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Abstract

A closed formula for the mean of a maximum likelihood estimator associated with the Brownian
bridge is obtained; the exact relation with that of the Brownian motion is established.

Introduction

Let Xt, t ∈ T , be a Gaussian process, and µ be a probability measure on T . To avoid
measurability questions, we take T as finite. Denote Xµ =

∫

T
Xt µ(dt). Consider the following

maximum likelihood estimator

sup
µ

exp

(

λXµ −
λ2

2
E |Xµ|2

)

, (1)

where the supremum is taken over all the probability measures on T . This maximum likelihood
estimator (introduced in a slightly different way) has been studied extensively (c.f. [3]-[5]).
By taking the δ measure at t ∈ T , it is easy to see that (1) dominates

sup
t∈T

exp

(

λXt −
λ2

2
E |Xt|2

)

. (2)

Thus, there is a close connection between (1) and the supremum of the Gaussian process.

However, because of the quadratic term λ2

2
E |Xµ|2 in (1), there seems to be no direct derivation

from one to the other. In particular, what is the mean

WX(λ) =: E sup
µ

exp

(

λXµ −
λ2

2
E |Xµ|2

)

(3)

for a given Gaussian process? (The use of the letter “W” will become clear later, once the
connection with the Wills functional is established.) By omitting the quadratic term, it is
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clear that (3) is bounded above by the moment generating function of supt∈T Xt. Note that
the exact expression for the moment generating function is hard to obtain (in fact, it is known
only for six special Gaussian processes). Thus, (3) is an alternative quantity to study. We
believe that (3) contains rich information about a Gaussian process. For example, by studying
its upper bound, [6] obtained an exponential inequality, which is stronger than the well-known
deviation inequality for the supremum of a Gaussian process.
Motivated by this, we consider (3) for Brownian bridge on [0, 1]. We choose this process because
of the nice geometric structure, and more importantly, because the moment generating function
of the supremum is known. This allows one to study the connections between the two. It turns
out that for Brownian bridge, (3) is of very nice closed form.

Theorem 1 If Mt and Bt are the Brownian motion and the Brownian bridge on [0,1] respec-
tively, then

WB(λ) =: E sup
µ

exp

(

λBµ −
λ2

2
E |Bµ|2

)

=
1

2

∞∑

k=0

ωk+1

k!

(
λ√
2π

)k

(4)

and

WM (λ) =: E sup
µ

exp

(

λMµ −
λ2

2
E |Mµ|2

)

= 1 +
2√
2π

∫ λ

0

WB(t)dt, (5)

where the supremum is over all the probability measure on [0, 1], and ωk = πk/2/Γ(k/2 + 1) is
the volume of the k-dimensional unit ball.

(5) should be compared with the relation between the moment generating functions MM (λ)
and MB(λ) of the suprema of Brownian motion and Brownian bridge:

MM (λ) = 1 +
2√
2π

∫ λ

0

MB(2t)dt.

It is interesting that there is an extra factor 2 in MB .

Connecting to geometry

By approximation and continuity, we can assume T consist of n+ 1 elements. Equipped with
the distance dist(Xt, Xs) =:

√

E |Xt −Xs|2, {Xt : t ∈ T} can be viewed as a set in Rn. Let
K be the convex hull of this set. Then for any probability measure µ on T , Xµ is a point in
K. It is then not hard to derive that

E sup
µ

exp

(

λXµ −
λ2

2
E |Xµ|2

)

=

∫

Rn

exp(−π dist2(x, λK/
√
2π))dx.

(See [6]). The right hand side is usually called the Wills functional of K, and can be expressed
as

∞∑

k=0

Vk(K)

(
λ√
2π

)k

, (6)

where Vk(K) is the kth intrinsic volume of K. (See [1] or [7]). It is known that Vk(K) can be
evaluated by

Vk(K) =
∑

FJ

|FJ |γ(N(FJ ,K)), (7)
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where |FJ | is the Lebesgue measure of the k-dimensional face FJ of K, γ(N(FJ ,K)) is the
Gaussian measure of the solid angle of the normal cone N(FJ ,K) at FJ , and the sum is over
all the k-dimensional faces of K.

Thus the evaluation of WX(λ) becomes a problem of computing solid angles.

Proof of the theorem

Because there is no formula available in general on the evaluation of higher dimensional solid
angles, from now on, we restrict ourselves to the Brownian bridge setting.

A Brownian bridge on [0, 1] is a Gaussian process Bt(ω), 0 ≤ t ≤ 1, with covariance E (BsBt) =
min(s, t)− st for s, t ∈ [0, 1]. For any 1 ≤ T ≤ 1, consider the following special discretization
of Bt, 0 ≤ t ≤ T . For positive integer n, let m be the largest integer such that m/n ≤ T .
View {0, B(1/n), B(2/n), . . . , B(m/n)} as m + 1 points in Rm, whose convex hull is an m-
dimensional simplex. Up to scaling by

√
n, this simplex has the vertices P0 = (0, 0, . . . , 0),

and Pi = (1, · · · , 1
︸ ︷︷ ︸

i

, 0, ..., 0) − i
n (1, 1, · · · , 1), 1 ≤ i ≤ m. One can view it as the simplex with

vertices Q0 = (0, 0, · · ·), and Qi = (1, · · · , 1
︸ ︷︷ ︸

i

, 0, ..., 0), 1 ≤ 1 ≤ m, having each vertex twisted

and pulled back in the “diagonal” direction. Denote this simplex by Kn.

For 1 ≤ k < m, let J = {i0, i1, i2, . . . , ik} be a set of integers, such that 0 ≤ i0 < i1 < i2 <
· · · < ik ≤ m. Let FJ be the k-dimensional face of K that contains Pi, i ∈ J , and |FJ | be the
k-volume of FJ .

Lemma 1

|FJ | =
1

k!

√
(

1− ik − i0
n

)

(ik − ik−1)× (ik−1 − ik−2)× · · · × (i1 − i0). (8)

Proof: Let DJ be the volume of the parallelepiped body generated by the vectors
−→

Pi0Pj , j ∈ J ,
j 6= i0. Then |FJ | = DJ/k!. Note DJ is just the square root of the determinant of the k × k

symmetric matrix ZJ = (zst), where zst is the inner product of
−→

Pi0Pis and
−→

Pi0Pit , 1 ≤ s ≤ k,
1 ≤ t ≤ k. A direct calculation gives zst = n−1(is− i0)[n− (it− i0)] for 0 < s ≤ t ≤ k. Denote
dl = il − i0. Then

det(ZJ ) =

∣
∣
∣
∣
∣
∣
∣
∣

n−1d1(n − d1) n−1d1(n − d2) · · · n−1d1(n − dk−1) n−1d1(n − dk)
n−1d1(n − d2) n−1d2(n − d2) · · · n−1d2(n − dk−1) n−1d2(n − dk)
· · · · · · · · · · · · · · ·

n−1d1(n − dk−1) n−1d2(n − dk−1) · · · n−1dk−1(n − dk−1) n−1dk−1(n − dk)
n−1d1(n − dk) n−1d2(n − dk) · · · n−1dk−1(n − dk) n−1dk(n − dk)

∣
∣
∣
∣
∣
∣
∣
∣

Subtracting row k by n−dk

n−dk−1
multiple of row (k − 1), and expanding along row k, we obtain

(dk − dk−1)
n− dk
n− dk−1

∣
∣
∣
∣
∣
∣

n−1d1(n − d1) n−1d1(n − d2) · · · n−1d1(n − dk−1)
n−1d1(n − d2) n−1d2(n − d2) · · · n−1d2(n − dk−1)
· · · · · · · · · · · ·

n−1d1(n − dk−1) n−1d2(n − dk−1) · · · n−1dk−1(n − dk−1)

∣
∣
∣
∣
∣
∣

Continuing the procedure, we finally obtain
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det(ZJ) = n−1(n− dk)(dk − dk−1) · · · (d2 − d1)d1

= n−1[n− (ik − i0)](ik − ik−1) · · · (i1 − i0).

Lemma 1 follows.
In order to evaluate the kth intrinsic volume of K, we need to compute the Gaussian measure
of the normal cone N(FJ ,K) at FJ . For 1 ≤ j ≤ m + 1, we denote ej the unit vector in
Rm+1, whose jth coordinate is 1. Let u0 = e1 − em+1, and uj = ej+1 − ej for 1 ≤ j ≤ m.
It can be checked that the extreme rays of the normal cone at FJ are uj , 0 ≤ j ≤ m, j /∈ J .
These vectors can be separated into k+1 groups: Bj = {ul : ij−1 < l < ij}, j = 1, 2, ..., k and
C = {ul : l < i0 or l > ik}. The vectors from different groups are mutually orthogonal. Thus,
γ(N(FJ ,K)) can be evaluated as

γ(N(FJ ,K)) = γ(C) ·
k∏

i=1

γ(Bk), (9)

where γ(C) means the Gaussian measure of the cone generated by the vectors in C.

Lemma 2

γ(Bj) =
1

ij − ij−1

, γ(C) =
1

m− ik + i0
.

Proof: Add the vector x =: eij−1+1 − eij into Bj . The expanded group contains (ij − ij−1)
vectors. Note that the sum of these vectors is 0. Thus any linear combination of these vectors
can be expressed as a convex combination of (ij − ij−1 − 1) vectors. In fact, for any linear
combination ax+

∑

ij−1<l<ij
blul, suppose a ≤ bl, ij−1 < l < ij . Then,

ax+
∑

ij−1<l<ij

blul = a



x+
∑

ij−1<l<ij

ul



+
∑

ij−1<l<ij

(bl − a)ul =
∑

ij−1<l<ij

(bl − a)ul,

which is a convex combination of (ij−ij−1−1) vectors. Because any (ij−ij−1−1) vectors from
this extended group are linearly independent, such convex combination expression is unique
(except on a lower dimensional subset).
Consider the (ij − ij−1) cones that are formed by (ij − ij−1 − 1) vectors from the extended
group. The argument above implies that these cones form a partition of an (ij − ij−1 − 1)-
dimensional space. By looking at the inner products of the vectors, we notice that all these
cones are reflections of one another. Therefore, they have the same measure. Hence each cone
has Gaussian measure 1/(ij − ij−1).
To compute γ(C), we notice that the inner product structure of the vectors in C is the same
as the inner product structure of the vectors u1, u2, ..., um−ik+i0 . So they have the same
measure. The latter has measure 1/(m− ik + i0) by the previous argument.

Lemma 3 The kth intrinsic volume of Kn is

Vk(Kn) =
1

k!

∑

S

√

n− (l1 + l2 + · · ·+ lk)

n× l1 × l2 × · · · × lk

where S = {(l1, l2, . . . , lk) : l1 + l2 + · · ·+ lk ≤ m, li ≥ 1, 1 ≤ i ≤ k}.
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Proof: Applying Lemma 2 to (9), together with (8) and (7), we have

Vk(K) =
∑

FJ

1

k!

√

n− (ik − i0)

n× (ik − ik−1)(ik−1 − ik−2) · · · (i1 − i0)

1

m− ij + i0
.

The lemma follows by changing variables: lk = ik − ik−1.
Proof of Theorem 1: As n→∞, m/n→ T . By applying Lemma 3, we obtain

Vk(Kn/
√
n)→ 1

k!

∫

D

√

1− (x1 + x2 + ...+ xk)

x1x2 · · ·xk
dx1dx2 · · · dxk,

where D = {(x1, x2, ..., xk) : xi ≥ 0; 1 ≤ i ≤ k;
∑k

i=1
xi ≤ T}. By changing variables, we can

express the right hand side as

1

k!

∫

x2
1+x

2
2+···+x

2
k
≤T

√

1− (x2
1 + x2

2 + · · ·+ x2
k) dx1 dx2 · · · dxk =

1

k!

kωk
2

βT (k/2, 3/2),

where βT is the incomplete Beta function. In particular, if T = 1, we have Vk(Kn/
√
n)→ ωk+1

2 k! .
Together with (6), this implies (4).
The proof of (5) follows from (4) and the result in [2], which states that the corresponding kth

intrinsic volume for Brownian motion approaches
ωk
k!
.
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