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Abstract:
Let T1 denote the first passage time to 1 of a standard Brownian motion. It is well known that
as λ → ∞, P{T1 > λ} ∼ cλ−1/2, where c = (2/π)1/2. The goal of this note is to establish a
capacitarian version of this result. Namely, we will prove the existence of positive and finite
constants K1 and K2 such that for all λ > ee,

K1λ
−1/2 ≤ Cap{T1 > λ} ≤ K2λ

−1/2 log3(λ) · log log(λ),

where ‘log’ denotes the natural logarithm, and Cap is capacity on Wiener space.
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1 Introduction

The goal of this note is to present a capacitarian extension of the classical fact that

lim
λ→∞

λ1/2
P{T1 > λ} = (2/π)1/2, (1.1)

where T1 is the first passage time to 1 of a standard linear Brownian motion B = {B(t); t ≥ 0}.
Let Ω = C([0,∞)) denote the collection of all continuous real functions on [0,∞). As usual, Ω
is made into a Banach space, once it is endowed with the supremum norm. Let F denote the
collection of all of its Borel sets and let W denote Wiener’s measure on (Ω,F). The probability
triple (Ω,F ,W ) is the classical Wiener space, and let O =

(
Os; s ≥ 0

)
denote an Ornstein–

Uhlenbeck process on (Ω,F ,W ), which is an Ω-valued diffusion with stationary measure equal
to W and whose increments are independent one-dimensional Ornstein–Uhlenbeck processes.
Williams [5] has observed that O can be described path-by-path, using a two-parameter
Brownian sheet W = {W (s, t); s, t ≥ 0}. Namely, we can define Os for each s as the random
function

Os(t) = e−s/2W (es, t), t ≥ 0.

By Fukushima–Malliavin capacity, we mean the following: for all Borel sets A ⊂ Ω,

Cap(A) =
∫ ∞

0

e−τ
P{Os ∈ A for some s ∈ [0, τ ]} dτ.

This is also called the 1-capacity of A, as it is related to the 1-potential measure of O. The
following is the main result of this paper.

Theorem 1.1 There exist positive and finite constants K1 and K2 such that for all λ > ee,

K1

λ1/2
≤ Cap{T1 > λ} ≤ K2 (log λ)3 · log log λ

λ1/2
.

Remark 1.2 For all ω ∈ Ω, T1(ω) denotes the first passage time of ω to the level 1: T1(ω) =
inf{t ≥ 0 : ω(t) ≥ 1}. In this notation, Eq. (1.1) states that W

{
T1 > λ

} ∼ √
2/π λ−1/2

(λ → ∞). �

There is a relation to the recent results of Csáki, Khoshnevisan and Shi [1]. Namely,
by Lemma 2.2 below, and stated in terms of the observation of D. Williams, Theorem 1.1
asserts the existence of finite and positive constants K3 and K4, such that for all λ > ee,

K3

λ1/2
≤ P

{
inf

1≤s≤e
sup

0≤t≤λ
W (s, t) ≤ 1

} ≤ K4 (log λ)3 · log log λ

λ1/2
, (1.2)

while [1, Theorem 1.5] states that

exp
(
− K3 (log λ)2

)
≤ P

{
sup

0≤s≤1
sup

0≤t≤λ
W (s, t) ≤ 1

} ≤ exp
(
− K4

(log λ)2

log log λ

)
.

Above and hereafter, we designate uninteresting constants by K, K5, K6, . . .. These may
change from line to line as well as within the lines.
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2 Background Estimates

In this section, we present two basic estimates. For this first estimate, let U = {U(x); x ∈ R}
denote an Ornstein–Uhlenbeck process that is indexed by R and is speeded up so that U is a
centered Gaussian process with covariance

E{U(x)U(y)} = e−|x−y|, x, y ∈ R. (2.1)

Lemma 2.1 There exist two finite constants x0 ∈ (0, 1) and t0 > 0, such that for all x ∈
(0, x0) and all t > t0,

P{ sup
0≤s≤t

U(s) ≤ x} ≤ 2e−(1−x)t.

Proof The process {U(x); x ≥ 0} is a diffusion with generator Af(x) = f ′′(x) − xf ′(x)
whose symmetrizing measure is the standard Gaussian. Thus, a routine application of the
spectral theorem shows that the probability in the statement of the lemma has an eigenfunction
expansion in terms of the (countable) eigenvalues of the (compact operator) A. Ref. [4]
contains all of the delicate information that we will need about these eigenvalues to which
the reader is referred for further details. Let λ1(x) ≤ λ2(x) ≤ · · · and hx

1 , hx
2 , . . . denote the

ordered eigenvalues and the orthonormalized (in L2(e−t2/2dt)) eigenfunctions of A on (−∞, x)
with zero boundary conditions. Then,

P{ sup
0≤s≤t

U(s) ≤ x} = (2π)−1/2
∞∑

j=1

e−tλj(x)
( ∫ x

−∞
hx

j (t)e−t2/2 dt
)2

.

We will need the following three facts about these eigenvalues: (i) for all j ≥ 1, λj(x) ≥
λ1(x) + j − 1; (ii) λ1(0) = 1; and (iii) λ′

1(0) = −(2/π)1/2. See Uchiyama [4, Prop. 1.1], all
the time noting that our speed measure is twice that of Uchiyama. This accounts for our
doubling of the eigenvalues. Applying these facts, in conjunction with the Cauchy–Schwarz
inequality, yields

P{ sup
0≤s≤t

U(s) ≤ x} ≤ (2π)−1/2
∞∑

j=1

e−t
{

λ1(x)+j−1
}
×

×
∫ x

−∞

∣∣hx
j (t)

∣∣2 e−t2/2 dt ×
∫ x

−∞
e−t2/2 dt

≤ (1 − e−t)−1e−tλ1(x).

The result follows from facts (iii) and (ii). �

For all r ≥ 0 and for all Borel sets A ⊂ Ω, we define the incomplete r-capacity Capr(A) as

Capr(A) = P
{
Os ∈ A for some s ∈ [0, r]

}
.

Our second background estimate relates capacities to incomplete capacities and is an exercise
in Laplace transforms. We point out that this result has already been used in the Introduction
to establish Eq. (1.2).

Lemma 2.2 There exists a finite constant K > 1, such that for all Borel sets A ⊂ Ω,

K−1Cap1(A) ≤ Cap(A) ≤ KCap1(A).
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Proof Clearly,

Cap(A) ≥
∫ 1

0

e−τ
P
{
Os ∈ A for some s ∈ [0, 1]

}
dτ.

This implies the lower bound. For the upper bound, note that

Cap(A) ≤
∞∑

j=0

∫ j+1

j

e−τ
P
{
Os ∈ A for some s ∈ [0, j + 1]

}
dτ

≤
∞∑

j=0

e−j

j∑
`=0

P
{
Os ∈ A for some s ∈ [`, ` + 1]

}
.

By stationarity, Cap(A) ≤ Cap1(A)
∑∞

j=0(j + 1)e−j , and the lemma follows. �

3 The Proof of Theorem 1.1

Throughout this proof, B = {B(t); t ≥ 0} denotes a standard linear Brownian motion and ε
stands for a small positive number. We will also need three variables all of which are functions
of ε as follows:

δ = ε2 log2(1/ε), (3.1)

a = 1 +
1

c2
0 log2(1/ε) log log(1/ε)

, (3.2)

where c0 ∈ (0,∞) is chosen to satisfy

P

{
sup

δ≤t≤1

B(t)
t1/2

≤ c0

√
log log(1/δ)

}
≥ 1

2
. (3.3)

By the law of the iterated logarithm, such a c0 must exist and can be chosen independently of
the values of δ and ε. Consider the following random time that is finite (a.s., but this is taken
care of in the usual way by adding in appropriate null sets):

σ = inf
{

s ≥ 1 : sup
δ≤t≤1

W (s, t)
t1/2

≤ ε

δ1/2

}
,

where W = {W (s, t); s, t ≥ 0} is a two-parameter Brownian sheet. Let F1 denote the
(complete, right continuous) filtration of the infinite-dimensional process {W (s, •); s ≥ 0}. It
is easy to see that σ is a stopping time with respect to the one-parameter filtration F1.
Next, we define two events E and F:

E =
{

sup
δ≤t≤1

W (a, t) − W (σ, t)
t1/2

≤ c0

√
(a − 1) log log(1/δ)

}
,

F =
{

sup
δ≤t≤1

W (a, t)
t1/2

≤ ε

δ1/2
+ c0

√
(a − 1) log log(1/δ)

}
.

Since {W (s, •); s ≥ 0} is a Lévy process on Ω, the following lemma can be easily verified:
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Lemma 3.1 σ is a finite stopping time with respect to F1. Moreover, for any fixed a > 0,

(i) conditional on {σ ≤ a}, W (a, •) − W (σ, •) is independent of F1, and has the same
distribution as (a − σ)1/2B(•);

(ii) by the triangle inequality, E ∩ {σ ≤ a} ⊂ F.

The following lemma partly shows our interest in the event F. The event E is used in our
derivation that is to come.

Lemma 3.2 P
{

inf1≤s≤a sup0≤t≤1 W (s, t) ≤ ε
} ≤ 2P{F}.

Proof By Lemma 3.1, on {σ ≤ a},

P{E | σ} = P

{
sup

δ≤t≤1

B(t)
t1/2

≤ c0

√
a − 1
a − σ

log log(1/δ)
∣∣∣ σ

}

≥ P

{
sup

δ≤t≤1

B(t)
t1/2

≤ c0

√
log log(1/δ)

}

≥ 1
2
.

The last line follows from (3.3). Using Lemma 3.1 (ii), we can deduce

P{σ ≤ a} ≤ 2P{F}.
On the other hand, {

inf
1≤s≤a

sup
0≤t≤1

W (s, t) ≤ ε
}
⊂ {σ ≤ a}.

The lemma follows. �

To estimate P{F}, we observe that when ε is small,

ε/δ1/2 + c0

√
(a − 1) log log(1/δ)
a1/2

≤ 2
a1/2 log(1/ε)

≤ 2
log(1/ε)

,

so that by scaling,

P{F} ≤ P

{
sup

δ≤t≤1

B(t)
t1/2

≤ 2
log(1/ε)

}
. (3.4)

Define the process U by U(x) = B(e−2x)/e−x, x ∈ R. It follows from direct covariance com-
putations that U is the same (in law) as the Ornstein–Uhlenbeck process in (2.1). Moreover,

sup
δ≤t≤1

B(t)
t1/2

= sup
0≤x≤ 1

2 log(1/δ)

U(x).

Combining this with (3.4) and Lemma 2.1, we readily obtain the following:

P{F} ≤ Kε log(1/ε).

Lemma 3.2 and the stationarity of the Ornstein–Uhlenbeck process, imply the following result
that is interesting in its own right.
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Proposition 3.3 For all positive and finite K5, there exists a finite K6 > 1, such that when-
ever I is an interval in [1, K5+1] whose length is bounded above by

{
c2
0 log2(1/ε) log log(1/ε)

}−1,

P
{

inf
s∈I

sup
0≤t≤1

W (s, t) ≤ ε
} ≤ K6 ε log(1/ε), ∀ε ∈ (0, K−1

6 ).

Proof of Theorem 1.1 Since [1, e] can be covered by 2c2
0 log2(1/ε) log log(1/ε) many intervals

I of the above type, we deduce the following estimate: for all ε > 0 small,

P
{

inf
1≤s≤e

sup
0≤t≤1

W (s, t) ≤ ε
} ≤ Kε log3(1/ε) log log(1/ε). (3.5)

By scaling, we obtain the upper bound of Theorem 1.1 from Eq. (3.5). The lower bound of
Theorem 1.1 follows immediately from Eq. (1.1). This completes our proof. �

It is possible to refine the rate given by Proposition 3.3, if the intervals are kept to small sizes.
We conclude this article with a precise statement of this claim and its proof.

Proposition 3.4 For all positive and finite C1, there exists a finite C2 > 1, such that when-
ever I is an interval in [1, 1 + C1] whose length is at most C1ε

2,

P
{

inf
s∈I

sup
0≤t≤1

W (s, t) ≤ ε
} ≤ C2 ε, ∀ε ∈ (0, C−1

2 ).

By (1.1), this is sharp, up to a constant.

Proof Without loss of generality, I = [p, p + C1ε
2], where p ∈ [1, C2]. Define

J =
∫

I

1
{

sup
0≤t≤1

W (s, t) ≤ ε
}

ds =
∫ p+C1ε2

p

1{ sup
0≤t≤1

W (s, t) ≤ ε
}

ds,

where 1{· · ·} denotes the indicator function of the events in the parentheses. Since the elements
of I are greater than 1, Eq. (1.1) implies that for all small ε > 0,

K−1
7 ε|I| ≤ E{J} ≤ K7 ε|I|, (3.6)

where |I| = C1ε
2 denotes the length of I. We now compute a conditional version of this cal-

culation. Recalling the 1-parameter filtration F1, we define the martingale M as a continuous
modification of the following

Mr = E{J | F1
r }, r ≥ 0.

Observe that for all r ≥ 0,

Mr ≥
∫ p+C1ε2

r

P
{

sup
0≤t≤1

W (s, t) ≤ ε
∣∣ F1

r

}
ds · 1

{
sup

0≤t≤1
W (r, t) ≤ ε

2

}
.

Since {W (s, t) − W (r, t); s ≥ r, t ≥ 0} is independent of F1
r , it follows that for all p ≤ r ≤

p + C1ε
2/2,

Mr ≥
∫ p+C1ε2

r

P

{
sup

0≤t≤1
(W (s, t) − W (r, t)) ≤ ε

2

}
ds · 1

{
sup

0≤t≤1
W (r, t) ≤ ε

2

}

=
∫ p+C1ε2

r

P

{
sup

0≤t≤1
W (s − r, t) ≤ ε

2

}
ds · 1

{
sup

0≤t≤1
W (r, t) ≤ ε

2

}

≥
∫ C1ε2/2

0

P

{
sup

0≤t≤1
W (s, t) ≤ ε

2

}
ds · 1

{
sup

0≤t≤1
W (r, t) ≤ ε

2

}
,
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almost surely. Moreover, continuity considerations imply that the above holds a.s., simultane-
ously for all r ∈ [p, p + C1ε

2/2]. By scaling, this leads to:

Mr ≥ K8 ε2 · 1
{

sup
0≤t≤1

W (r, t) ≤ ε

2

}
.

Consider the F1 stopping time T = inf{s ≥ p : sup0≤t≤1 W (s, t) ≤ ε/2}, where inf ? = +∞.
Applying r ≡ T and taking expectations in the above to see that

E
[
MT1{T < ∞}] ≥ K8 ε2

P

{
inf

p≤s≤p+C1ε2/2
sup

0≤t≤1
W (s, t) ≤ ε

2

}
.

Since M is a bounded martingale, by the optional stopping theorem and by Eq. (3.6),
E
[
MT1{T < ∞}] = E{M0} = E{J} ≤ K9 ε3. The proposition follows upon relabeling

the parameters C1 and C2. �
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