y∈A∞

P (|ηt − ηs| > a|ηs = y) = sup
m: s,t∈Jm

sup
y∈Am−1

P (|ηt − ηs| > a|ηs = y)

≤
1

1− δ1
sup

m: t−s≤δm

{am ∧ |t− s|

amnm
+ δm

(

1 ∧
|t− s|

amnm

)}

=: G1(t− s),
(17)

Define m̄(x) := min{m ≥ 1|x ≥ am}. Since am ↓ 0 as m → ∞, m̄(x) is finite for any x > 0.
Also for m ≥ m̄(t− s) we have t− s ≥ am, and t− s < am is true for all m < m̄(t− s). Now
notice that

sup
m

δm
amnm

= sup
m

3(nm + 3)

nm
= 3

(

1 +
3

n1

)

=: K1,

so that

G1(t− s) ≤
1

1− δ1

[

max
{

sup
m<m̄(t−s)

t− s

amnm
, sup
m≥m̄(t−s)

1

nm

}

+K1(t− s)
]

≤
1

1− δ1

[

max
{

K1
t− s

δm̄(t−s)
,

1

nm̄(t−s)

}

+K1(t− s)
]

≤
K1(t− s)

1− δ1

{ 1

δm̄(t−s)
+ 1

}

≤ K2(t− s)3
m̄(t−s),
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where K2 can be taken to be 2K1(1− δ1)
−1 and the last inequality follows from the choice of

m̄(t− s) and δm. Furthermore,

t− s < am̄(t−s)−1 =
{

33
m̄(t−s)−1

+
1

2
3m̄(t−s)+1

}−1

≤ 3−3
m̄(t−s)−1

,

thus,

G1(t− s) ≤ 3K2(t− s) log3
(

(t− s)−1
)

≤ 3K2

(

1

e ln 3
∧ h log3

1

h

)

≤
3K2

ln 3
h

(

1 ∨ ln
1

h

)

,
(18)

for any 0 < t − s < h, since the function g(x) = x log3(1/x), x ∈ (0, 1], has the absolute
maximum at x = 1/e equal to (e ln 3)−1 and is increasing for x ∈ (0, 1/e).
Now let’s look at the cases when s ∈ Jm and t ∈ Jk for m < k. Then it is clear that if
0 ≤ s < t ≤ 1 and ηt 6= ηs, then

t− s ≥
(

dm+1 −
(

dm + (nm + 1)am
))

1{k=m+1} +
(

∆k−1 −∆m

)

1{k>m+1}

=

(

δm+1

3
+
δm
3

nm + 5

nm + 3

)

1{k=m+1} +





k−1
∑

j=m+1

δj



1{k>m+1}

≥ min

{

δm + δm+1

3
, δm+1

}

= δm+1.

Therefore, by Lemma 11

sup
m:s∈Jm

sup
k:k>m,t∈Jk

sup
y∈A∞

P (|ηt − ηs| > a|ηs = y) ≤ sup
m:t−s≥δm+1

2δm−1

≤ 2δm̃(t−s)−2 ≤ 9h,
(19)

if 0 < t − s < h, and where for any x > 0 we set m̃(x) = min{m ≥ 1 : x ≥ δm}. Combining
(17), (18) and (19) we get for any h ∈ (0, 1) and a > 0

α(h, a) ≤ max

{

3K2

ln 3
h

(

1 ∨ ln
1

h

)

, 9h

}

≤ Kh

(

1 ∨ ln
1

h

)

,

with K = max{3K2/ ln 3, 9}. This concludes the proof of the theorem.

Concluding remarks

One can choose larger nm’s to reduce the factor 1 ∨ ln 1
h in (10) to 1 ∨ ln ln 1

h , e.g. by taking

log3(nm) = 33
m

−m− 1 + log3 2,

or something even smaller, but getting rid of this logarithmic factor completely poses a prob-
lem. The reason is simple: even though the functions ψm are Lipschitz continuous, they are
not uniformly Lipschitz for m ≥ 1 (the Lipschitz constants are of the order O(δ−1m )). So the
bound of q1 (see (14)) cannot be essentially improved, unless one is willing to increase the
speed of convergence to 1/2 of the sequence cm which would restrict the number of terms one
needs to consider in (17) (see also (13)) and would also allow for the p-variation of ηt to be
almost surely finite for some p > 0.
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[3] Manstavičius, M. The p-variation of strong Markov processes. Ann. Probab. 32(3A) (2004),
2053–2066.
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