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Abstract

A boundary trace (U,v) of a solution of Au = u® in a bounded smooth domain in R? was
first constructed by Le Gall [12] who described all possible traces for « = 2,d = 2 in which
case a solution is defined uniquely by its trace. In a number of publications, Marcus, Véron,
Dynkin and Kuznetsov gave analytic and probabilistic generalization of the concept of trace to
the case of arbitrary o > 1,d > 1. However, it was shown by Le Gall [18] that the trace, in
general, does not define a solution uniquely in case d > (a+1)/(aw—1). He offered a sufficient
condition for the uniqueness and conjectured that a uniqueness should be valid if the singular
part T' of the trace coincides with the set of all explosion points of the measure v. Here, we
establish a necessary condition for the uniqueness which implies a negative answer to the above
conjecture.

1 Introduction and Results

1.1 Moderate solutions

Let L be a second order uniformly elliptic differential operator with smooth coefficients in R?
and let £ C R? be a bounded smooth domain. We consider a class I of all positive solutions
of the equation

Lu=u* inFE (1.1)

where o € (1,2] is a parameter. A solution u is called moderate if w < h for an L-harmonic
function k. The class of all moderate solutions is denoted by U;.

For every moderate solution u, there exists a minimal L-harmonic function that dominates
u. It is called the minimal (L-harmonic) majorant of u. A solution u can be recovered from
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its majorant as the maximal solution to (1.1) dominated by h. Moreover, u is related to its
minimal majorant h by the integral equation

¢
u(zx) + Hx/o u®(&s) ds = h(x). (1.2)

Here (&, I1,) is the corresponding L-diffusion in F and ( is its life time. See [5] for more detail.
Every positive L-harmonic function A has a unique representation

hz) = /8 bty (1.3)

where k(x,y) is the Poisson kernel for L in E and v is a finite measure on 0F. We denote by
h, the function given by (1.3). For a moderate solution u € U;, we write u = u, if h, is the
minimal majorant of u.

1.2 Superdiffusions and stochastic boundary values

An (L, a)-superdiffusion is a probabilistic model for an evolution of a random cloud of branch-
ing particles. A spatial movement of particles is described by an L-diffusion, and « € (1,2]
characterizes branching. See, for instance, [2]. To every open set D there corresponds a random
measure (Xp, P,) on 9D, called the exit measure from D. It represents the total accumulation
of mass on 0D assuming that the evolution starts from g and particles are instantly frozen if
they reach the complement of D. Relations between Xp and equation (1.1) can be described
as follows. Let f be a positive continuous function on 0F. The function

u(z) = —log Py~ Xe), (1.4)

where P, stands for Ps_, is the only solution of the boundary value problem

x?

Lu=u" in E,

1.5

u=f ondF. (15)
An arbitrary solution u of (1.1) can also be represented in a form similar to (1.4) in terms of
its stochastic boundary value Z,, (cf. [3]). It can be defined as a limit

Zy, = lim(u, Xp,,) (1.6)

where D, is an increasing sequence of bounded smooth domains approximating E. A solution
u can be recovered from its stochastic boundary value by the formula

u(z) = —log Ppe %, (1.7)

We write Z,, instead of Z,,,. See [3] for more detail.

We define the range R of a superdiffusion in E as the minimal closed set that supports all
Xp for D C E. A set I' C OF is called a polar set for the superdiffusion if, for any =z,
PARNT # 0} = 0. According to [6], the class of polar sets coincides with the class of
all removable boundary singularities for the equation (1.1). By [4], the equation (1.2) has a
solution if and only if the corresponding measure v does not charge polar sets. Therefore the
mapping v — u, defines a 1-1 correspondence between the class N of all finite measures on
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OF which don’t charge polar sets and the class U; of all moderate solutions of (1.1); see [5],
(4], [9], [7]-
For every Borel subset B C OF,

wp(z) = —log P,{RNB =0} (1.8)

is a solution of (1.1). Its stochastic boundary value is given by the formula Zgp = Z,,, =
oolyrnpxp}- If B is closed, then wp is the maximal solution of (1.1) such that wp = 0 on
OF \ B. See [3], Sect. 6.

1.3 o-moderate solutions

A solution u of (1.1) is called o-moderate if there exists an increasing sequence of moderate
solutions w, such that u, T uasn — co. It follows from (1.2) that the corresponding measures
vy, also increase to some measure v. The measure v does not charge polar sets, but it may
be not finite and not even o-finite. However, it is always X-finite. We denote by Ny the
class of all Y-finite measures that don’t charge polar sets. Every measure v € Ny can be
represented as a limit of an increasing sequence of finite measures v, and therefore defines
a o-moderate solution v = limu, . We denote this solution by w, and we write Z, for its
stochastic boundary value. (It follows from [9], Theorem 4.2 that u, and Z, do not depend
on the choice of v, 1 v.) Every o-moderate solution can be represented this way. However, in
contrast to moderate solutions, this representation is not unique. o-moderate solutions have
been studied in Section 4 of [9] by means of continuous linear additive functionals.

The class of all o-moderate solutions is denoted by Uy. Existence of non-o-moderate solutions
remains an open question: all known elements of U either belong to U or, at least, it is not
proved that this is not true. See [11], [7].

1.4 Sweeping and the trace

First definition of the trace was introduced by Le Gall [12], [14], [13], who used it to describe
all solutions of the equation Au = u? in a smooth planar domain. In a more general setting,
a definition of a trace was introduced by Marcus and Véron [15], [16], [17], [18] and, in a
probabilistic way, by Dynkin and Kuznetsov [9], [8].

Let u € U. For a closed set B C OF, we define Qp(u) as the maximal element of ¢ such that
Qp(u) <wuand Qp(u) =0 on IE \ B. We consider the maximal open subset O of JF such
that @Qp(u) is moderate for every compact B C O and we set I' = O°. It can be shown that
there exists a Radon measure v on O such that Qp(u) = u,, for every compact B C O where
vp stands for the restriction of v to B. The pair (I',v) is called the trace of u. Cf. [9].

Let v be a measure on 0E. A point z € JF is called an explosion point for v if v(0) = co for
every open set O containing x. The collection of all explosion points of v is denoted by Ex(v).
Clearly, Ex(v) is a closed set. Let T be a closed subset of 9F and v be a Radon measure on I'
not charging polar sets. The pair (T',v) is called normal if there exists no nontrivial relatively
open polar subset B C I'\ Ez(v).

Proposition 1.1 (See [9]). The trace (T',v) of a solution v € U is always a normal pair.
Each normal pair (T, v) is the trace of some solution u. The mazimal solution with the given
trace (T',v) is given by the formula

wr(2) = —log PARNT =, %}, (1.9)
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1.5 Essential explosion points

For an arbitrary Borel set B C 0F, put
Capgr(B) = P.{RN B # 0} (1.10)

where c¢ is a reference point and R is the range of the (L, a)-superdiffusion in E. According
to [1], Theorem I11.32, Capg(B) is a Choquet capacity. By [3], Sect. 6.2, Capg(B) = 0 if and
only if B is polar.

Let x € Ex(v). We call z a point of non-essential explosion if there exists a neighborhood U of
x and a sequence of open sets O,, C U such that Capr(O,) | 0 as n — oo and v(U \ O,,) < o0
for all n. Otherwise x is called a point of essential explosion. We denote the set of all essential
explosion points by Ess(v). Note that Exz(v) = Ess(v) if single points on the boundary are
not polar (this happens if d < (o +1)/(a — 1); see [10], [6]).

Properties of Ess(v) can be summarized as follows.

Theorem 1.1. Let v be a X-finite measure that doesn’t charge polar sets. Then:

(i) The set Ess(v) is always closed;

(i1) There exist open sets U, D Ess(v) such that Capg(Uy,) | Capg(Ess(v)) andv(UE) < oo;
(iii) Ess(v) is either empty or non-polar;

(iv) v is o-finite on the complement of Ess(v).
The following result clarifies the difference between Ex(v) and Ess(v).

Theorem 1.2. Let d > (a+1)/(a— 1). For every closed set I’ C OF, there exists a o-finite
measure v € Ny such that Ex(v) =T and Ess(v) is empty. The measure v can be chosen to
have a density with respect to the surface measure.

Main result of the paper is given by the following

Theorem 1.3. Let d > (a«+1)/(a — 1) and let (T',v) be a normal pair. If '\ Ess(v) is not
polar, then there exist at least two solutions with the trace (T',v).

Remarks. 1. For v = 0 this is, essentially, Proposition 3 in [13] (to be precise, [13] is devoted to
the initial trace of the corresponding semilinear parabolic equation. However, the arguments
can be easily extended to an elliptic case.)

2. Le Gall proved in [13] that the uniqueness takes place if T' is polar and that there is no
uniqueness if ¥ = 0 and T' is not polar. He also conjectured that the uniqueness is valid if
I' = Ex(v). The following example shows that it is not true. Let I' be a non-polar closed
subset of OF with the surface measure 0 and let v be the measure constructed in Theorem
1.2. Since v has the density with respect to the surface measure, v(I') = 0. By Theorem 1.2,
I' = Exz(v) and therefore (T',v) is a normal pair. However, Fss(v) is empty. By Theorem 1.3,
there exist at least two solutions with the trace (I, v). This implies a negative answer to the
above conjecture.
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1.6 Remarks on fine trace

To overcome the difficulties related to the non-uniqueness, Dynkin and Kuznetsov have defined
in [11], [7] a fine trace of a solution and they have shown that o-moderate solutions are defined
uniquely by their fine traces. The fine trace is a pair (I', ) where I' is closed in a certain
topology (fine topology) related to the equation (1.1) and v is a o-finite measure on the
complement of I' not charging polar sets. See [11], [7] for all details.

Theorem 1.4. Let v be a 3-finite measure that doesn’t charge polar sets. If Ess(v) is empty,
then the fine trace of u, is equal to (I',v) with polar T.

By applying this result to measures v constructed in Theorem 1.2, we see that the correspond-
ing solutions u, are not determined by their traces and they can be recovered from their fine
traces.

2 Proofs

2.1 Some Lemmas

We start with an important lemma.

Lemma 2.1. Let u < v be two solutions of (1.1). Ifu(c) = v(c) at some interior point c € E,
then u = v everywhere in E.

Proof. Tt is sufficient to show that u = v in any bounded smooth domain D such that ¢ € D
and D C E. Solutions u and v are bounded and continuous in D and therefore they admit a
representation

u(z) = — log Pye™(wXp), v(z) = —log Pye~{vXp), (2.1)

Since u < v, we conclude from (2.1) that (u, Xp) = (v, Xp) P.-a.s. Therefore
Heu(érp) = Pe(u, Xp) = Pe(v, Xp) = Ilev(&rp,)
and v = v on dD. By (2.1), this yields u = v in D. O

As a next step, we compute the trace of wg for Borel B.

Lemma 2.2. Let B be a Borel subset of OE. The trace of wp is equal to (T',0) where T' is the
smallest closed set such that B\ T is polar.

Proof. Let (I',v) be the trace of wg. Suppose B\ I is not polar. There exists a non-polar
compact K € B\T. Since K C B, wp > wg and therefore the sweeping Qx(wg) >
Qk(wi) = wg. But, wk is not moderate.

Suppose now that a closed T is such that B\ T is polar. Then wp < wi by (1.8) and therefore
Qr(wp) < Qk(wp) for every K. This implies Qg (wp) = 0 for every compact K C re, and
therefore I'  T'. Same argument applied to I' instead of I shows that uw=0. O

Lemma 2.3. Let v € Ny. The trace of u, is equal to (U, u) where T = Ex(v) and p coincides
with the restriction of v to I'°.
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Proof. Let B C OF be a compact. Clearly, v, > u,, where vg is the restriction of v to B.
Therefore

QB(U‘V) 2 QB(UVB) 2 Uyp - (22)
Suppose now that BN Ez(v) = (. Show that

QB(U'II) = Upp (23)

for such B. There exists a relatively open U C JF such that B C U and v(U) < co. Let A
and k be the restrictions of v to U and U*¢, respectively. Let u; = uy and us = u,. By [3],
Theorem 2.3,

u < U+ ug

and therefore
Qpu) < Qp(u1) + Qp(u2). (2.4)

However, solution u; is moderate and therefore Qp(u1) = ux, = uy,. On the other hand, &
vanishes on U and therefore Qg (u2) = 0 by [9], 4.4.A and Theorem 3.1. Combining (2.2) and
(2.4), we get (2.3).

The statement of the lemma follows from (2.2), (2.3) and the definition of the trace. O

Lemma 2.4. For every Borel set B C OF, and every v € Ny,
wp,, (1) = —log P.{RN B =,e” %

is a solution of (1.1). Its trace (I', ) can be characterized by the following properties. The set
T is the smallest closed set such that T' O Ex(v) and B\T is polar, and u is the restriction of
v to I'°.

Proof. Note that wp () = —log Pre” #2572+ and therefore the first part follows easily from
Theorems 2.3 and 6.1 in [3]. Second part follows easily from Lemmas 2.2 and 2.3 and from
the inequalities

wp < WB,y, Uy SWRy, WRBy < Uy +WpR

(for the last inequality, see, e.g., [3], Theorem 2.3). O

Lemma 2.5. Let T be a closed subset of OF and let B D T be such that B\ T is not polar.
Then Capp(B) > Capg(T).

Proof. Suppose Capp(B) = Capg(I'). Then wg(c) = wr(c) and therefore wp = wr ev-
erywhere by Lemma 2.1. By assumption, there exists a compact K C B\ I' such that
Cappr(K) > 0. Clearly, wx < wp and therefore wx < wr. However, wx = 0 on 0F \ K
and wr = 0 on OF \ T, which implies wg = 0 on OF and therefore wx = 0 in F, that is
Capp(K) = 0. O

2.2 Proof of Theorem 1.1

1°. Let = ¢ Ess(v). If © ¢ Ex(v), then there exists an open set U C OF such that x € U and
v(U) < co. By definition of explosion points, all points of U do not belong to Ex(v) D Ess(v).
Suppose now that x is a point of non-essential explosion and U is as in definition. Clearly,
any y € Ex(v) N U must also be a point of non-essential explosion. Therefore each point
x ¢ Fss(v) has a neighborhood that does not intersect with Fss(v). Hence Ess(v) is closed.
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2°. To prove (ii), it is enough to show that, for every e > 0, there exists an open set O O Ess(v)
such that and Capy(0O) < Cap(Ess(v)) + ¢ and v(0°) < oo.

Let U D Ess(v) be an open set such that Capp(U) < Capg(Ess(v)) +e. Denote B = U°
and ' = B N Ex(v). By construction, F' consists of non-essential explosion points. For
x € F, denote by U, the neighborhood of z described in the definition of a non-essential
explosion point. Open sets U, cover a compact set F' and therefore there exists a finite set
x1,...,%, € F such that F C U, U---UU,,. For each z;, there exists an open set O; C Uy,
such that v(Uy, \ O;) is finite and Capz(0O;) < £/k. Put O = UUO; U. .. Oy. By construction,

Capp(0) < Cappr(U) + Z Capgr(0;) < Capg(Ess(v)) + 2¢

On the other hand, the set O° is contained in the union of the sets K; = U, \ O; and the set
K =E\{UUUg U---UUyg,}. Sets K; have finite measure by construction. The set K is a
compact set disjoint from Exz(v) and therefore v(K) < co. (Recall that v is a Radon measure
on the complement of Fz(v) and therefore v(K) < oo for every compact K that contains no
explosion points.)

3°. Suppose Ess(v) is polar. Let O,, be the sequence constructed in (ii). Put U = E. Since
Capr(0y) | 0 and v(E \ O,) < o0, all explosion points are non-essential.

4°. Again, let O,, be the sequence constructed in (ii). Denote B = N,,0,,. By construction,
v is o-finite on B°. Besides, Capg(B) = Capg(FEss(v)) and therefore B\ Ess(v) is polar
by Lemma 2.5. Hence v(B \ Ess(v)) = 0 and v is o-finite on the complement of Ess(v) as
well. O

2.3 Essential explosion points and stochastic boundary values
Lemma 2.6. Let v € Ny. Then Z, is finite a.s. on the set {R N Ess(v) = 0}.

Proof. Let K be a compact with v(K) < oo and let vk be the restriction of v to K. The
solution u,, is moderate, and therefore Z,, is finite a.s. As a first step, we prove that

Z, =Z,, as.ontheset {RNK®=10}. (2.5)
Indeed, let B C K¢ be a compact. Then u,, < wp and

Zyy < Zyy = OLRAB2O}

and therefore Z,, = 0 on {R N K¢ = (}. Let now B,, be an increasing sequence of compacts
with the union K°€. Since v is the increasing limit of v,, = vk + vp

Z, =lim Z,, = lim Zy. + Zos,
(see [3], Sect. 3.8) and therefore
Zy =12y, on{RNK"=0}.

By Theorem 1.1(ii), there exists a decreasing sequence of open sets O, such that v(O%) <
o0, Ess(v) C O, and
PARNO, #0} | P.{RN Ess(v) # 0}. (2.6)

Denote by K, the complement of O,,. By (2.5), Z, is a.s. finite on the sets A, = {RNO,, = (}.
On the other hand, 4,, T {RN Ess(v) = 0} by (2.6). O
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2.4 Proof of Theorem 1.2

In order to construct the measure v, take an arbitrary countable dense subset {z\} of I". For
every k, let ¢p(x) = |v — 21|~ ¢ is a continuous positive function on 4D \ {xx}, which is
not integrable over every neighborhood of z;. The assumption d > (o + 1)/(a — 1) implies
Capp(7k) = 0. Hence lim,, .o, Capp{¢r > n} = 0 and therefore Capp{¢r > Cx} < 27* for
sufficiently large Cj.

Put f = sup, ¢r/Cr and v(dz) = f(z)o(dx), where o(dx) is the surface measure. By increasing
Cy, if necessary, we can make f bounded on a positive distance from I'. For this reason,
Ez(v) C T. On the other hand, z,, are dense in I'. Therefore, if z € T and U is a neighborhood
of x, then U contains at least one of the points x, and therefore f is not integrable over U.
Hence I' = Ez(v).

Denote O,, = {f > n} = Up{dr > nCj}. Since ¢ are continuous, O,, is open for every n.
Besides, v(0%) < no(0f) < oo for every n. By construction, Capr{O,} < > Capp{¢r >
nCr} — 0 as n — oo by the dominated convergence theorem. Hence, v has no essential
explosion points. O

2.5 Proof of Theorem 1.3

1°. Suppose I' = Ez(v) and Ez(v) \ Ess(v) is not polar. By Theorem 1.1(i), both Ex(v)
and Ess(v) are closed. Therefore Lemma 2.5 implies that Capg(Ez(v)) > Capgr(Fss(v)) and
therefore

PARNEz(v) # 0, RN Ess(v) =0} > 0. (2.7)

Let v = wr,, and u = u,,. By Proposition 1.1, v is the maximal solution with the trace (T, v).
By Lemma 2.3, u also has the trace (T, v). However,

Zy > Zp = 0olgarsp

and
Z,<oo as.onRNEss(v)=10

by Lemma 2.6. By (2.7), Z,, # Z, with positive probability.

2°. The proof in case I' # Ex(v) is essentially the same as the proof of Proposition 3 in [13].
Since both T' and Exz(v) are closed, C =T\ Ex(v) is relatively open in I' and therefore it is
not polar (see Proposition 1.1 and the definition of a normal pair). For the same reason, for
every « € C and every neighborhood U, of z, I'.(x) = U. N C' is not polar.

Put

Capp,(B) = PARNB #0,e” 7"}
Likewise Capp, it is a Choquet capacity by [1], Theorem III.32. Note that

Capp ,(B) = e~ (®) — gmwnw(e) (2.8)

By Lemma 2.5,
PARNB#0,RNExz(v) =0} >0

for every non-polar B disjoint from Fz(v). In addition, Z, < oo on {R N Ex(v) = 0}
by Lemma 2.6. Therefore Capp ,(B) > 0 for every non-polar B disjoint from Ex(v). In
particular, Capp ,(I'c(x)) > 0 for every z € C.
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Let x; be everywhere dense in C. Since Capg , (7;) = 0, one can choose ¢; > 0 to have

> Capg,, (I, (2:)) < Capg,, (C) (2.9)
Put B =y,I, ((El) By (29),
CapR,V(B) < CapR,y(C) < CapR,u(F)

and, by (2.8) and Lemma 2.1,
wB,v < wr y- (210)

Since (I',v) is a normal pair, the trace of wr, coincides with (T',») by Proposition 1.1. Let
now (T, y1) be the trace of wp . By Lemma 2.4, T C T and p = v.
Suppose A =T\ I is not empty. Since A is relatively open in T, it contains at least on of ;.
The set ANT,,(x;) is also relatively open in I', and therefore it is not polar by the definition
of normal pair. But,

ANT,, (z;)) C ANB,

and therefore B\ T' is not polar, in contradiction with Lemma 2.4. Therefore I' = T and the
two solutions wp , and wr, do not coincide and have the trace (T',v). O

2.6 Proof of Theorem 1.4

1°. Recall some notation from [7] and [3]. A point y € OF is a singular point of a solution w if

¢
/ u® (&) ds = oo ITY-a.s.
0

Here (&;,11Y) is the L-diffusion in E conditionned to exit from F at the point y, and ¢ is its
life time. The set of all singular points of u is denoted by SG(u).
Let I' = SG(u,). By [3], Theorem 1.1

P.Z,e % =0

for every measure 1 € N concentrated on I'. Since Z,, < oo a.s. by Lemma 2.6, this is possible
only if Z,, = 0 a.s. and therefore n = 0. By [6], Theorem 1.2, this is equivalent to the polarity
of T'.

2°. Let B be a Borel subset of 9F. As in [7], denote by up the supremum of all moderate
solutions w,, such that p(B¢) = 0. For two solutions u1, u2, we define u; & ug as the maximal
solution dominated by u; 4+ us. See [7] for more detail.

Since I" is polar, ur = 0 and ur & u, = u,.

3°. The fine trace of a solution u is defined as a pair (', i) where I' = SG(u) and pu is the
maximal measure such that u(I') = 0, ;1 does not charge polar sets and u,, < u. According to
[7], Theorem 1.3, the fine trace of any solution has the following properties:

(A) (See [7],1.10.A.) The set T is finely closed (that is, closed in fine topology introduced in

[7)-

(B) (See [7],1.10.B.) The measure u is a o-finite measure on I'® not charging polar sets and
such that SG(u,) C T
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Moreover (see [7], Theorem 1.4), if (T, i) is any pair satisfying (A) and (B), then v = ur v,
has the fine trace (I, 1) where IV = SG(v) differs from T" by a polar set.

The set T' = SG(u,) is finely closed by [7], Theorem 1.3. Since I is polar, v does not charge I
By assumtion, E'ss(v) is empty and therefore v is o-finite by Theorem 1.1(iv). Hence the pair
(T, v) satisfies (A) and (B) and u, = ur @ u, has the fine trace (SG(u,),v) = (I',v). Since I’
is polar, the statement follows. O
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