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Département de Mathématiques, Université Paris-Sud, F-91405 Orsay cedex, France
email: Wendelin.Werner@math.u-psud.fr

submitted December 7, 2001 Final version accepted January 17, 2002

AMS 2000 Subject classification: 60J65
Brownian motion, reflection

Abstract
We give another proof of the following result from a joint paper with Bálint Tóth: “A Brownian
motion reflected on an independent time-reversed Brownian motion is a Brownian motion”.

1. Introduction. In the paper [STW], it was shown that “a Brownian motion reflected on
an independent time-reversed Brownian motion is again a Brownian motion” combining the
fact that the analogous statement holds for simple random walks reflected on simple random
walks, and the invariance principle (i.e., convergence of rescaled simple random walk towards
Brownian motion). The purpose of the present short note is to present a direct proof in a
continuous setting that does not rely on simple random walks.
One motivation for the paper [STW] was the relation between families of coalescing/reflecting
Brownian motions with the “true self-repelling motion”, a one-dimensional self-repelling con-
tinuous process constructed in [TW]. The present approach seems to show that it is possible
to compute explicitly laws of various quantities related to this process.
In order to state the result more precisely, we need to introduce some notation. If f and g
are two real-valued continuous functions defined on [0, 1] with g(0) > f(0), define the forward
reflection of f on g as

fg(t) = f(t) − sup
0≤s≤t

(f(s) − g(s))+ (1)

(where x+ = max(x, 0) and x− = max(−x, 0)). Note that fg ≤ g and that fg − f is constant
on every interval where fg 6= g. These two properties in fact characterize fg. Similarly, if
g(0) < f(0), we can also define the forward reflection of f on g by

fg(t) = f(t) + sup
0≤s≤t

((f(s) − g(s))−). (2)

Loosely speaking, the function fg has the same increments as f as long as it stays away from
g, but it gets a push that prevents it from crossing g whenever it hits g (it is an upwards push
if fg ≥ g and a downwards push if fg ≤ g).
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Similarly, one can define backwards reflection by letting the time run backwards. For instance,
if f(1) < g(1), the backward reflection of g on f is defined by

gf(t) = g(t) + sup
t≤s≤1

((g(s) − f(s))−). (3)

Suppose now that (Ut, Vt)t∈[0,1] is a pair of independent processes such that U is a Brownian
motion started from x0 and (V1−t)t∈[0,1] is a Brownian motion started from y1 (in short: V is
a time-reversed Brownian motion started from V1 = y1). Define

X = U, Y = V U , X̃ = UV and Ỹ = V.

Note that X̃ and Y are almost surely defined as P (V0 = x0) = P (U1 = y1) = 0.
The above-mentioned result from [STW] can be stated as follows:

Proposition 1 ([STW]) The laws of the pairs (X, Y ) and (X̃, Ỹ ) are identical.

In particular, X̃ = UV has the same law as U . Proposition 1 was extended to families of
coalescing and reflecting Brownian motions in [STW] (motivated by the relation with [TW]).
In [S], it is extended to conjugate diffusions. In both cases, discrete approximations are
used. The approach developed in the present paper does not seem to be well-suited for such
generalizations.
The plan of the paper is the following. First, we show that the laws of (X1, Y0) and of (X̃1, Ỹ0

are identical by computing this law explicitly. Then, we use this to show that the finite-
dimensional marginals of (X, Y ) and (X̃, Ỹ ) are also equal, and that Proposition 1 therefore
holds. Finally, we give a description of the conditional law of (X, Y ) given (X1, Y0) in terms
of Brownian bridges. This is also closely related to time-reversal of reflected two-dimensional
Brownian motion in a half-plane, as pointed out in [BN] and briefly recalled in Section 4.

2. The law of the end-points. Define U, V, X, Y, X̃, Ỹ as in the introduction. We are first
going to focus on the laws of the endpoints.

Lemma 1 The two pairs of random variables (X1, Y0) and (X̃1, Ỹ0) have the same law.

Proof. Note that P (V0 > x0) = P (U1 < y1) and that these two events correspond (up to
events of zero probability) to {Ỹ ≥ X̃} and {Y ≥ X} respectively. Combining this with a sym-
metry argument shows that in order to derive the lemma, it suffices to show that 1U1<y1(X1, Y0)
and 1V0>x0(X̃1, Ỹ0) have the same law. Define

Lt = sup
[t,1]

(V − U)− and L̃t = sup
[0,t]

(U − V )+. (4)

Recall that when U1 < y1, then Y = V + L so that L is the local time process of Y on X
(the interpretation of L as a local time process is discussed in [BN]). Similarly, when V0 > x0,
X̃ = U − L̃. Note that

{U1 < y1, L0 = 0} = {V0 > x0, L̃1 = 0} = {U < V } = {(X, Y ) = (U, V ) = (X̃, Ỹ )}

up to events of zero probability. Hence, in order to prove Lemma 1, it is sufficient to show
that the conditional distribution of (X1, Y0, L0) given {U1 < y1, L0 > 0} and the conditional
distribution of (X̃1, Ỹ0, L̃1) given {V0 > x0, L̃1 > 0} are identical.
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We now compute explicitly these laws. Let us first condition U and V by the values of U1 = x1

and V0 = v0 where x1 < y1 and v0 ∈ R. The processes U and V are now two independent
Brownian bridges. According to (4), when L0 > 0, L0 is the maximum of the Brownian bridge
U−V (with quadratic variation 2dt) from x0−v0 to x1−y1. Recall that the reflection principle
shows that if B denotes the value of a Brownian motion at time 2, and S its maximum up to
the same time, then for all s > 0 and b < s,

P [S ≥ s and B ≤ b] = P [B ≥ 2s− b].

Hence, the joint density of (S, B) is

2s− b

2
√

π
e−(2s−b)2/41s>0,s>b.

Consequently, for each fixed b, the density of the maximum of the bridge from 0 to b is equal
to the above expression multiplied by the renormalizing factor

( ∫ ∞

max(0,b)

(2
√

π)−1(2r − b)e−(2r−b)2/4dr
)−1

= 2
√

πeb2/4.

It follows that the supremum of a bridge with quadratic variation 2dt from a to b has density

(2s − b − a)e−(s−a)(s−b)1s>a,s>b.

Hence, the density of L0, conditionally on L0 > 0, U1 = x1 and V0 = v0 is

1l>x0−v0,l>0(2l + v0 − x0 + y1 − x1) exp {−(l + y1 − x1)(l + v0 − x0)} .

It therefore follows that the joint density of (X1, V0, L0) on {L0 > 0, X1 < y1} is proportional
to

1x1<y1,l>x0−v0,l>0(2l + v0 + y1 − x0 − x1)
× exp

{−(x1 − y1 − l)(x0 − v0 − l) − (x1 − x0)2/2 − (v0 − y1)2/2
}

.

Using Y0 = V0 + L0, straightforward computations yield that the joint density of (X1, Y0, L0)
on {L0 > 0, X1 < y1} is proportional to

1x1<y11x0<y01l>0(l + y0 + y1 − x0 − x1) exp
{−(x1 − y0)2/2 − (l − x0 + y1)2/2

}
. (5)

The same method can be applied to compute the joint law of (X̃1, Ỹ0, L̃1), and one then checks
that on the event {L̃1 > 0, V0 > x0}, one gets exactly the same density, which proves Lemma 1.

3. Finite-dimensional marginals. We are now going to deduce Proposition 1 from
Lemma 1. The laws of the continuous processes X and Y are determined by their finite-
dimensional marginals. Let therefore t0 = 0 < t1 < · · · < tk = 1 be fixed. Define for
all j ∈ {0, . . . , k}, the processes X(j) and Y (j) as follows. On [0, tj ], X(j) = U and on
[tj , 1], Y (j) = V . Then, on [tj , 1], X(j) is obtained by reflecting U on V , and on [0, tj], Y (j)

is obtained by reflecting V (backwards) on U . Note that (X(0), Y (0)) = (X̃, Ỹ ) and that
(X(k), Y (k)) = (X, Y ).
We now fix j < k − 1. Let us first compare the laws of (Xj [0, tj+1], Y j [tj , 1]) and of
(Xj+1[0, tj+1], Y j+1[tj , 1]). Clearly, Xj[0, tj] = U [0, tj] = Xj+1[0, tj ] and Y j [tj+1, 1] = V [tj+1, 1] =
Y j+1[tj+1, 1]. If we condition on U [0, tj] and V [tj+1, 1], then on the interval [tj , tj+1]:
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• Y j is a backward Brownian motion started from Y j(tj+1) = V (tj+1) and Xj is a forward
Brownian motion started from Xj(tj) = U(tj), reflected on Y j .

• Xj+1 is a forward Brownian motion started from Xj+1(tj) = U(tj), and Y j is a backward
Brownian motion started from Y j(tj+1) = V (tj+1) reflected on Xj+1.

But Lemma 1 (appropriately scaled) then precisely shows that the conditional laws of
(Xj(tj+1), Y j(tj)) and of (Xj+1(tj+1), Y j+1(tj)) given (U [0, tj ], V [tj+1, 1]) are identical.
Finally, note that for both i = j and i = j+1, given X i[0, tj+1] and Y i[tj , 1], the conditional law
of Y i[0, tj] is that of a backward Brownian motion started from Y i(tj) reflected on X i[0, tj ] =
U [0, tj]. Similarly, the conditional law of X i[tj+1, 1] given Y i[0, 1] and X i[0, tj+1] is that of a
forward Brownian motion started from X i(tj+1) and reflected on V [tj+1, 1].
Hence, putting the pieces together, we see that the laws of

(X i[0, tj], X i[tj+1, 1], Y i[0, tj], Y i[tj+1, 1])

for i = j and for i = j + 1 are identical. In particular, the laws of

(X(i)(t0), Y (i)(t0), . . . , X(i)(tk), Y (i)(tk))

are identical for i = j and i = j + 1. Hence, they also coincide for i = 0 and i = k and
Proposition 1 follows.

4. Two-dimensional interpretation. We first briefly recall an observation due to [BN]
that relates Brownian motion reflected on Brownian motion to two-dimensional Brownian
motion in a half-plane with oblique reflection. Suppose for the moment that (αt, βt)t≥0 is a
two-dimensional Brownian motion in the upper half-plane, with orthogonal reflection on the
horizontal axis. In other words, α is an ordinary Brownian motion and β is a reflected Brownian
motion independent of α (here and in the sequel, reflected Brownian motion - without further
details - means one-dimensional Brownian motion reflected on the zero function, or equivalently
the absolute value of a Brownian motion). We suppose for the moment that α0 = β0 = 0. Let
L = L(β) denote the local time at zero of β normalized in such a way that γ := β − L is a
Brownian motion. Recall that −Lt = inf{γs : s ≤ t}.
Let θ ∈ (0, π) be fixed and put λ = cot θ. The process δθ := (δθ

t )0≤t≤T := (αt + λLt, βt)0≤t≤T

is a Brownian motion in the upper half-plane reflected on the real line with reflection angle
θ. It is not difficult to see that the time-reversal of this process is Brownian motion reflected
on the real line with reflection angle π − θ. Let T denote the first time at which Lt hits one.
Then the law of δ̃θ := (δθ

T−t − δθ
T )0≤t≤T is identical to that of δπ−θ (see [BN]).

Let us now focus on the special case λ = 1, i.e. θ = π/4. Define

Xt := (αt − βt + Lt)/
√

2 = (αt − γt)/
√

2 (6)

and
Yt := (αt + βt + Lt)/

√
2 = (αt + γt + 2Lt)/

√
2. (7)

Note that (Xt, 0 ≤ t ≤ T ) is a Brownian motion and that Y ≥ X . Moreover, Y is the sum
of a Brownian motion independent of X and of the non-decreasing continuous process

√
2Lt

which increases only when Y = X . Hence, as observed in [BN], (Yt, 0 ≤ t ≤ T ) is a Brownian
motion reflected on X , as defined in the introduction.
The same argument applied to the reversed process shows that Ŷ = (YT−t − YT )0≤t≤T is a
Brownian motion, and that X̂ = (XT−t − XT )0≤t≤T is a Brownian motion reflected on Ŷ
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(reflected “downwards”). In other words, (Xt, Yt)0≤t≤T and (−Ŷt,−X̂t)0≤t≤T have the same
law. This is reminiscent of Proposition 1, but here, the time at which time-reversal takes place
is the stopping time T . This is a simplification since XT = YT , so that there is no need to
condition on the value of YT −XT . Also, both X and Y are here “forward” processes, so that
the filtrations do not mix up in a complicated way.

In Proposition 1, we consider simultaneously one forward process and one backward process. In
order to adapt the previous approach when T = 1 is deterministic, it is natural to condition on
the values of the end-points, transforming thus the Brownian motions into Brownian bridges,
which can be seen as “forward” as well as “backward” processes. We now briefly indicate how
one can adapt this two-dimensional argument to our setup.

5. The conditional law of (X, Y ). The proof of Lemma 1 gives the explicit expression (5)
of the law of (X1, Y0, L0) and also shows that it is possible to describe the conditional law of
(U, V ) given X1 = x1, Y0 = y0 and L0 = ` when x0 < y0, x1 < y1 and ` > 0 as follows: Define
two processes α and γ by

α =
U + V√

2
and γ =

V − U√
2

.

Then, α and γ are conditionally independent and their conditional laws are given by:

• α is a Brownian bridge from (x0 + y0 − `)/
√

2 to (x1 + y1)/
√

2.

• γ is a Brownian bridge from (−x0 + y0 − `)/
√

2 to (−x1 + y1)/
√

2 conditioned by the
value of its minimum −`/

√
2.

(recall that the projections of a two-dimensional Brownian bridge on an orthogonal basis of
the plane are two independent one-dimensional Brownian bridges). See e.g. [PY] for the fact
that all these conditionings make sense. Then, X and Y are determined by α and γ as

Xt =
αt − γt√

2
and Yt =

αt + γt√
2

+
√

2max
[t,1]

(γ−).

We now want to describe the conditional laws of X and Y in a more symmetric way. Define

βt = γt + max
[t,1]

γ−.

If γ were an unconditioned backward Brownian motion, then β would have been a backward
reflected Brownian motion (i.e. β1−t would have had the law of the absolute value of a
Brownian motion). Note also that the correspondence between β and γ is one-to-one and that
max[0,1] γ− can be interpreted as the local time of β at level 0 on the time-interval [0, 1]. We
denote by A the local time measure of β at level zero in order to distinguish it from the local
time L in the previous sections (they differ by a scaling factor

√
2). Then, the (conditional)

law of β is that of a backward reflected Brownian motion started from β1 = (y1 − x1)/
√

2
conditioned by A[0, 1] = `/

√
2 and by β0 = (y0 − x0)/

√
2.

Since the time-reversal of a Brownian bridge is also a Brownian bridge, and since the total
local time at level zero is a deterministic functional of β that is invariant under time-reversal,
it follows that β can also be viewed as a forward reflected Brownian motion started from
β0 = (y0 − x0)/

√
2, conditioned by β1 = (y1 − x1)/

√
2 and A[0, 1] = `/

√
2. Then, we get that

Xt =
αt − (βt − A[t, 1])√

2
=

αt − βt + A[t, 1]√
2

Yt =
αt + βt − A[t, 1] + 2A[t, 1]√

2
=

αt + (`/
√

2) + βt − A[0, t]√
2
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Note that α is a Brownian bridge from (x0 + y0 − `)/
√

2 to (x1 + y1)/
√

2. Hence, α̃t :=
αt +(1− t)`/

√
2 is a Brownian bridge from (x0 +y0)/

√
2 to (x1 +y1)/

√
2. We get immediately

that

Xt + Yt√
2

= α̃t +
A[t, 1] − A[0, t] + (2t − 1)`/

√
2

2
Yt − Xt√

2
= βt.

Recall that α̃ and β are conditionally independent given X1 = x1, Y0 = y0 and L0 = ` (when
x0 < y0, x1 < y1 and ` > 0), and that

• the conditional law of α̃ is that of a Brownian bridge from (x0 +y0)/
√

2 to (x1 +y1)/
√

2.

• the conditional law of β is that of a bridge of a reflected Brownian motion from (y0 −
x0)/

√
2 to (y1 − x1)/

√
2 conditioned by A[0, 1] = `/

√
2.

This description is symmetric. We would have obtained the same description for the conditional
law of (X̃, Ỹ ). This gives another justification for the fact that Lemma 1 implies Proposition 1.
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