ON THE OCCUPATION TIME OF BROWNIAN EXCURSION

GERARD HOOGHIEMSTRA

Faculty ITS, Technical University Delft, Holland.
email: G.Hooghiemstra@its.tudelft.nl
submitted January 25, 1999; revised August 4, 1999
AMS subject classification: 60J65
Brownian excursion, occupation time

Abstract

Recently, Kalvin M. Jansons derived in an elegant way the Laplace transform of the time spent by an excursion above a given level $a>0$. This result can also be derived from previous work of the author on the occupation time of the excursion in the interval $(a, a+b]$, by sending $b \rightarrow \infty$. Several alternative derivations are included.

1 Introduction

In [5], the author derives in an elegant way the Laplace transform of the time spent by an excursion above a given level $a>0$. This result can also be derived from the occupation time of the excursion in the interval $(a, a+b]$, by sending $b \rightarrow \infty$ (cf. [2] or [4]).

2 Occupation times

Introduce for α, β complex and $a \geq 0$,

$$
\psi(\alpha, \beta, a)=\left[\frac{\alpha \cosh (a \beta)+\beta \sinh (a \beta)}{\alpha \sinh (a \beta)+\beta \cosh (a \beta)}\right]
$$

Denote by W_{0}^{+}, Brownian excursion with time parameter $t \in[0,1]$, see [4], I. 2 for a precise definition. According to p. 117 and p. 120 of [4], or Theorem 5.1 of [2], the Laplace transform of the occupation time $T(a, a+b)=\int_{0}^{1} 1_{(a, a+b]}\left(W_{0}^{+}(t)\right) d t$, is given by:

$$
\begin{align*}
& E e^{-\beta T(a, a+b)}=\frac{\sqrt{2 \pi}}{a^{3}} \sum_{k=1}^{\infty} k^{2} \pi^{2} e^{-k^{2} \pi^{2} / 2 a^{2}}+\frac{1}{i \sqrt{\pi}} \int_{S} \frac{\alpha e^{\alpha}}{\sinh \{a \sqrt{2 \alpha}\}} \tag{1}\\
& \quad \times\left[\sqrt{\alpha} \cosh \{a \sqrt{2 \alpha}\}+(\alpha+\beta)^{1 / 2} \psi(\sqrt{\alpha}, \sqrt{\alpha+\beta}, b \sqrt{2}) \sinh \{a \sqrt{2 \alpha}\}\right]^{-1} d \alpha
\end{align*}
$$

where the path S is defined by

$$
S=\{\alpha: \alpha=i y,|y| \geq \xi\} \cup\left\{\alpha: \alpha=\xi e^{i \eta},-\pi / 2 \leq \eta \leq \pi / 2\right\}
$$

for some $\xi>0$.
In order to write the first term on the right side of (1), which term is equal to the distribution function of the supremum of Brownian excursion, ${ }^{1}$ as a complex integral we introduce the path:

$$
\Gamma=\left\{\alpha: \alpha=y e^{ \pm i \phi}, y \geq \xi\right\} \cup\left\{\alpha: \alpha=\xi e^{i \eta},-\phi \leq \eta \leq \phi\right\}
$$

with $\pi / 2<\phi<\pi, \xi>0$ and the orientation counterclockwise. We choose the angle ϕ in such a way that all sigularities of the integrand in (1) remain on the left of the path Γ. Then

$$
\begin{equation*}
\frac{\sqrt{2 \pi}}{a^{3}} \sum_{k=1}^{\infty} k^{2} \pi^{2} e^{-k^{2} \pi^{2} / 2 a^{2}}=-\frac{1}{i \sqrt{\pi}} \int_{\Gamma} \sqrt{\alpha} e^{\alpha} \frac{\cosh \{a \sqrt{2 \alpha}\}}{\sinh \{a \sqrt{2 \alpha}\}} d \alpha \tag{2}
\end{equation*}
$$

since the integrand has only simple poles at $\alpha_{k}=-k^{2} \pi^{2} / 2 a^{2}, k \geq 1$. Combining (1) and (2) and deforming the path S into the path Γ (again using Cauchy's theorem), yields

$$
\begin{align*}
& E e^{-\beta T(a, a+b)}=-\frac{1}{i \sqrt{\pi}} \int_{\Gamma} \sqrt{\alpha} e^{\alpha} d \alpha \tag{3}\\
& \quad \times\left[\frac{\sqrt{\alpha} \sinh \{a \sqrt{2 \alpha}\}+(\alpha+\beta)^{1 / 2} \psi(\sqrt{\alpha}, \sqrt{\alpha+\beta}, b \sqrt{2}) \cosh \{a \sqrt{2 \alpha}\}}{\sqrt{\alpha} \cosh \{a \sqrt{2 \alpha}\}+(\alpha+\beta)^{1 / 2} \psi(\sqrt{\alpha}, \sqrt{\alpha+\beta}, b \sqrt{2}) \sinh \{a \sqrt{2 \alpha}\}}\right]
\end{align*}
$$

By taking the limit for $b \rightarrow \infty,(\psi(., ., b \sqrt{2}) \rightarrow 1$, uniformly on compacta of $\Gamma)$ we obtain for the Laplace transform of the occupation time $T(a)=T(a, \infty)$,

$$
\begin{equation*}
E e^{-\beta T(a)}=-\frac{1}{i \sqrt{\pi}} \int_{\Gamma} \sqrt{\alpha} e^{\alpha} \psi(\sqrt{\alpha+\beta}, \sqrt{\alpha}, a \sqrt{2}) d \alpha \tag{4}
\end{equation*}
$$

Alternatively, one could take the limit for $a \downarrow 0$ in (3), resulting in the transform: $E e^{-\beta(1-T(b))}$. For the occcupation time $T_{t}(a)$ of the excursion straddling t, we have

$$
\begin{equation*}
T_{t}(a) \stackrel{d}{=}\left(L_{t}\right)^{1 / 2} T\left(a\left(L_{t}\right)^{-1 / 2}\right) \tag{5}
\end{equation*}
$$

with $T(a)$ and L_{t} independent, and where L_{t} denotes the length of the excursion. It is readily verified from the density of L_{t}, see [1], (4.4), that for integrable φ,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-\alpha t} E \varphi\left(L_{t}\right) d t=\frac{1}{2 \sqrt{\pi \alpha^{3}}} \int_{0}^{\infty} \varphi(y)\left(1-e^{-\alpha y}\right) d y \tag{6}
\end{equation*}
$$

[^0]which is the more familiar form of this distribution function.

Hence, using (5) and (6), the Laplace transform (4) yields the double Laplace transform:

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\alpha t} E e^{-\beta T_{t}(a)} d t \tag{7}\\
& \quad=\frac{1}{\alpha} \psi(\sqrt{\alpha+\beta}, \sqrt{\alpha}, a \sqrt{2})-\frac{1}{\alpha^{3 / 2}} \lim _{\alpha \downarrow 0} \sqrt{\alpha} \psi(\sqrt{\alpha+\beta}, \sqrt{\alpha}, a \sqrt{2}) \\
& \quad=\frac{1}{\alpha}\left[\frac{\sqrt{\alpha} \sinh \{a \sqrt{2 \alpha}\}+\sqrt{\alpha+\beta} \cosh \{a \sqrt{2 \alpha}\}}{\sqrt{\alpha} \cosh \{a \sqrt{2 \alpha}\}+\sqrt{\alpha+\beta} \sinh \{a \sqrt{2 \alpha}\}}\right]-\frac{1}{\alpha^{3 / 2}} \frac{\sqrt{\beta}}{1+a \sqrt{2 \beta}} .
\end{align*}
$$

This result can also be derived starting from reflected Brownian motion $|W|$ (cf. [3], p. 92, Remark (3.20)).
Perhaps the most elegant formulation of the Laplace transform of the occupation time is that for β strictly positive

$$
\begin{align*}
& \frac{1}{\sqrt{2 \pi}} \int_{0}^{\infty} \frac{e^{-\alpha x}}{x^{3 / 2}}\left[1-E e^{-\beta x T\left(x^{-1 / 2}\right)}\right] d x \tag{8}\\
& =\frac{2 \sqrt{2 \alpha}(\sqrt{\alpha+\beta}-\sqrt{\alpha})}{(\sqrt{\alpha}+\sqrt{\alpha+\beta}) e^{2 \sqrt{2 \alpha}}+(\sqrt{\alpha}-\sqrt{\alpha+\beta})}
\end{align*}
$$

Equation (8) can be derived as follows. On the path Γ we have:

$$
\begin{aligned}
1 & -E e^{-\beta T(a)}=-\frac{1}{i \sqrt{\pi}} \int_{\Gamma} \sqrt{\alpha} e^{\alpha} d \alpha+\frac{1}{i \sqrt{\pi}} \int_{\Gamma} \sqrt{\alpha} e^{\alpha} \psi(\sqrt{\alpha+\beta}, \sqrt{\alpha}, a \sqrt{2}) d \alpha \\
& =\frac{1}{i \sqrt{\pi}} \int_{\Gamma} \sqrt{\alpha} e^{\alpha}\left[\frac{2(\sqrt{\alpha+\beta}-\sqrt{\alpha}) e^{-a \sqrt{2 \alpha}}}{(\sqrt{\alpha}+\sqrt{\alpha+\beta}) e^{a \sqrt{2 \alpha}}+(\sqrt{\alpha}-\sqrt{\alpha+\beta}) e^{-a \sqrt{2 \alpha}}}\right] d \alpha .
\end{aligned}
$$

Now for $a>0$ the integral over the path Γ may be replaced by integration over the line $(c-i \infty, c+i \infty)$, where $c>0$ is arbitrary. Hence after the substitution $\alpha=x z$, with x positive and replacement of the path $(c / x-i \infty, c / x+i \infty)$ by the path $(c-i \infty, c+i \infty)$, we obtain

$$
\begin{aligned}
& x^{-3 / 2}\left(1-E e^{-\beta x T\left(x^{-1 / 2}\right)}\right) \\
& \quad=\frac{1}{i \sqrt{\pi}} \int_{c-i \infty}^{c+i \infty} \sqrt{z} e^{x z}\left[\frac{2(\sqrt{z+\beta}-\sqrt{z}) e^{-\sqrt{2 z}}}{(\sqrt{z}+\sqrt{z+\beta}) e^{\sqrt{2 z}}+(\sqrt{z}-\sqrt{z+\beta}) e^{-\sqrt{2 z}}}\right] d z
\end{aligned}
$$

Taking Laplace transforms on both sides gives (8).
Each of the representations (4), (7) or (8) is equivalent to Theorem 1 of [5], where the duration of the excursion was scaled with a gamma $\left(\frac{1}{2}, \frac{1}{2} \nu^{2}\right)$ density. In particular, Theorem 1 of [5] can be obtained from (8) by differentiating both sides with respect to α and using that

$$
\int_{0}^{\infty} x^{-1 / 2} e^{-\alpha x} d x=\sqrt{\pi / \alpha}
$$

References

[1] K.L. Chung Excursions in Brownian motion. Ark. Math. 14, 155-177, 1976.
[2] J.W. Cohen and Hooghiemstra, G. Brownian excursion, the $M / M / 1$ queue and their occupation times. Math. Oper. Res. 6, 608-629, 1981.
[3] R.K. Getoor and Sharpe, M.J. Excursions of Brownian motion and Bessel processes. Z. Wahrscheinlichkeitstheorie un Verw. Gebiete 47, 83-106, 1979.
[4] G. Hooghiemstra Brownian Excursion and Limit Theorems for the $M / G / 1$ queue. Ph.D. thesis University Utrecht, 1979.
[5] K.M. Jansons The distribution of time spent by a standard excursion above a given level, with applications to ring polymers near a discontinuity in potential. Elect. Comm. in Probab. 2, 53-58, 1997.

[^0]: ${ }^{1}$ According to the Poisson-summation formula

 $$
 \frac{\sqrt{2 \pi}}{a^{3}} \sum_{k=1}^{\infty} k^{2} \pi^{2} e^{-k^{2} \pi^{2} / 2 a^{2}}=1+2 \sum_{k=1}^{\infty}\left(1-4 k^{2} a^{2}\right) e^{-2 k^{2} a^{2}}
 $$

