
Elect. Comm. in Probab. 5 (2000) 39–50 ELECTRONIC
COMMUNICATIONS
in PROBABILITY

LOOP-ERASED RANDOM WALKS, SPANNING TREES
AND HAMILTONIAN CYCLES

PHILIPPE MARCHAL
Laboratoire de Probabilits, UMR 7599, Université Paris 6,
4 Place Jussieu, 75252 Paris cedex 05, France.
email: marchal@clipper.ens.fr

submitted February 12, 1999; Final version accepted December 3, 1999

AMS 1991 Subject classification: 60J10
Loop-erased random walk, spanning tree, Wilson’s algorithm.

Abstract
We establish a formula for the distribution of loop-erased random walks at certain random
times. Several classical results on spanning trees, including Wilson’s algorithm, follow easily,
as well as a method to construct random Hamiltonian cycles.

1 Introduction

Associated to a random walk X on a finite or denumerable state space V is the loop-erased
random walk Y constructed as follows. Start X at some point u ∈ V and, for each time n,
consider the whole path from u to Xn. Then Yn is the self-avoiding path obtained by removing
the cycles in the order they appear (a formal definition is given in the sequel).
Loop-erasing is a quite natural method to construct self-avoiding paths and is therefore an
object of interest in the study of self-avoiding random walks [6]. Moreover, in recent years,
random spanning trees and forests have been much considered in probability (see e.g. [2]) and
Wilson’s algorithm [8], which uses the loop-erasing procedure, has proved to be a useful tool.
One of the main interests in that context is the planar case, where the problem of conformal
invariance plays major role. Some recent results in that domain can be found in Kenyon [5],
although the methods are different, using domino tilings.
We determine in this note the distribution of Y at certain random times: the first hitting time
by X of some subset U ⊂ V , or an independent time with geometric distribution. Our main
formula (Theorem 1), which refines a result by Lawler, provides an easy proof of Wilson’s
algorithm as well as classical results on spanning trees.
We shall concentrate on the case when the state space V is finite. However, our results can be
expressed in terms of the eigenvalues of the discrete Laplacian, see Section 2.3 (here we mean
by discrete Laplacian an approximation of the second derivative, and not the graph-theoretical
Laplacian). This suggests a possible generalization for a denumerable state space, although
we shall not deal with the question here.
The remainder of this note is organized as follows. The law of Y stopped at certain random

39

DOI: 10.1214/ECP.v5-1016

1

http://dx.doi.org/10.1214/ECP.v5-1016

40 Electronic Communications in Probability

times is determined in Section 2, and the application to spanning trees is the topic of Section
3. Using the same methods, we treat the case of Hamiltonian cycles in Section 4.

2 The distribution of loop-erased paths

2.1 Definitions and notations

Consider a Markov chain X on a finite set V , and fix a point u ∈ V . Let X start at u and
denote by X ′ the path process, that is, for every integer n,

X ′
n = (X0, X1, . . . , Xn)

The loop-erasure Yn is constructed as follows: put a0 = u. Then define by recurrence lk to be
the last time X visits ak before time n, and ak+1 = Xlk+1. This yields a finite sequence that
stops at some integer m when lm = n, and we put

Yn = (a0, a1, . . . , am)

One easily checks that the previous definition is equivalent to the following: put a0 = u and
Y0 is the empty path. By recurrence, if Yn = (a0, a1, . . . , am) and Xn+1 does not belong to
the support of Yn, put

Yn+1 = (a0, a1, . . . , am, Xn+1)

Else if Xn+1 = ak for some k ≤ m,

Yn+1 = (a0, a1, . . . , ak)

That is, the cycles are erased in the order they appear.

We adopt the following notations. The weight of a subset S = {e1, . . . , en} ⊂ V ×V of directed
edges is

w(S) =
n∏

i=1

pei ∈ R

and its valuation is

v(S)(t) =
n∏

i=1

(peit) ∈ R[t]

Note that the edges need not be adjacent, and we shall consider the case when S is a tree in
Section 3.

Let M be the transition matrix of the chain X . For every subset U ⊂ V , we denote by TU

the hitting time (for X) of U , by G(t, x, x; U) the Green function for the random walk killed
at TU :

G(t, x, x; U) =
∞∑

n=0

Px(Xn = x, TU < n)tn = [Id − tMU]−1
x,x

and by MU the matrix M restricted to the coefficients in (V − U)× (V − U). In this setting,
if γ is a path, we shall write γ instead of supp(γ) to simplify the notations.

Loop-erased random walks, spanning trees and Hamiltonian cycles 41

2.2 The results

Let U ⊂ V with u /∈ U . We first determine the law of Y at TU . Let ΓU be the set of
self-avoiding paths γ of the form γ = (a0, a1, . . . , am) where a0 = u, am ∈ U and for every
k ≤ m − 1, ak /∈ U . For such a path γ ∈ ΓU , put Vk = U ∪ {a0, . . . ak−1}, 1 ≤ k ≤ m − 1 and
V0 = U . A last-exit decomposition easily leads to the following formula, whose proof can be
found in Section 3.1 of [6]:

Eu [tTU ; YTU = γ] =

(
m−1∏
k=0

G(t, ak, ak; Vk)

)
v(γ)(t) (1)

The key remark is the following: for every k ≤ m − 1,

G(t, ak, ak; Vk) =
det[Id − tMVk∪{ak}]

det[Id − tMVk
]

=
det[Id − tMVk+1]
det[Id − tMVk

]
(2)

This is a straightforward application of the Cramer formula for the inversion of matrices.
Together with (1), this implies the following:

Theorem 1 Let γ be the self-avoiding path starting at v. Then

Eu (tTU , YTU = γ) =
det(Id − tMγ∪U)
det(Id − tMU)

v(γ)(t)

A similar result appears in [6] for t = 1, but the correcting factor det(Id−Mγ∪U)/ det(Id−MU)
is not computed explicitely. We shall express this factor in terms of the eigenvalues of the dis-
crete Laplacian in the next subsection. Our formula also enables us to compute the expected
run time of Wilson’s algorithm, which plays a key role in computer science (see Section 3).

We can also determine the probability that YT = γ for an an independent random time T with
geometric distribution with parameter p, i.e. P (T = n) = (1 − p)pn.
It suffices to add a cemetery point ∂ to the set of vertices V , and to consider the random walk
X ′ where the transition probabilities pi,j are replaced by ppi,j for i, j ∈ V , and the transition
probability from any vertex u′ ∈ V to ∂ equals 1− p. We then look at the loop-erased path at
the first hitting time of ∂. Theorem 1 then becomes:

Corollary 1 With the same notations as in Theorem 1, we have, for an independent time T
with geometric distribution of parameter p,

Eu (tT , YT = γ) = (1 − p)
det(Id − ptMγ)
det(Id − ptM)

m∏
i=1

(pai−1,aipt)

Note that for t = 1, when p → 1, the limit distribution is the invariant measure on the set
of self-avoiding paths starting at v for the chain Y . According to Corollary 1, this invariant
measure is proportional to the measure that assigns to each path γ the weight

det(Id − Mγ)w(γ)

In particular, the restriction of the invariant measure to ΓU , for any subset U ∈ V such that
u /∈ U , is proportional to the probability measure computed in Theorem 1. For an explanation
of this fact, see the proof of the Markov chain tree theorem in [7].

42 Electronic Communications in Probability

2.3 The correcting factor

The quantities det(Id−Mγ∪U) and det(Id−MU) can be expressed in terms of the eigenvalues
of the discrete Laplacian, an operator defined as follows: for a function f : V → R, we put

∆f(x) = Ex [f(X1)] − f(x)

We say that λ is an eigenvalue of the Laplacian with Dirichlet boundary condition on U ′ ⊂ V
if there exists a nonzero function f satisfying

f(x) = 0 if x ∈ U ′

∆f(x) = λf(x) if x /∈ U ′

Moreover, the multiplicity of λ is the the dimension of the vector space constituted by the
functions f such that for every x /∈ U ′ and for some integer n,

(∆ − λId)nf(x) = 0

Let λ1, . . . , λk be the eigenvalues of the Laplacian with Dirichlet boundary condition on U ,
and a1, . . . , ak their respective multiplicities. Then we have

det(Id − MU) =
k∏

i=1

(−λi)ai (3)

We can define likewise the eigenvalues µ1, . . . , µl of the Laplacian with Dirichlet boundary
condition on γ ∪ U and their respective multiplicities b1, . . . , bl. Then

det(Id − Mγ∪U) =
l∏

i=1

(−µi)bi (4)

Alternatively, the ratio
det(Id − Mγ∪U)
det(Id − MU)

can be expressed in the following way. Say that ν is a semi-eigenvalue if there exists a nonzero
function f satisfying:

f(x) = 0 if x ∈ U

∆f(x) = νf(x) if x ∈ γ − U

∆f(x) = 0 if x /∈ γ ∪ U

Define the multiplicity of ν as the dimension of the the vector space constituted by the functions
f such that

(∆ − ν)nf(x) = 0 for some n if x ∈ supp(γ) − U

(∆)nf(x) = 0 for some n if x /∈ (supp(γ) ∪ U)

Loop-erased random walks, spanning trees and Hamiltonian cycles 43

Let ν1, . . . , νp be the semi-eigenvalues and c1, . . . , cp their respective multiplicities. Then

det(Id − Mγ∪U)
det(Id − MU)

=
p∏

i=1

(−νi)ci (5)

The proof of (5) is an easy exercise of linear algebra. Write the matrix MU where the last
coefficients correspond to the vertices of the path γ, i.e.

MU =
(

Mγ∪U A
B C

)

Define the polynomial

P (λ) = det
(

Mγ∪U A
B C − λId

)

Let P (λ) = akλk + . . . + aiλ + a0. Then the product of the roots of P is

a0

ak
=

det(Id − MU)
det(Id − Mγ∪U)

On the other hand, the roots of P are the complex numbers λ such that there exists a vector

F =
(

F1

F2

)

satisfying (
Mγ∪U A

B C − λId

)(
F1

F2

)
=
(

0
0

)
or, equivalently, (

Mγ∪U A
B C

)(
F1

F2

)
=
(

0
λF2

)

That is, the roots of P are the semi-eigenvalues, which proves (5).

3 Application to spanning trees

A spanning tree of a graph is defined as a connected, acyclic subgraph containing all the
vertices. Spanning trees are a classical problem in computer science, see the references in [8].
Their study in probability has been the the subject of interesting developements in recent
years, see for instance [2] and the references therein.
A rooted spanning tree Γ on V can be viewed as a collection of directed edges where each edge
points towards the root. Hence we can define its weight with respect to the random walk X , as
in Section 2.1. Wilson’s algorithm is a method for constructing a random spanning tree with
probability proportional to the weight [8]. Fix the root R and chose any ordering on V −{R}.
We define by recurrence a growing sequence of trees T (n) by:

• T (0) = {R}

• If T (n) spans V , we are done.

44 Electronic Communications in Probability

• Else, let v be the minimal vertex in the ordering that is not in T (n), and perform the
loop-erased random walk Y starting at v up to the first hitting time of T (n). Add this
loop-erased path to T (n) to create T (n + 1).

If the chain is irreducible, it is clear that the sequence ends almost surely and that the final
tree is a spanning tree. Furthermore we have:

Theorem 2 (Wilson) Wilson’s algorithm constructs a random spanning tree rooted at R with
probability proportional to the weight w. In particular, it is independent of the ordering chosen
on V − {R}.

We want to derive Wilson’s theorem from Theorem 1.
Let Γ be a spanning tree rooted at R, and choose an ordering on V −{R}. We begin by remark-
ing that any sequence of paths, obtained by running Wilson’s algorithm, that constructs Γ will
in fact construct the same growing sequence of (deterministic) subtrees (U(0), U(1), . . . , U(n))
of Γ. Wilson’s theorem is a consequence of the following lemma:

Lemma 1 For any integer k ≤ n, denote by Sk the support of U(k). Recall that T (0), T (1), . . .
is the growing sequence of random trees constructed by Wilson’s algorithm. Then we have for
every k,

P(T (k) = U(k)) =
det(Id − MSk

)
det(Id − M{R})

w(U(k))

Wilson’s result follows by taking k = n.

Proof
We proceed by induction on k. For k = 1, as U(1) is a self-avoiding path from the first vertex
in V − {R} to the root, this is nothing else than Theorem 1.
Suppose that the result is established for k − 1. Let vk be the minimal vertex in V − Sk and
γk the path from vk to Sk−1 in the tree T (k). Then the conditional probability

P(T (k) = U(k)|T (k − 1) = U(k − 1))

is the probability that the random walk, started at vk up to the hitting time of Sk−1, has
loop-erasure γk. Using Theorem 1, we see that this probability equals

P(T (k) = U(k)|T (k − 1) = U(k − 1)) =
det(Id − MSk

)
det(Id − MSk−1)

w(γk)

which completes the proof.
2

An easy generalization of Lemma 2 is the following

Corollary 2 Let Γ′ be a tree rooted at R, that is not necessarily a spanning tree. Then the
probability that a random spanning tree rooted at R contains Γ′ is

det(Id − MΓ′)
det(Id − M{R})

w(Γ′)

Loop-erased random walks, spanning trees and Hamiltonian cycles 45

Proof
The probability that a random spanning tree rooted at R contains Γ′ does not depend on the
ordering on V − {R}. Let L1, . . . , Ln be the leaves of Γ′ and chose an ordering on V − {R}
where the first n vertices are L1, . . . , Ln. Then the probability we are considering is exactly
the probability that T (n) = Γ′, which is given by Lemma 2.

2

Remark. If the random walk is reversible, it is well-known that it is associated to an electric
network. In that case, given any set B of directed edges, the probability that all the edges in
B belong to the random spanning tree can be computed by the transfer current theorem, see
[3]. Our result only enables us to handle the case when B is a tree rooted at R. Nevertheless,
it also holds for non-reversible Markov chains.
Another connection of spanning trees to Markov chains is the Markov chain tree theorem [7],
which can also be easily derived by our method:

Corollary 3 (Markov chain tree theorem) The stationary distribution of the Markov chain
X is proportional to the measure that assigns to every vertex u the mass∑

S∈Tu

w(S)

where Tu is the set of spanning trees rooted at u.

Proof
As Wilson’s theorem constructs with probability 1 a spanning tree rooted at u, taking k = n
in Lemma 2 yields: ∑

S∈Tu

w(S) = det(Id − M{u}) (6)

But it is well-known (see [9], chapter 1) that the measure∑
u∈V

det(Id − M{u})δu

is invariant.
2

Remark. Formula (6) can be seen as a generalization of Khirchoff’s formula counting the
number of spanning trees in a given graph [4].

As a last application of our method, let us compute the expected number of steps in Wilson’s
algorithm. This plays a key role in computer science, see [8]. Denote by T the number of steps
of the random walk up to the complete construction of the spanning tree rooted at R. Then
we have

Proposition 1 Let n be the number of points in V − {R}. Then:
(i) The distribution of T is given by:

E(tT) =
det(Id − M{R})
det(Id − tM{R})

tn

46 Electronic Communications in Probability

(ii) In particular,
E(T) = tr((Id − M{R})−1) (7)

Proof
As a straightforward generalization of Lemma 2 we have

g(t) := E(tT) =

∑
Z∈TR

w(Z)tn

det(Id − tM{R})

where TR denotes the set of spanning trees rooted at R. According to (6),
∑

Z∈TR
w(Z) =

det(Id − M{R}), which yields (i).

The computation of E(U) = g′(1) leads to

g′(1) =
n − d

dt(det(Id − tM{R}))t=1

det(Id − M{R})

But we have
d

dt
(det(Id − tM{R}))t=1 =

d

dt
(det(Id − (1 + t)M{R}))t=0

and det(Id − (1 + t)M{R}) is a polynomial in t whose coefficient of degree 1 is∑
i,j

(−1)i+jMi,j det((Id − M{R})i,j)

where Mi,j is the (i,j) coefficient of the matrix M and (Id−M{R})i,j is the matrix Id−M{R}
where we erase the i-th line and j-th column. Developping the determinant det(Id − M{R})
along the i-th line we get:∑

j

Mi,j(−1)i+j det((Id − M{R})i,j) = det(Id − M{R}) − det((Id − M{R})i,i)

for every i. Summing on i yields

E(T) =

∑
i∈V −{R} det(Id − M{R,i})

det(Id − M{R})

and this latter quantity is equal to tr((Id − M{R})−1), according to the Cramer formula for
the inversion of matrices.

2

Remark. The expected number of steps is expressed in [8] as

E(T) =
∑

i

π(i)(ti,R + tR,i) (8)

where tx,y is the expected time for the Markov chain to go from x to y, and π is the invariant
probability measure. To see that (7) and (8) are equivalent, expand (Id−M{R})−1 as a power
series ∑

k≥0

Mk
{R}

Loop-erased random walks, spanning trees and Hamiltonian cycles 47

to see that the (i, i) coefficient in (Id−M{R})−1 is the expected number GR(i, i) of visits to i
for the Markov chain started at i and absorbed at R. But it is classical that GR(i, i) divided
by the commute time (ti,R + tR,i) equals the stationary distribution π(i) (see [1]).
Therefore

((Id − M{R})−1)i,i = π(i)(ti,R + tR,i)

Summing this over all the states i ∈ V identifies (8) with (7).
This remark is due to Yuval Peres.

4 Hamiltonian cycles

The loop-erasing procedure also enables us to construct Hamiltonian cycles, i.e. simple cycles
spanning all the vertices of V . Indeed, let the random walk start at some vertex u ∈ V , denote
by 0 = T0 < T1 < T2 . . . the successive return times of the random walk to u and put

n = min{m, supp(YTm−1) = V }

Then if we add at the end of the path YTn−1 the point u, we get a Hamiltonian cycle. In other
words, each time the random walk returns to u, the loop-erasing procedure yields a simple
cycle containing u. We erase this cycle if it is not Hamiltonian and keep it if it is Hamiltonian.

Theorem 3 Let H be the Hamiltonian cycle constructed by the algorithm described above and
T the run time. Denote by C the set of Hamiltonian cycles, and consider a cycle γ ∈ C. Then

Eu (tT , H = γ) =
v(γ)(t)

det(Id − tM) +
∑

γ′∈C v(γ′)(t)
(9)

As a consequence, the algorithm yields a random Hamiltonian cycle with probability propor-
tional to the weight.

Note that the joint law of (T, H) does not depend on the starting point u, which is not obvious
by simple path transform arguments.

Proof
To prove this result, let us introduce some definition. An excursion will refer to a path
(a0 = u, . . . , an = u) such that for 0 < j < n, aj 6= u. An excursion is Hamiltonian if the loop-
erasure of the path (a0, . . . , an−1) contains all the vertices of V . In that case, by convention,
we say that the loop-erasure of the excursion is the loop-erasure of (a0, . . . , an−1). We denote
by E the set of Hamiltonian excursions and by E be the set of non-Hamiltonian excursions.
Consider the Hamiltonian cycle

γ = (a0 = u, a1, . . . , a|V | = u)

and denote by Eγ the set of Hamiltonian excursions whose loop-erasure is (a0 = u, a1, . . . , a|V |−1).
Of course, Eγ ⊂ E . We want to compute

Eu (tT , Y = γ) =
1

1 −
∑

e∈E v(e)(t)

∑
δ∈Eγ

v(δ)(t)

48 Electronic Communications in Probability

If the random walk X starts at u, conditioning on X1 and applying Theorem 1 we get:

∑
δ∈Eγ

v(δ)(t) =
v(γ)(t)

det(Id − tM{u})

The generating function of from u to u is given by:

1
1 −

∑
e∈E v(e)(t) −

∑
γ′∈C

∑
δ∈Eγ′ v(δ)(t)

=
det(Id − tM{u})
det(Id − tM)

since any path from u to u is a sequence of excursions. Hence

1
1 −

∑
e∈E v(e)(t)

=
det(Id − tM{u})

det(Id − tM) + det(Id − tM{u})
∑

γ′∈C
∑

δ∈Eγ′ v(δ)(t)

=
det(Id − tM{u})

det(Id − tM) +
∑

γ′∈C v(γ′)(t)

Putting pieces together we recover (9) and the second assertion follows by taking t = 1.
2

Note that one can run several times Wilson’s algorithm rooted at u until the spanning tree
constructed is a linear one, i.e. is constituted by a single path (a1, . . . an = u), and then
take the Hamiltonian cycle (a0 = u, a1, . . . an = u). In that case one constructs a random
Hamiltonian cycle with probability proportional to

|V |∏
i=2

pai−1,ai

but this is different from the weight of the cycle, which is

|V |∏
i=1

pai−1,ai

The expected run time of the algorithm is given by the following:

Corollary 4 The expected time to construct a random Hamiltonian cycle by the algorithm of
Theorem 3 is:

E(T) =
∑

t∈T w(t)∑
γ∈C w(γ)

where T is the set of rooted spanning trees of V (rooted at any vertex) and C is the set of
Hamiltonian cycles.

Proof
We want to compute f ′(1), f being the function defined by

f(t) = Eu (tT) =

∑
γ∈C v(γ)(t)

det(Id − tM) +
∑

γ∈C v(γ)(t)

Loop-erased random walks, spanning trees and Hamiltonian cycles 49

As det(Id − M) = 0 we get:

f ′(1) =
d
dt (det(Id − tM))t=1∑

γ∈C w(γ)

Computing (d
dt det(Id − tM))t=1 as in the proof of Proposition 1 we find(

d

dt
det(Id − tM)

)
t=1

= −|V | det(Id − M) +
∑
u∈V

det(Id − M{u})

Using (6) and the fact that det(Id − M) = 0 we get the result.

2

A naive method to construct a random Hamiltonian cycle is the following. Start the random
walk X at u and define the loop time L as the first time a loop appears:

L = min{n > 0, Xn ∈ {X0, . . . , Xn−1}}

Then we stop X at L and keep the whole path if it is a Hamiltonian cycle (in which case
L = |V |). Else we restart X at u, and so on. It is clear that this procedure yields a random
Hamiltonian cycle with probability proportional to the weight. The number of steps T ′ of the
algorithm has the following distribution:

Eu (tT
′
) =

Pu((X0, . . . , XL) ∈ C)t|V |

1 −
∑

n≤|V | Pu(L = n, (X0, . . . , XL) /∈ C)tn

Remark that
Pu((X0, . . . , XL) ∈ C) =

∑
γ∈C

w(γ)

Thus

Eu (T ′) =
Eu (L)∑
γ∈C w(γ)

In particular, the expected run time of the naive algorithm depends on the starting point.
Also remark that Eu (T ′) ≥ E(T) since Eu (L) ≥ 1 ≥

∑
t∈T w(t).

Acknowledgements. I thank Yuval Peres for the remark at the end of Section 3, and the
referee for some useful comments on the first draft.

References

[1] D. Aldous and J. Fill: Reversible Markov chains. To appear.

[2] I. Benjamini, R. Lyons, Y. Peres and O. Schramm: Uniform spanning forests. To appear.

[3] R. Burton and R. Pemantle: Local characteristics, entropy and limit theorems for span-
ning trees and domino tilings via transfer-impedances. Ann. Probab. 21 (1993), no. 3,
1329–1371.

50 Electronic Communications in Probability

[4] G. Kirchhoff: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung
der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72 (1847)
497-508.

[5] R. Kenyon: The asymptotic determinant of the discrete Laplacian. Preprint (1999)

[6] Gregory F. Lawler, Loop-erased random walk, in Perplexing Problems in Probability,
Birkhauser-Boston (1999), 197–217.

[7] R. Lyons and Y. Peres: Probability on Trees and Networks. To appear.

[8] J. Propp and D. Wilson: How to Get a Perfectly Random Sample From a Generic
Markov Chain and Generate a Random Spanning Tree of a Directed Graph. Journal of
Algorithms 27 (1998) 170-217.

[9] E. Seneta: Non-negative matrices and Markov chains. 2nd ed. (1981) Springer.

