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Abstract
A boundary trace (Γ, ν) of a solution of ∆u = uα in a bounded smooth domain in R

d was
first constructed by Le Gall [12] who described all possible traces for α = 2, d = 2 in which
case a solution is defined uniquely by its trace. In a number of publications, Marcus, Véron,
Dynkin and Kuznetsov gave analytic and probabilistic generalization of the concept of trace to
the case of arbitrary α > 1, d ≥ 1. However, it was shown by Le Gall [13] that the trace, in
general, does not define a solution uniquely in case d ≥ (α+1)/(α−1). He offered a sufficient
condition for the uniqueness and conjectured that a uniqueness should be valid if the singular
part Γ of the trace coincides with the set of all explosion points of the measure ν. Here, we
establish a necessary condition for the uniqueness which implies a negative answer to the above
conjecture.

1 Introduction and Results

1.1 Moderate solutions

Let L be a second order uniformly elliptic differential operator with smooth coefficients in Rd

and let E ⊂ R
d be a bounded smooth domain. We consider a class U of all positive solutions

of the equation
Lu = uα in E (1.1)

where α ∈ (1, 2] is a parameter. A solution u is called moderate if u ≤ h for an L-harmonic
function h. The class of all moderate solutions is denoted by U1.
For every moderate solution u, there exists a minimal L-harmonic function that dominates
u. It is called the minimal (L-harmonic) majorant of u. A solution u can be recovered from
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its majorant as the maximal solution to (1.1) dominated by h. Moreover, u is related to its
minimal majorant h by the integral equation

u(x) + Πx

∫ ζ

0

uα(ξs) ds = h(x). (1.2)

Here (ξt, Πx) is the corresponding L-diffusion in E and ζ is its life time. See [5] for more detail.
Every positive L-harmonic function h has a unique representation

h(x) =
∫

∂E

k(x, y)ν(dy) (1.3)

where k(x, y) is the Poisson kernel for L in E and ν is a finite measure on ∂E. We denote by
hν the function given by (1.3). For a moderate solution u ∈ U1, we write u = uν if hν is the
minimal majorant of u.

1.2 Superdiffusions and stochastic boundary values

An (L, α)-superdiffusion is a probabilistic model for an evolution of a random cloud of branch-
ing particles. A spatial movement of particles is described by an L-diffusion, and α ∈ (1, 2]
characterizes branching. See, for instance, [2]. To every open set D there corresponds a random
measure (XD, Pµ) on ∂D, called the exit measure from D. It represents the total accumulation
of mass on ∂D assuming that the evolution starts from µ and particles are instantly frozen if
they reach the complement of D. Relations between XD and equation (1.1) can be described
as follows. Let f be a positive continuous function on ∂E. The function

u(x) = − logPxe−〈f,XE〉, (1.4)

where Px stands for Pδx , is the only solution of the boundary value problem

Lu = uα in E,

u = f on ∂E.
(1.5)

An arbitrary solution u of (1.1) can also be represented in a form similar to (1.4) in terms of
its stochastic boundary value Zu (cf. [3]). It can be defined as a limit

Zu = lim〈u, XDn〉 (1.6)

where Dn is an increasing sequence of bounded smooth domains approximating E. A solution
u can be recovered from its stochastic boundary value by the formula

u(x) = − log Pxe−Zu . (1.7)

We write Zν instead of Zuν . See [3] for more detail.
We define the range R of a superdiffusion in E as the minimal closed set that supports all
XD for D ⊂ E. A set Γ ⊂ ∂E is called a polar set for the superdiffusion if, for any x,
Px{R ∩ Γ 6= ∅} = 0. According to [6], the class of polar sets coincides with the class of
all removable boundary singularities for the equation (1.1). By [4], the equation (1.2) has a
solution if and only if the corresponding measure ν does not charge polar sets. Therefore the
mapping ν → uν defines a 1-1 correspondence between the class N1 of all finite measures on
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∂E which don’t charge polar sets and the class U1 of all moderate solutions of (1.1); see [5],
[4], [9], [7].
For every Borel subset B ⊂ ∂E,

wB(x) = − logPx{R ∩ B = ∅} (1.8)

is a solution of (1.1). Its stochastic boundary value is given by the formula ZB = ZwB =
∞1{R∩B 6=∅}. If B is closed, then wB is the maximal solution of (1.1) such that wB = 0 on
∂E \ B. See [3], Sect. 6.

1.3 σ-moderate solutions

A solution u of (1.1) is called σ-moderate if there exists an increasing sequence of moderate
solutions un such that un ↑ u as n → ∞. It follows from (1.2) that the corresponding measures
νn also increase to some measure ν. The measure ν does not charge polar sets, but it may
be not finite and not even σ-finite. However, it is always Σ-finite. We denote by N0 the
class of all Σ-finite measures that don’t charge polar sets. Every measure ν ∈ N0 can be
represented as a limit of an increasing sequence of finite measures νn and therefore defines
a σ-moderate solution u = limuνn . We denote this solution by uν and we write Zν for its
stochastic boundary value. (It follows from [9], Theorem 4.2 that uν and Zν do not depend
on the choice of νn ↑ ν.) Every σ-moderate solution can be represented this way. However, in
contrast to moderate solutions, this representation is not unique. σ-moderate solutions have
been studied in Section 4 of [9] by means of continuous linear additive functionals.
The class of all σ-moderate solutions is denoted by U0. Existence of non-σ-moderate solutions
remains an open question: all known elements of U either belong to U0 or, at least, it is not
proved that this is not true. See [11], [7].

1.4 Sweeping and the trace

First definition of the trace was introduced by Le Gall [12], [14], [13], who used it to describe
all solutions of the equation ∆u = u2 in a smooth planar domain. In a more general setting,
a definition of a trace was introduced by Marcus and Véron [15], [16], [17], [18] and, in a
probabilistic way, by Dynkin and Kuznetsov [9], [8].
Let u ∈ U . For a closed set B ⊂ ∂E, we define QB(u) as the maximal element of U such that
QB(u) ≤ u and QB(u) = 0 on ∂E \ B. We consider the maximal open subset O of ∂E such
that QB(u) is moderate for every compact B ⊂ O and we set Γ = Oc. It can be shown that
there exists a Radon measure ν on O such that QB(u) = uνB for every compact B ⊂ O where
νB stands for the restriction of ν to B. The pair (Γ, ν) is called the trace of u. Cf. [9].
Let ν be a measure on ∂E. A point x ∈ ∂E is called an explosion point for ν if ν(O) = ∞ for
every open set O containing x. The collection of all explosion points of ν is denoted by Ex(ν).
Clearly, Ex(ν) is a closed set. Let Γ be a closed subset of ∂E and ν be a Radon measure on Γc

not charging polar sets. The pair (Γ, ν) is called normal if there exists no nontrivial relatively
open polar subset B ⊂ Γ \ Ex(ν).

Proposition 1.1 (See [9]). The trace (Γ, ν) of a solution u ∈ U is always a normal pair.
Each normal pair (Γ, ν) is the trace of some solution u. The maximal solution with the given
trace (Γ, ν) is given by the formula

wΓ,ν(x) = − log Px{R ∩ Γ = ∅, e−Zν}. (1.9)
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1.5 Essential explosion points

For an arbitrary Borel set B ⊂ ∂E, put

CapR(B) = Pc{R ∩ B 6= ∅} (1.10)

where c is a reference point and R is the range of the (L, α)-superdiffusion in E. According
to [1], Theorem III.32, CapR(B) is a Choquet capacity. By [3], Sect. 6.2, CapR(B) = 0 if and
only if B is polar.
Let x ∈ Ex(ν). We call x a point of non-essential explosion if there exists a neighborhood U of
x and a sequence of open sets On ⊂ U such that CapR(On) ↓ 0 as n → ∞ and ν(U \On) < ∞
for all n. Otherwise x is called a point of essential explosion. We denote the set of all essential
explosion points by Ess(ν). Note that Ex(ν) = Ess(ν) if single points on the boundary are
not polar (this happens if d < (α + 1)/(α − 1); see [10], [6]).
Properties of Ess(ν) can be summarized as follows.

Theorem 1.1. Let ν be a Σ-finite measure that doesn’t charge polar sets. Then:

(i) The set Ess(ν) is always closed;

(ii) There exist open sets Un ⊃ Ess(ν) such that CapR(Un) ↓ CapR(Ess(ν)) and ν(U c
n) < ∞;

(iii) Ess(ν) is either empty or non-polar;

(iv) ν is σ-finite on the complement of Ess(ν).

The following result clarifies the difference between Ex(ν) and Ess(ν).

Theorem 1.2. Let d ≥ (α + 1)/(α − 1). For every closed set Γ ⊂ ∂E, there exists a σ-finite
measure ν ∈ N0 such that Ex(ν) = Γ and Ess(ν) is empty. The measure ν can be chosen to
have a density with respect to the surface measure.

Main result of the paper is given by the following

Theorem 1.3. Let d ≥ (α + 1)/(α − 1) and let (Γ, ν) be a normal pair. If Γ \ Ess(ν) is not
polar, then there exist at least two solutions with the trace (Γ, ν).

Remarks. 1. For ν = 0 this is, essentially, Proposition 3 in [13] (to be precise, [13] is devoted to
the initial trace of the corresponding semilinear parabolic equation. However, the arguments
can be easily extended to an elliptic case.)
2. Le Gall proved in [13] that the uniqueness takes place if Γ is polar and that there is no
uniqueness if ν = 0 and Γ is not polar. He also conjectured that the uniqueness is valid if
Γ = Ex(ν). The following example shows that it is not true. Let Γ be a non-polar closed
subset of ∂E with the surface measure 0 and let ν be the measure constructed in Theorem
1.2. Since ν has the density with respect to the surface measure, ν(Γ) = 0. By Theorem 1.2,
Γ = Ex(ν) and therefore (Γ, ν) is a normal pair. However, Ess(ν) is empty. By Theorem 1.3,
there exist at least two solutions with the trace (Γ, ν). This implies a negative answer to the
above conjecture.



On uniqueness of a solution with given trace 141

1.6 Remarks on fine trace

To overcome the difficulties related to the non-uniqueness, Dynkin and Kuznetsov have defined
in [11], [7] a fine trace of a solution and they have shown that σ-moderate solutions are defined
uniquely by their fine traces. The fine trace is a pair (Γ, ν) where Γ is closed in a certain
topology (fine topology) related to the equation (1.1) and ν is a σ-finite measure on the
complement of Γ not charging polar sets. See [11], [7] for all details.

Theorem 1.4. Let ν be a Σ-finite measure that doesn’t charge polar sets. If Ess(ν) is empty,
then the fine trace of uν is equal to (Γ, ν) with polar Γ.

By applying this result to measures ν constructed in Theorem 1.2, we see that the correspond-
ing solutions uν are not determined by their traces and they can be recovered from their fine
traces.

2 Proofs

2.1 Some Lemmas

We start with an important lemma.

Lemma 2.1. Let u ≤ v be two solutions of (1.1). If u(c) = v(c) at some interior point c ∈ E,
then u = v everywhere in E.

Proof. It is sufficient to show that u = v in any bounded smooth domain D such that c ∈ D
and D̄ ⊂ E. Solutions u and v are bounded and continuous in D and therefore they admit a
representation

u(x) = − logPxe−〈u,XD〉, v(x) = − logPxe−〈v,XD〉. (2.1)

Since u ≤ v, we conclude from (2.1) that 〈u, XD〉 = 〈v, XD〉 Pc-a.s. Therefore

Πcu(ξτD ) = Pc〈u, XD〉 = Pc〈v, XD〉 = Πcv(ξτD )

and u = v on ∂D. By (2.1), this yields u = v in D.

As a next step, we compute the trace of wB for Borel B.

Lemma 2.2. Let B be a Borel subset of ∂E. The trace of wB is equal to (Γ, 0) where Γ is the
smallest closed set such that B \ Γ is polar.

Proof. Let (Γ, ν) be the trace of wB . Suppose B \ Γ is not polar. There exists a non-polar
compact K ⊂ B \ Γ. Since K ⊂ B, wB ≥ wK and therefore the sweeping QK(wB) ≥
QK(wK) = wK . But, wK is not moderate.
Suppose now that a closed Γ̃ is such that B \ Γ̃ is polar. Then wB ≤ wΓ̃ by (1.8) and therefore
QK(wB) ≤ QK(wΓ̃) for every K. This implies QK(wB) = 0 for every compact K ⊂ Γ̃c, and
therefore Γ ⊂ Γ̃. Same argument applied to Γ instead of Γ̃ shows that µ = 0.

Lemma 2.3. Let ν ∈ N0. The trace of uν is equal to (Γ, µ) where Γ = Ex(ν) and µ coincides
with the restriction of ν to Γc.
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Proof. Let B ⊂ ∂E be a compact. Clearly, uν ≥ uνB where νB is the restriction of ν to B.
Therefore

QB(uν) ≥ QB(uνB ) ≥ uνB . (2.2)

Suppose now that B ∩ Ex(ν) = ∅. Show that

QB(uν) = uνB (2.3)

for such B. There exists a relatively open U ⊂ ∂E such that B ⊂ U and ν(U) < ∞. Let λ
and κ be the restrictions of ν to U and U c, respectively. Let u1 = uλ and u2 = uκ. By [3],
Theorem 2.3,

u ≤ u1 + u2

and therefore
QB(u) ≤ QB(u1) + QB(u2). (2.4)

However, solution u1 is moderate and therefore QB(u1) = uλB = uνB . On the other hand, κ
vanishes on U and therefore QB(u2) = 0 by [9], 4.4.A and Theorem 3.1. Combining (2.2) and
(2.4), we get (2.3).
The statement of the lemma follows from (2.2), (2.3) and the definition of the trace.

Lemma 2.4. For every Borel set B ⊂ ∂E, and every ν ∈ N0,

wB,ν(x) = − log Px{R ∩ B = ∅, e−Zν}

is a solution of (1.1). Its trace (Γ, µ) can be characterized by the following properties. The set
Γ is the smallest closed set such that Γ ⊃ Ex(ν) and B \Γ is polar, and µ is the restriction of
ν to Γc.

Proof. Note that wB,ν(x) = − log Pxe−ZB−Zν and therefore the first part follows easily from
Theorems 2.3 and 6.1 in [3]. Second part follows easily from Lemmas 2.2 and 2.3 and from
the inequalities

wB ≤ wB,ν , uν ≤ wB,ν , wB,ν ≤ uν + wB

(for the last inequality, see, e.g., [3], Theorem 2.3).

Lemma 2.5. Let Γ be a closed subset of ∂E and let B ⊃ Γ be such that B \ Γ is not polar.
Then CapR(B) > CapR(Γ).

Proof. Suppose CapR(B) = CapR(Γ). Then wB(c) = wΓ(c) and therefore wB = wΓ ev-
erywhere by Lemma 2.1. By assumption, there exists a compact K ⊂ B \ Γ such that
CapR(K) > 0. Clearly, wK ≤ wB and therefore wK ≤ wΓ. However, wK = 0 on ∂E \ K
and wΓ = 0 on ∂E \ Γ, which implies wK = 0 on ∂E and therefore wK = 0 in E, that is
CapR(K) = 0.

2.2 Proof of Theorem 1.1

1◦. Let x /∈ Ess(ν). If x /∈ Ex(ν), then there exists an open set U ⊂ ∂E such that x ∈ U and
ν(U) < ∞. By definition of explosion points, all points of U do not belong to Ex(ν) ⊃ Ess(ν).
Suppose now that x is a point of non-essential explosion and U is as in definition. Clearly,
any y ∈ Ex(ν) ∩ U must also be a point of non-essential explosion. Therefore each point
x /∈ Ess(ν) has a neighborhood that does not intersect with Ess(ν). Hence Ess(ν) is closed.
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2◦. To prove (ii), it is enough to show that, for every ε > 0, there exists an open set O ⊃ Ess(ν)
such that and CapR(O) < Cap(Ess(ν)) + ε and ν(Oc) < ∞.
Let U ⊃ Ess(ν) be an open set such that CapR(U) ≤ CapR(Ess(ν)) + ε. Denote B = U c

and F = B ∩ Ex(ν). By construction, F consists of non-essential explosion points. For
x ∈ F , denote by Ux the neighborhood of x described in the definition of a non-essential
explosion point. Open sets Ux cover a compact set F and therefore there exists a finite set
x1, . . . , xk ∈ F such that F ⊂ Ux1 ∪ · · · ∪ Uxk

. For each xj , there exists an open set Oj ⊂ Uxj

such that ν(Uxj \Oj) is finite and CapR(Oj) ≤ ε/k. Put O = U∪O1∪ . . . Ok. By construction,

CapR(O) ≤ CapR(U) +
∑

j

CapR(Oj) ≤ CapR(Ess(ν)) + 2ε

On the other hand, the set Oc is contained in the union of the sets Kj = Uxj \Oj and the set
K = E \ {U ∪ Ux1 ∪ · · · ∪ Uxj}. Sets Kj have finite measure by construction. The set K is a
compact set disjoint from Ex(ν) and therefore ν(K) < ∞. (Recall that ν is a Radon measure
on the complement of Ex(ν) and therefore ν(K) < ∞ for every compact K that contains no
explosion points.)
3◦. Suppose Ess(ν) is polar. Let On be the sequence constructed in (ii). Put U = E. Since
CapR(On) ↓ 0 and ν(E \ On) < ∞, all explosion points are non-essential.
4◦. Again, let On be the sequence constructed in (ii). Denote B = ∩nOn. By construction,
ν is σ-finite on Bc. Besides, CapR(B) = CapR(Ess(ν)) and therefore B \ Ess(ν) is polar
by Lemma 2.5. Hence ν(B \ Ess(ν)) = 0 and ν is σ-finite on the complement of Ess(ν) as
well.

2.3 Essential explosion points and stochastic boundary values

Lemma 2.6. Let ν ∈ N0. Then Zν is finite a.s. on the set {R ∩ Ess(ν) = ∅}.
Proof. Let K be a compact with ν(K) < ∞ and let νK be the restriction of ν to K. The
solution uνK is moderate, and therefore ZνK is finite a.s. As a first step, we prove that

Zν = ZνK a.s. on the set {R ∩ Kc = ∅}. (2.5)

Indeed, let B ⊂ Kc be a compact. Then uνB ≤ wB and

ZνB ≤ ZwB = ∞1{R∩B 6=∅}

and therefore ZνB = 0 on {R ∩ Kc = ∅}. Let now Bn be an increasing sequence of compacts
with the union Kc. Since ν is the increasing limit of νn = νK + νBn ,

Zν = limZνn = limZνK + ZνBn

(see [3], Sect. 3.8) and therefore

Zν = ZνK on {R ∩ Kc = ∅}.
By Theorem 1.1(ii), there exists a decreasing sequence of open sets On such that ν(Oc

n) <
∞, Ess(ν) ⊂ On and

Pc{R ∩ On 6= ∅} ↓ Pc{R ∩ Ess(ν) 6= ∅}. (2.6)

Denote by Kn the complement of On. By (2.5), Zν is a.s. finite on the sets An = {R∩On = ∅}.
On the other hand, An ↑ {R ∩ Ess(ν) = ∅} by (2.6).



144 Electronic Communications in Probability

2.4 Proof of Theorem 1.2

In order to construct the measure ν, take an arbitrary countable dense subset {xk} of Γ. For
every k, let φk(x) = |x − xk|−d. φk is a continuous positive function on ∂D \ {xk}, which is
not integrable over every neighborhood of xk. The assumption d ≥ (α + 1)/(α − 1) implies
CapR(xk) = 0. Hence limn→∞ CapR{φk > n} = 0 and therefore CapR{φk > Ck} ≤ 2−k for
sufficiently large Ck.
Put f = supk φk/Ck and ν(dx) = f(x)σ(dx), where σ(dx) is the surface measure. By increasing
Ck, if necessary, we can make f bounded on a positive distance from Γ. For this reason,
Ex(ν) ⊂ Γ. On the other hand, xn are dense in Γ. Therefore, if x ∈ Γ and U is a neighborhood
of x, then U contains at least one of the points xn and therefore f is not integrable over U .
Hence Γ = Ex(ν).
Denote On = {f > n} = ∪k{φk > nCk}. Since φk are continuous, On is open for every n.
Besides, ν(Oc

n) ≤ nσ(Oc
n) < ∞ for every n. By construction, CapR{On} ≤ ∑

CapR{φk >
nCk} → 0 as n → ∞ by the dominated convergence theorem. Hence, ν has no essential
explosion points.

2.5 Proof of Theorem 1.3

1◦. Suppose Γ = Ex(ν) and Ex(ν) \ Ess(ν) is not polar. By Theorem 1.1(i), both Ex(ν)
and Ess(ν) are closed. Therefore Lemma 2.5 implies that CapR(Ex(ν)) > CapR(Ess(ν)) and
therefore

Pc{R ∩ Ex(ν) 6= ∅,R∩ Ess(ν) = ∅} > 0. (2.7)

Let v = wΓ,ν and u = uν . By Proposition 1.1, v is the maximal solution with the trace (Γ, ν).
By Lemma 2.3, u also has the trace (Γ, ν). However,

Zv ≥ ZΓ = ∞1R∩Γ6=∅

and
Zu < ∞ a.s. on R∩ Ess(ν) = ∅

by Lemma 2.6. By (2.7), Zu 6= Zv with positive probability.
2◦. The proof in case Γ 6= Ex(ν) is essentially the same as the proof of Proposition 3 in [13].
Since both Γ and Ex(ν) are closed, C = Γ \ Ex(ν) is relatively open in Γ and therefore it is
not polar (see Proposition 1.1 and the definition of a normal pair). For the same reason, for
every x ∈ C and every neighborhood Uε of x, Γε(x) = Uε ∩ C is not polar.
Put

CapR,ν(B) = Pc{R ∩ B 6= ∅, e−Zν}.
Likewise CapR, it is a Choquet capacity by [1], Theorem III.32. Note that

CapR,ν(B) = e−uν(c) − e−wB,ν(c). (2.8)

By Lemma 2.5,
Pc{R ∩ B 6= ∅,R∩ Ex(ν) = ∅} > 0

for every non-polar B disjoint from Ex(ν). In addition, Zν < ∞ on {R ∩ Ex(ν) = ∅}
by Lemma 2.6. Therefore CapR,ν(B) > 0 for every non-polar B disjoint from Ex(ν). In
particular, CapR,ν(Γε(x)) > 0 for every x ∈ C.



On uniqueness of a solution with given trace 145

Let xi be everywhere dense in C. Since CapR,ν(xi) = 0, one can choose εi > 0 to have

∑
CapR,ν(Γεi(xi)) < CapR,ν(C) (2.9)

Put B = ∪iΓεi(xi). By (2.9),

CapR,ν(B) < CapR,ν(C) ≤ CapR,ν(Γ)

and, by (2.8) and Lemma 2.1,
wB,ν < wΓ,ν . (2.10)

Since (Γ, ν) is a normal pair, the trace of wΓ,ν coincides with (Γ, ν) by Proposition 1.1. Let
now (Γ̃, µ) be the trace of wB,ν . By Lemma 2.4, Γ̃ ⊂ Γ and µ = ν.
Suppose A = Γ \ Γ̃ is not empty. Since A is relatively open in Γ, it contains at least on of xi.
The set A ∩ Γεi(xi) is also relatively open in Γ, and therefore it is not polar by the definition
of normal pair. But,

A ∩ Γεi(xi) ⊂ A ∩ B,

and therefore B \ Γ̃ is not polar, in contradiction with Lemma 2.4. Therefore Γ̃ = Γ and the
two solutions wB,ν and wΓ,ν do not coincide and have the trace (Γ, ν).

2.6 Proof of Theorem 1.4

1◦. Recall some notation from [7] and [3]. A point y ∈ ∂E is a singular point of a solution u if

∫ ζ

0

uα−1(ξs) ds = ∞ Πy
c -a.s.

Here (ξt, Πy
x) is the L-diffusion in E conditionned to exit from E at the point y, and ζ is its

life time. The set of all singular points of u is denoted by SG(u).
Let Γ = SG(uν). By [3], Theorem 1.1

PxZηe−Zν = 0

for every measure η ∈ N1 concentrated on Γ. Since Zν < ∞ a.s. by Lemma 2.6, this is possible
only if Zη = 0 a.s. and therefore η = 0. By [6], Theorem 1.2, this is equivalent to the polarity
of Γ.
2◦. Let B be a Borel subset of ∂E. As in [7], denote by uB the supremum of all moderate
solutions uµ such that µ(Bc) = 0. For two solutions u1, u2, we define u1 ⊕ u2 as the maximal
solution dominated by u1 + u2. See [7] for more detail.
Since Γ is polar, uΓ = 0 and uΓ ⊕ uν = uν .
3◦. The fine trace of a solution u is defined as a pair (Γ, µ) where Γ = SG(u) and µ is the
maximal measure such that µ(Γ) = 0, µ does not charge polar sets and uµ ≤ u. According to
[7], Theorem 1.3, the fine trace of any solution has the following properties:

(A) (See [7],1.10.A.) The set Γ is finely closed (that is, closed in fine topology introduced in
[7]).

(B) (See [7],1.10.B.) The measure µ is a σ-finite measure on Γc not charging polar sets and
such that SG(uµ) ⊂ Γ.
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Moreover (see [7], Theorem 1.4), if (Γ, µ) is any pair satisfying (A) and (B), then v = uΓ ⊕ uµ

has the fine trace (Γ′, µ) where Γ′ = SG(v) differs from Γ by a polar set.
The set Γ = SG(uν) is finely closed by [7], Theorem 1.3. Since Γ is polar, ν does not charge Γ.
By assumtion, Ess(ν) is empty and therefore ν is σ-finite by Theorem 1.1(iv). Hence the pair
(Γ, ν) satisfies (A) and (B) and uν = uΓ ⊕ uν has the fine trace (SG(uν), ν) = (Γ, ν). Since Γ
is polar, the statement follows.
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