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Abstract

Let X,X1, X2, . . . be a sequence of nondegenerate, independent and identically distributed ran-
dom variables and set Sn = X1 + · · · + Xn, V

2
n = X2

1 + · · · + X2
n. We answer a question of

Götze, Giné and Mason by providing a simple necessary and sufficient condition for tightness
of Sn/Vn.

1 Introduction

Let X,X1, X2, . . . be a sequence of nondegenerate, independent and identically distributed
random variables and set

Sn = X1 + · · ·+Xn, V 2
n = X2

1 + · · ·+X2
n (1.1)

and

tn =
Sn

√

n
n−1

∑n
1 (Xi −X)2

, (1.2)

where X = n−1Sn. Then tn is the classical Student t-statistic which may be expressed
equivalently as

tn =
Sn
Vn

√

n− 1

n− (SnVn )
2
. (1.3)

In a beautiful paper Götze, Giné and Mason (1997) solved a long standing conjecture of Logan,
Mallows, Rice and Shepp (1973), by proving that tn, or equivalently the self-normalized sum
Sn/Vn (see Proposition 1), is asymptotically standard normal if and only if X is in the domain
of attraction of the normal law and EX = 0. A key step in their proof was to show that if

Sn
Vn

is tight (1.4)
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then it is uniformly subgaussian in the sense that

sup
n

E exp

(

t
Sn
Vn

)

≤ 2 exp(ct2) (1.5)

for all t ∈ R and some c > 0. This is clearly an important property of the self-normalized sum
Sn/Vn which is not shared by scalar normalized sums, i.e. sums of the form (Sn − an)b

−1
n for

scalar sequences an and bn. Thus Giné, Götze and Mason asked for precise conditions under
which (1.4) holds. In a subsequent paper, Giné and Mason (1998) gave such a characterization
for distributions which are in the Feller class. Here we will solve the problem in general.

To describe the result we need to introduce a little notation. For r > 0 set

G(r) = P (|X| > r), K(r) = r−2E(X2; |X| ≤ r), M(r) = r−1E(X; |X| ≤ r), (1.6)

and

Q(r) = G(r) +K(r). (1.7)

Each of these functions is right continuous with left limits and tends to 0 as r approaches
infinity. We can now give an analytic characterization of the two classes of random variables
mentioned above. X is in the domain of attraction of the normal law and EX = 0 if and only
if

lim sup
r→∞

G(r) + |M(r)|

K(r)
= 0, (1.8)

while X is in the Feller class if and only if

lim sup
r→∞

G(r)

K(r)
<∞. (1.9)

The result of Giné and Mason is that if X is in the Feller class, then (1.4) holds if and only if

lim sup
r→∞

|M(r)|

K(r)
<∞. (1.10)

The main result of this paper is

Theorem 1 The following are equivalent:

tn is tight, (1.11)

Sn
Vn

is tight, (1.12)

lim sup
r→∞

|M(r)|

Q(r)
<∞. (1.13)
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Examples of distributions satisfying (1.13) but not (1.9) and (1.10) are easily found, for ex-
ample any symmetric distribution for which the tail function G is slowly varying.
In the course of the proof of Theorem 1 we also answer the question of when does there exist
a centering sequence αn for which

Sn − αn
Vn

is tight. (1.14)

In the case of scalar normalization this reduces to centering at the median of Sn since for any
scalar sequence bn, if (Sn−αn)b

−1
n is tight for some αn, then it is tight with αn = median(Sn).

For self-normalization this is not the case. We illustrate this by giving an example for which
(1.12) holds but (1.14) fails when αn = median(Sn).
In concluding the introduction we would like to mention that there have been several other
interesting lines of investigation into the Student t-statistic. These include large deviation
results (Shao (1997)), law of the iterated logarithm results (Griffin and Kuelbs (1991), Giné and
Mason (1998)) and Berry-Esseen bounds (Bentkus and Götze (1994)). In addition Chistyakov
and Götze (2001) have recently confirmed a second conjecture of Logan, Mallows, Rice and
Shepp that the Student t-statistic has a non-trivial limiting distribution if and only if X is in
the domain of attraction of a stable law. This last paper contains further references to the
literature on self-normalized sums.

2 Preliminaries

We begin by showing that for tightness, and indeed for many asymptotic properties, the
behavior of tn and Sn/Vn are equivalent. In order that Sn/Vn always make sense, we define
Sn/Vn = 0 if Vn = 0.

Proposition 1 If EX2 <∞ and EX 6= 0 then

lim
n→∞

tn
Sn/Vn

=
(EX2)1/2

(EX2 − (EX)2)1/2
a.s. (2.1)

If EX2 =∞ or EX = 0 then

lim
n→∞

tn
Sn/Vn

= 1 a.s. (2.2)

Proof. If EX2 < ∞ and EX 6= 0 then (2.1) follows immediately from (1.3) and the strong
law. To prove (2.2) it suffices to show

lim
n→∞

(n−1Sn)
2

n−1V 2
n

= 0 a.s. (2.3)

If EX = 0 this follows immediately from the strong law. Thus we are left to deal with the
case EX2 =∞. Fix L > 0, then

|Sn| ≤

n
∑

i=1

|Xi|I(|Xi| ≤ L) +

n
∑

i=1

|Xi|I(|Xi| > L)

≤ nL+ Vn(

n
∑

i=1

I(|Xi| > L))1/2.

(2.4)
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Hence

n−1|Sn|

n−1/2Vn
≤

L

n−1/2Vn
+

(∑n
i=1 I(|Xi| > L)

n

)1/2

. (2.5)

Thus again by the strong law

lim sup
n→∞

n−1Sn
n−1/2Vn

≤ (P (|X| > L))1/2. (2.6)

The result then follows by letting L→∞. 2

The functions defined in (1.6) and (1.7) are defined for r > 0. It will be convenient to extend
them to r = 0 by continuity. Thus set

G(0) = P (|X| > 0),K(0) = M(0) = 0. (2.7)

We will be particularly interested in the function Q of (1.7) which is in fact continuous. This
is most easily seen by observing that

Q(r) = r−2E(X2 ∧ r2) = r−2

∫ r

0

2sG(s) ds. (2.8)

Taking the right derivative in (2.8) shows that Q is constant on [0, r0] and strictly decreasing
on [r0,∞) where

r0 = inf{r > 0 : G(r) < G(0)}. (2.9)

Thus for each fixed λ > 0, we can define a sequence an(λ) for all n > (λQ(0))−1 by

Q(an(λ)) =
1

λn
. (2.10)

Observe that an(λ) is increasing in both n and λ. For n > (λQ(0))−1 set

Un(λ) =
n
∑

i=1

X2
i ∧ a

2
n(λ). (2.11)

Lemma 1 Fix λ > 0. For any δ ∈ (0, λ−
1

2 ) and n > (λQ(0))−1

P (Un(λ) > δ2a2
n(λ)) ≥

(1− λδ2)2

1 + λ
.

Proof. First observe that for any n > (λQ(0))−1

EUn(λ) = na2
n(λ)Q(an(λ)) =

a2
n(λ)

λ
(2.12)

and

EUn(λ)
2 = nE(X4 ∧ a4

n(λ)) + 2

(

n

2

)

(E
(

X2 ∧ a2
n(λ)))

2

≤ na4
n(λ)Q(an(λ)) + n2(a2

n(λ)Q(an(λ)))
2

= a4
n(λ)(

1

λ
+

1

λ2
).

(2.13)
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Thus by a reverse Chebyshev inequality, see Durrett (1996) Exercise 3.8 on page 16, for any

δ ∈ (0, λ−
1

2 )

P
(

Un(λ) > δ2a2
n(λ)

)

= P (Un(λ) > λδ2EUn(λ))

≥ (1− λδ2)2
(EUn(λ))

2

EUn(λ)2

≥
(1− λδ2)2

1 + λ

(2.14)

by (2.12) and (2.13). 2

Corollary 1 Fix λ > 0. For any δ ∈ (0, λ−
1

2 ) and n > (λQ(0))−1

P (Vn > δan(λ)) ≥
(1− λδ2)2

1 + λ
. (2.15)

Proof. This follows immediately from Lemma 1 since V 2
n ≥ Un(λ) for n > (λQ(0))−1. 2

Let
X∗n = max

1≤i≤n
|Xi|.

Lemma 2 Fix λ > 0, L > 0 and n > (λQ(0))−1, then

P (Vn > Lan(λ)) ≤
1

λL2
+ 1− (1−

1

λn
)n. (2.16)

Proof. Since V 2
n = Un(λ) on {X

∗
n ≤ an(λ)}, we have

P (Vn > Lan(λ)) ≤ P (Vn > Lan(λ), X
∗
n ≤ an(λ)) + P (X∗n > an(λ))

≤ P (Un(λ) > L2a2
n(λ)) + P (X∗n > an(λ))

≤
EUn(λ)

L2a2
n(λ)

+ 1− (1−G(an(λ)))
n

≤
1

λL2
+ 1− (1−

1

λn
)n.

(2.17)

2

Now let

Tn(λ) =
n
∑

i=1

XiI(|Xi| ≤ an(λ)), Rn(λ) =
n
∑

i=1

XiI(|Xi| > an(λ))

Jn(λ) =

n
∑

i=1

I(|Xi| > an(λ))

and set

αn(λ) = ETn(λ) = nan(λ)M(an(λ)). (2.18)

Lemma 3 Fix λ > 0, L > 0 and n > (λQ(0))−1, then

P (|Rn(λ)| > LVn) ≤
1

λL2
. (2.19)
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Proof. Observe that by the Cauchy-Schwartz inequality

|Rn(λ)| ≤ Vn
√

Jn(λ).

Thus

P (|Rn(λ)| > LVn) ≤ P (Jn(λ) > L2)

≤
nG(an(λ))

L2

≤
1

λL2
.

(2.20)

2

Lemma 4 Fix L > 0, λ > 0 and δ ∈ (0, λ−
1

2 ). Then for any n > (λQ(0))−1

P (|Sn − αn(λ)| > 2LVn) ≤
1

λ

( 1

L2δ2
+

1

L

)

+ 1−
(1− λδ2)2

1 + λ
.

Proof. Since

Sn = Tn(λ) +Rn(λ)

we have

{|Sn − αn(λ)| > 2LVn} ⊂ {|Tn(λ)− αn(λ)| > LVn} ∪ {|Rn(λ)| > LVn}

⊂ {|Tn(λ)− αn(λ)| > Lδan(λ)}

∪ {Vn ≤ δan(λ)} ∪ {|Rn(λ)| > LVn}.

Hence by Chebyshev’s inequality, (2.15) and (2.19)

P (|Sn − αn(λ)| > LVn) ≤
na2

n(λ)K(an(λ))

L2δ2a2
n(λ)

+ 1−
(1− λδ2)2

1 + λ
+

1

λL2

≤
1

λ

( 1

L2δ2
+

1

L2

)

+ 1−
(1− λδ2)2

1 + λ
.

2

Corollary 2 For any λ > 0

lim sup
L→∞

lim sup
n→∞

P
(

|Sn − αn(λ)| > LVn
)

≤
λ

1 + λ
.

Proof. In Lemma 4, let n→∞, then L→∞ and finally δ → 0. 2

3 Proofs

We first derive a necessary and sufficient condition for tightness of the centered self-normalized
sum then specialize this to the case of centering at 0.
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Theorem 2 Fix a centering sequence αn. Then the following are equivalent:

Sn − αn
Vn

is tight, (3.1)

lim sup
n→∞

|
αn − nan(λ)M(an(λ))

an(λ)
| <∞ for all λ > 0, (3.2)

lim sup
n→∞

|
αn − nan(λ)M(an(λ))

an(λ)
| <∞ for all sufficiently small λ > 0. (3.3)

Proof. First assume (3.1) holds. For any n > (λQ(0))−1

P (|Tn(λ)−αn| > 2L2an(λ))

≤ P (|Tn(λ)− αn| > 2L2an(λ), Lan(λ) ≥ Vn) + P (Vn > Lan(λ))

≤ P (|Tn(λ)− αn| > 2LVn) + P (Vn > Lan(λ))

≤ P (|Sn − αn| > LVn) + P (|Rn(λ)| > LVn) + P (Vn > Lan(λ)).

(3.4)

Thus by (3.1), (2.16) and (2.19), for any λ > 0

lim sup
L→∞

lim sup
n→∞

P (|Tn(λ)− αn| > 2L2an(λ)) ≤ 1− e−
1

λ . (3.5)

On the other hand by Chebyshev’s inequality

P (|Tn(λ)− αn(λ)| > L2an(λ)) ≤
na2

n(λ)K(an(λ))

L4a2
n(λ)

≤
1

λL4
. (3.6)

Thus for a fixed λ > 0, if L4 > λ−1 exp(λ−1), then by (3.5) and (3.6), for all n sufficiently
large

|αn − αn(λ)| ≤ 3L2an(λ).

Hence (3.2) holds.
That (3.2) implies (3.3) is trivial. Finally assume (3.3) holds. Fix λ > 0 sufficiently small that

c(λ) =: sup
n>(λQ(0))−1

|αn − nan(λ)M(an(λ))|

an(λ)
<∞.

Observe that for any L > 0 and any n > (λQ(0))−1

{|Sn − αn| > 2LVn} ⊂ {|Sn − αn(λ)| > 2LVn − c(λ)an(λ)}

⊂ {|Sn − αn(λ)| > LVn} ∪ {LVn ≤ c(λ)an(λ)}.
(3.7)

Now if L is large enough that c(λ)L−1 < λ−
1

2 , then by Corollary 1

lim sup
n→∞

P (Vn ≤ c(λ)L−1an(λ)) ≤ 1−
(1− λ(c(λ)L−1)2)2

1 + λ
. (3.8)

Hence by Corollary 2, (3.7) and (3.8), for all λ sufficiently small

lim sup
L→∞

lim sup
n→∞

P (|Sn − αn| > 2LVn) ≤
λ

1 + λ
+ 1−

1

1 + λ
.

Thus (3.1) follows by letting λ ↓ 0. 2
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Theorem 3 The following are equivalent:

Sn
Vn

is tight, (3.9)

lim sup
r→∞

|M(r)|

Q(r)
<∞. (3.10)

Proof. Assume (3.10). Then with αn = 0 we have for n > (λQ(0))−1

|
αn − nan(λ)M(an(λ))

an(λ)
| =

1

λ

|M(an(λ))|

Q(an(λ))
,

so (3.9) holds by Theorem 2.
Conversely assume (3.10) fails, so

|M(rk)|

Q(rk)
→∞ (3.11)

for some rk →∞. Set

nk = max{n : nQ(rk) ≤ 1}. (3.12)

Then for nk > (Q(0))−1 we have that

rk = ank(λk) (3.13)

where 1 ≤ λk ≤ 1 + n−1
k . Now for such k

|nkank(λk)M(ank(λk))− nkank(1)M(ank(1))| ≤ ank(λk)nkG(ank(1))

≤ ank(λk),

while by (3.11)

nk|M(ank(λk))| =
|M(ank(λk))|

λkQ(ank(λk))
=
|M(rk)|

λkQ(rk)
→∞.

Consequently
nkank(1)|M(ank(1))|

ank(λk)
→∞.

Since ank(1) ≤ ank(λk) it then follows that nk|M(ank(1))| → ∞. Thus we conclude that (3.2)
fails with αn = 0 and λ = 1. Hence by Theorem 2, (3.9) fails. 2

Theorem 1 follows immediately from Proposition 1 and Theorem 3. We conclude by giving
an example showing that it is possible for (1.12) to hold, but for (1.14) to fail with αn =
median(Sn).

Example 1 Let X > 0 have distribution given by

G(r) =
1

ln r
, r ≥ e. (3.14)
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Since G is slowly varying, it follows from Darling (1952) that

Sn/X
∗
n

p
→ 1 and Vn/X

∗
n

p
→ 1. (3.15)

Consequently Sn/V
∗
n

p
→ 1 and in particular (1.12) holds. Set

bn(λ) = eλn. (3.16)

Observe that for any λ1 > λ2 > 0

bn(λ1)

bn(λ2)
→∞. (3.17)

Now fix λ1 < (ln 2)−1. Then

P (Sn > bn(λ1)) ≥ P (X∗n > bn(λ1)) = 1− (1−
1

λ1n
)n → 1− e−λ

−1

1 >
1

2
. (3.18)

Hence the median mn of Sn satisfies

lim sup
n→∞

mn

bn(λ1)
≥ 1. (3.19)

Now fix λ2 ∈ (0, λ1). Then for any λ3 ∈ (0, λ2).

P (Vn ≤ bn(λ2)) ≥ P (Vn ≤ bn(λ2),
Vn
X∗n

≤
bn(λ2)

bn(λ3)
)

≥ P (X∗n ≤ bn(λ3))− P (
Vn
X∗n

>
bn(λ2)

bn(λ3)
)

→ e−λ
−1

3 .

(3.20)

by (3.15) and (3.17). Thus by (3.17), (3.19) and (3.20), mn/Vn is not tight. Since, as we
have already observed, (1.12) holds, it then follows that (1.14) must fail when αn = mn.
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